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Abstract—We propose an algorithm for estimating correlation
matrix of mmWave channels. In addition to being sparse in
angular/spatial domain, mmWave channel is commonly assumed
to be time-invariant over a certain time period. However, more
recent experiments indicate that while mmWave channel spatial
directions can be assumed constant over some time period, their
coefficients vary in time. Building upon this result, we prob-
abilistically treat the correlation matrix estimation problem by
associating sparse Bayesian learning prior to channel realizations,
and performing statistical inference to recover channel directions
and estimate their correlation matrix. The proposed algorithm is
validated with simulations and shown to outperform benchmark
methods based on greedy optimization-based sparse recovery.

Index Terms—correlation matrix estimation, millimeter-wave
channel, sparse Bayesian learning

I. INTRODUCTION

Unprecedented data rates expected to be wirelessly deliv-
ered over millimeter-wave (mmWave) frequency ranges and
different challenges associated with building actual mmWave
systems have attracted considerable research interest in recent
years [1]. Numerous measurements have shown that mmWave
channel is sparse in spatial domain and, consequently, a variety
of mmWave channel estimation algorithms exploit this inher-
ent sparsity. One approach for mmWave channel estimation,
employed by current mmWave communication standards [2],
comprises of probing different spatial channel directions, one
at a time, in consecutive time slots. This approach, however,
leads to channel underutilization due to the need to exhaus-
tively scan all possible spatial directions. A scheme trying
to alleviate this issue is proposed in [3]. In an alternative
approach, the channel is compressively sensed resulting in
smaller number of required channel uses for training, as well
as ability to train multiple channels in parallel in multi-user
systems [4], [5]. With compressive sensing approach, the
channel estimation is framed as Bayesian inference problem
in [6], while [7] jointly estimates mmWave channel and
compensates its frequency offset.

Commonly, the existing mmWave channel estimation al-
gorithms assume the channel is time-invariant over a certain
time period whose one part is used for channel estimation
and the remaining one for information transmission. How-
ever, more recent experimental measurements have indicated
that while spatial directions of mmWave channel may be
unchanged during some time period, their coefficients are
time-varying [8]. Therefore, channel correlation matrix, which

contains information about channel spatial directions, i.e.,
angles of departures (AoD) and arrivals (AoA) of channel
paths, as well as their powers, is necessary to establish the
communication link between transmitter and receiver [9]. We
propose in this paper an algorithm for estimation of mmWave
channel correlation matrix. The algorithm comprises of two
parts. The first part recovers channel spatial directions by
modeling channel realizations with a hierarchal probabilistic
generative model from sparse Bayesian learning (SBL) [10].
Although the SBL model assumes independent paths, the SBL
prior promotes sparsity and admits tractable inference and
is thus a handy approach for recovering non-zero channel
directions even when they are correlated. Given the estimated
AoDs and AoAs of the channel paths, we then develop a
procedure to estimate correlation matrix of the recovered paths
which then yields the overall channel correlation matrix. The
proposed algorithm is tested with numerical simulations and
shown to perform favorably in comparison to benchmarked
optimization-based algorithms [9].

The AoA estimation problem, one application of which is
mmWave channel estimation, has received significant attention
in the literature. As such, a variety of basis pursuit (BP) and
atomic norm denoising algorithms [14] have been proposed.
Similarly, the SBL framework has been explored for mmWave
channel estimation [11]–[13]. Like in those works, we assume
the mmWave paths, i.e., their AoDs and AoAs, are unchanged
over the observation period. However, contrary to those works,
the path coefficients in our model are assumed to vary in time.
Consequently, rather than estimating mmWave channel, which
is commonly addressed, our challenge becomes the estimation
of mmWave channel correlation matrix.

The closest work to this paper is [9], which frames estima-
tion of mmWave channel correlation matrix as an optimization
problem and proposes several greedy sparse recovery algo-
rithms to solve it. In comparison to [9], we estimate chan-
nel correlation matrix through Bayesian inference procedure,
where channel is modeled in a way to promote spatial sparsity
and admit tractable inference. The simulations show that the
proposed algorithm outperforms the methods from [9].

II. SIGNAL MODEL

A. Channel Model

We assume transmitter and receiver are in communication
over a narrowband mmWave channel. A baseband representa-



tion of the signal transmitted at discrete time n is xn ∈ CNt×1,
where Nt is the number of antennas on the transmitter side.
The baseband representation of the corresponding signal,
yn ∈ CNr×1, received on Nr antennas is given by

yn = Hnxn + v′n, (1)

where v′n is Gaussian noise and Hn ∈ CNr×Nt is time-
varying narrowband mmWave channel. Numerous experimen-
tal measurements have shown that mmWave channel is sparse
in angular domain, meaning that transmitted mmWave signal
propagates over several distinct paths (line-of-sight, reflected
and/or scattered path) before it reaches the receiver. To exploit
channel sparsity in the spatial (i.e., angular) domain and facil-
itate its estimation, mmWave channel is commonly modeled
as [4]

Hn = ArGnAH
t , (2)

where H denotes complex-conjugate transpose operator, Gn

is channel representation in the virtual angular domain, Ar ∈
CNr×Gr and At ∈ CNt×Gt are manifold matrices of, re-
spectively, receiver and transmitter arrays over corresponding
angular domains discretized into Gr and Gt grid points. As
a result of channel sparsity in the angular domain, Gn is a
sparse matrix whose support directly indicates AoD and AoA
of each non-zero channel path. Commonly, mmWave channel
estimation algorithms from the literature assume the channel
Gn is time-invariant over some time period. In comparison,
we assume the AoD and AoA of channel paths remain constant
during some time interval, while their coefficients vary in time.
Formally, this means that the support of Gn is time-invariant
while the values of its non-zero entries change with time n.

B. Sensing Model

A compressive sensing approach for training mmWave
channel is to transmit/receive energy to/from random direc-
tions [4]. As such, the transmitter employs one radio-frequency
(RF) chain to transmit a known symbol sn = 1 modulated
with a precoding vector pn ∈ CNt×1. The precoding vector
comprises of pseudo-random phasors such that the transmitted
symbol is randomly phase shifted in each antenna yielding the
transmitted signal xn = pn that essentially insonifies random
spatial channel directions.

The receiver applies a pseudo-random combining vector
qn ∈ CNr×1 in each of its Mr RF chains onto the received
signal yn. The resulting signal zn ∈ CMr×1 is given by

zn = QH
n yn = QH

n Hnpn + vn, (3)

where we approximately assume the noise is white, vn ∼
CN (0, σ2IMr

), and Qn ∈ CNr×Mr is the equivalent com-
bining matrix containing individual combining vectors qn
in its columns. Vectorizing (3) and using the property that
vec(ABC) =

(
CT ⊗A

)
vec(B) yields

zn =
(
pTn ⊗QH

n

)
vec(Hn) + vn, (4)

where ⊗ denotes Kronecker product. Substituting (2) into (4)
and using the same property leads to

zn =
(
pTn ⊗QH

n

) (
AT
t ⊗Ar

)
vec(Gn) + vn

= Bngn + vn, (5)

where gn , vec(Gn) and Bn ,
(
pTn ⊗QH

n

) (
AT
t ⊗Ar

)
.

We assume the channel is sensed over T time slots resulting
in test statistics z1, . . . , zT with known "sensing matrices"
B1, . . . ,BT and unknown channel realizations g1, . . . ,gT .
As elaborated before, each channel realization gn is a sparse
vector with fixed support and varying values of non-zero
entries over. Our goal is to estimate channel correlation matrix.
Given that we represent mmWave channel in two domains, we
correspondingly define channel correlation matrix in angular
and array domain respectively as

Σg = E
[
gngHn

]
(6)

Σh = E
[
vec(Hn)vec(Hn)H

]
=

(
AT
t ⊗Ar

)
Σg

(
AT
t ⊗Ar

)H
. (7)

As a side remark, we note that more than one RF chain on the
transmitter side can be used for channel sensing. However, the
resulting signal from each transmitter RF chain requires one
channel use for transmission. Therefore, more transmitter RF
chains do not bring more channel measurements within the
fixed number of channel uses, alike with multiple receiver RF
chains. Consequently, without loss of generality we assume a
single transmitter RF chain.

III. PROPOSED ALGORITHM

The proposed algorithm for estimating correlation matrix of
mmWave channel consists of two parts. The first part recovers
the AoD and AoA of each channel path, while the second part
estimates channel correlation matrix of the recovered paths.

A. Detection of Channel Paths

The channel support is recovered by describing channel
vectors gn with a specific hierarchical probabilistic generative
model. The model is chosen so as to promote sparsity of
channel vectors and, together with Gaussian likelihood for
the observations zn, admit tractable Bayesian inference. The
generative model assumes that channel vectors are condition-
ally independent samples from circularly symmetric Gaussian
distribution

p(gn|α) = CN (g; 0,Σα), (8)

where α ∈ RGtGr×1 is precision vector and Σα = diag(α)−1.
The entries αi, i = 1, . . . , GtGr, in the precision vector α
are further modeled as independent samples from Gamma
distribution

p(αi) = Gamma(αi; c, d) =
dc

Γ(d)
αce−dαi , (9)

where c and d are hyper-parameters chosen such that the
resulting prior distribution is uninformative. This is achieved
for c = ε and d = ε with small ε ∼ 10−5. The presented
generative model has been used in various applications within



the framework of sparse Bayesian learning (SBL) [10] with
relatively recent theoretical validation [15]. The intuition be-
hind this model stems from the fact that prior distribution
p(gn) (obtained by marginalizing out α) is peaked around
zero and heavy tailed away from zero, meaning that the model
promotes sparse solutions for gn.

In the case the AWGN variance σ2 is unknown, it is
modeled in a similar vein by assuming for precision α0 , σ−2,
p(α0) = Gamma(α0; c0, d0) with hyper-parameters c0 and d0
chosen so as make this prior uninformative. As a final piece
in the probabilistic formulation for the problem at hand, the
likelihood model for observations zn directly follows from (5)
and Gaussian noise statistics such that

p(zn|Bn,gn, α0) = CN (g; Bngn, α
−1
0 IMr

). (10)

Having specified the probabilistic model, we now infer un-
known parameters from the observations. To facilitate this
process, we first note that

p(gn|zn,Σα, α0) = CN (g;µn,Σn), (11)

because likelihood (10) and conditional prior (8) are Gaussian
distributions. The covariance matrix and mean vector of the
Gaussian conditional posterior (11) are respectively given by

Σn =
(
α0B

H
n Bn + diag(α)

)−1
(12)

µn = α0ΣnBH
n zn. (13)

The point estimates of precision vector α and inverse variance
α0 can be obtained using the expectation-maximization (EM)
algorithm [16] such that

α̂, α̂0 = arg max
α,α0

E
[
log p({zn}Tn=1, {gn}Tn=1,α, α0)

]
, (14)

where the expectation is taken with respect to

p({gn}Tn=1|{zn}Tn=1,α, α0) =

T∏
n=1

p(gn|zn,α, α0), (15)

which is further evaluated using (11). The log-likelihood of
complete data in (14) is expanded into a sum of decoupled
terms using conditional independence of zn given gn, and gn
given α, as well as independence of entries αi in α. Taking
the first derivatives of the resulting expression with respect to
αi’s and α0, equating them to zero and solving for αi’s and
α0 yields

α̂i =
T + c− 1

d+
∑T
n=1 (|[µn]i|2 + [Σn]ii)

, i = 1, . . . , GtGr (16)

α̂0 =
MrT + c0 − 1

d0 +
∑T
n=1 (‖zn −Bnµn‖22 + tr{BnΣnBH

n })
, (17)

where [µn]i is the ith entry in µn, [Σn]ii denotes the ith
diagonal entry of Σn, ‖x‖2 is the l2 norm of x, and tr{A} is
the trace of a matrix A.

Overall, the EM algorithm alternates between estimating
αi’s and α0 using (16) and (17), and inferring posterior distri-
bution (11). The procedure is initialized with some large values
for α0 and α, and executed a certain number of iterations

or until convergence is established. The EM algorithm yields
posterior mean and covariance of each channel realization gn,
as well as point estimates of precisions α0 and α. Since the
power in the spatial direction i is 1/αi, the channel support is
directly recovered from vector α′ = 1/{αi}GtGr

i=1 by pruning
small values in α′, or as indices of S largest entries in α′

in the case the number of non-zero paths S is known and/or
estimated using some other method. Simulations indicate that
non-zero channel paths give rise to prominent peaks in α′.

B. Correlation Matrix of Channel Paths

In general, the channel correlation matrix Σg and AWGN
variance σ2 can be estimated, respectively, as Σα and 1/α̂0.
However, as the SBL generative model assumes independent
αi’s, it is not suitable for correlation matrix estimation of
channels with correlated paths. On the other hand, given the
SBL prior promotes sparsity and admits tractable inference, it
is a handy approach for recovering non-zero channel directions
even when they are correlated. Therefore, the method from the
previous part is used to recover channel support and here we
present an algorithm for estimating correlation matrix of the
detected channel directions (i.e, paths) and AWGN variance.

Given the channel support, the observations zn are ex-
pressed as

zn = B̃ng̃n + vn, (18)

where g̃n is non-zero portion of gn and B̃n contains columns
from Bn corresponding to the detected channel support. Sim-
ilarly, the non-zero portion of the channel correlation matrix
Σg is the correlation matrix of channel paths, denoted Σ̃g .
Assuming the channel path coefficients g̃n are samples from
zero-mean complex Gaussian distribution of unknown corre-
lation matrix Σ̃g , we employ the EM algorithm to estimate
Σ̃g as well as the AWGN variance σ̂2 by optimization

σ2, Σ̃g = arg max
σ2,Σ̃g

E
[
p({zn}Kn=1, {g̃n}Kn=1;σ2, Σ̃g)

]
, (19)

where the expectation is taken over
∏K
n=1 p(g̃n|zn;σ2, Σ̃g).

Using the Gaussian likelihood model for observations zn and
Gaussian prior on channel path coefficients g̃n, we express
the log-likelihood of complete data in (19) as the sum of
decoupled terms, and solve the nonlinear optimization problem
using first derivative method, yielding

Σ̃g = T−1
T∑
n=1

(
Σ̃n + µ̃nµ̃

H
n

)
(20)

and

σ̂−2 =
MrT∑T

n=1

(
‖zn − B̃nµ̃n‖22 + tr{B̃nΣ̃nB̃H

n }
) , (21)

where Σ̃n and µ̃n are covariance matrix and mean vector of
Gaussian posterior p(g̃n|zn), respectively given by

Σ̃n =
(
σ−2B̃H

n B̃n + Σ̃
−1
g

)−1
µ̃n = σ−2Σ̃nB̃H

n zn. (22)



The EM procedure initializes Σ̃g with a diagonal matrix
whose diagonal elements are inverses of αi’s corresponding to
the non-zero support detected in the previous part. Similarly,
σ̂2 is initialized with α−10 . The alternating procedure is run a
certain number of iterations or until convergence is established,
and finally outputs σ̂2 and Σ̃g . The estimate of the channel
correlation matrix in the angular domain, Σ̂g , directly follows
from Σ̃g , while that in the array domain, Σ̂h, is obtained from
Σ̂g using (7).

IV. SIMULATION STUDY

In all simulation tests, we assume uniform linear arrays
(ULA), precoders and combiners introduce four possible phase
shits (0o, 90o, 180o and 270o), and the array manifold matrices
are discretised into 256 points.

As an illustrative example, we first consider a scenario with
Nt = Nr = 8 antennas on both ends, Mr = 4 RF chains in
the receiver, S = 5 independent channel paths, T = 50 pilots
and SNR = 0 dB. The locations of true and estimated channel
paths in the AoD-AoA domain and their powers are shown
in Fig. 1. Notably, the proposed algorithm accurately recovers
channel paths in the angular domain.

Fig. 1: True and estimated channel paths for Nt = Nr = 8,
Mr = 4, S = 5, T = 50 and SNR = 0 dB.

The performance of the proposed algorithm is analyzed
with simulations using the same scenario as in [9] so as
to benchmark it against the performance of greedy sparse
recovery algorithms reported therein. As such, the simulation
scenario assumes channel with S = 8 independent mmWave
paths, where transmitter and receiver respectively employ
Nt = 1 and Nr = 64 antennas. The performance is measured
with efficiency defined as

ηh =
tr{UH

Σ̂h
ΣhUΣ̂h

}
tr{UH

Σh
ΣhUΣh

}
, (23)

where Σh and Σ̂h are, respectively, true and estimated channel
correlation matrices in the array domain, while UA denotes
eigenvector matrix of matrix A. Due to lack of space, we skip
further elaboration of the selected metric and remark that the
same metric is used in [9]. The performance of greedy-based

algorithms from [9] under the considered scenario are shown
in Fig. 2.

Fig. 2: Performance of greedy sparse recovery algo-
rithms (Orthogonal Matching Pursuit (OMP), simultaneous
OMP (SOMP), covariance OMP (COMP), dynamic SOMP
(DSOMP) and dynamic COMP (DCOMP)) from [9] for
Mr = 8 (left) and Mr = 16 (right).

The efficiencies of the proposed algorithm, simulated over
100 Monte-Carlo runs for each considered number of pilots T
and Mr = 8 or Mr = 16 RF chains are shown in Fig. 3, where
different cases as to which information is available on the
receiver side are considered. More specifically, we consider the
cases where information that the channel paths are indepen-
dent, i.e., channel correlation matrix is of diagonal structure,
as well as the noise variance are available/unavailable. In the
case the receiver is aware the channel correlation matrix has
diagonal structure, the estimation is carried out by updating
only the diagonal elements in (20). As can be noted from the
performance plots, the performance does not deteriorate when
noise variance is unknown and estimated together with the
channel correlation matrix. Furthermore, the lack of knowl-
edge about diagonal structure of the channel correlation matrix
causes insignificant performance deterioration only for a small
number of pilots. Overall, for Mr = 8 RF chains and T = 20
pilots, our algorithm achieves nearly perfect efficiency, while
the efficiency of the best greedy algorithm from Fig. 2 is 0.8.
Similarly, for Mr = 16 RF chains, our algorithm achieves
efficiency close to 1 and outperforms the best greedy algorithm
from Fig. 2.

Finally, we consider the same communication system with
8 channel paths that exhibit different correlation patterns
and measure efficiency of the proposed algorithm when the
structure of the channel correlation matrix and noise variance
are unknown. The channel paths are grouped into G mutually
exclusive groups such that gains of the paths within the same
group have unit correlation coefficient (i.e., are "fully corre-
lated"), while those from different groups are uncorrelated.
In other words, the underlying channel correlation matrix is
block diagonal, where size of each block is equal to the
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Fig. 3: Performance of the proposed algorithm with
known/unknown path correlation matrix structure and noise
variance.

group size. The considered group sizes are 1 (i.e., all paths
are independent), 2, 4 and 8 (i.e., gains of all paths vary in
the same manner) and the obtained performance is shown in
Fig. 4. As can be seen, the efficiency gap between the most
and least favorable cases of, respectively, uncorrelated and
fully correlated paths is no more than 0.1, occurring when the
number of pilots is 8. However, the efficiency gap closes as the
number of pilots increases, leading to relatively insignificant
degradation in the most extreme case of fully correlated paths
with respect to other more practical cases. Finally, comparing
the results in Fig. 4 with those in Fig 2 for 8 RF chains yields
that the proposed algorithm in the most extreme case of full
correlation among channel paths outperforms the best greedy
optimization-based algorithm in the most favorable case of
uncorrelated paths.
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Fig. 4: Performance of the proposed algorithm for 8 RF chains
and different correlation matrix structures of 8 mmWave paths.

V. CONCLUSION

We presented in this paper an algorithm for mmWave
channel correlation matrix estimation where mmWave chan-
nel is assumed to have sparse and time-invariant directions
with correlated time-varying coefficients. The algorithm builds
upon sparse Bayesian learning framework leveraged to detect
mmWave channel directions and then estimates channel corre-
lation matrix using separate procedure. The algorithm is tested
with simulations and shown to outperform the benchmark
state-of-the-art methods based on greedy optimization-based
sparse recovery.
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