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Abstract. Shared mobility is revolutionizing urban transportation and
has sparked interest in optimizing the joint schedule of passengers using
public transit and last-mile services. Scheduling systems must anticipate
future requests and provision flexibility in order to be adopted in practice.
In this work, we consider a two-stage stochastic programming formula-
tion for scheduling a set of known passengers and uncertain passengers
that are realized from a finite set of scenarios. We present an optimization
approach based on decision diagrams. We obtain, in minutes, schedules
for 1,000 known passengers that are robust and optimized with respect
to scenarios involving up to 100 additional uncertain passengers.
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1 Introduction

The transportation industry is transforming due to recently introduced mech-
anisms for shared mobility [9, 16]. Transportation systems are a key element
of integrative smart city operations, leading to a host of complex optimization
problems [12, 19–21]. Of critical importance is the joint scheduling of mass trans-
portation systems with last-mile vehicles, which when scheduled in unison can
lead to significant operational improvements [15, 17, 18, 22].

This paper studies the joint scheduling of passengers on mass transit systems
and last-mile vehicles under uncertainty. Passengers arrive by train to a central
terminal and board limited-capacity pods called commuter vehicles (CVs) which
are automated or otherwise operated, where some passengers are known and
other passengers are uncertain (and thus may or may not request service). The
goal is to assign passengers to trains and then to group passengers traveling
together on a CV so as to minimize a combination of total travel time and
number of CV trips.5 This objective models a tradeoff between quality of service

5 We assume a single destination per CV trip [17, 18] and only a few destinations [15],
which is operationally favorable since destination batching leads to efficiency.
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(passenger travel time) and operational costs related to fuel consumption and
maintenance requirements (number of trips). In the absence of uncertainty, this
problem is known as the integrated last-mile transportation problem (ILMTP).

The uncertain setting is applicable to systems where a central scheduler takes
requests from passengers and assigns them to trains and CV trips, while build-
ing in flexibility for passengers that might request transportation services but
are yet to submit an associated request. This leads to a significant increase in
problem complexity with respect to previous work [15, 17, 18], but also makes for
a more realistic setting where the initial scheduling of passengers must account
for additional demand from late requests that also needs to be accommodated.

Optimization under uncertainty, or stochastic optimization, defines a broad
class of challenging problems [8]. A relatively recent and popular technique for
handling uncertainty is robust optimization [2], where an uncertainty set is de-
fined and worst-case operational decisions are employed. It is well known that
this can lead to highly conservative solutions, since unlikely outcomes can drive
decisions. A more classical approach is simulation-based optimization, where
algorithms such as sample average approximation methods [11] are employed,
which consider a finite set of possible realizations described as a sample of sce-
narios which are optimized over in order to maximize the expected value over
the sampling.

This paper presents a two-stage stochastic programming formulation for the
ILMTP under additional passenger uncertainty (ILMTP-APU). In addition to
a set of known passengers, we model uncertain passengers through a finite set
of scenarios. The first-stage decision is the scheduling of known passengers and
the second-stage decision schedules the additional passengers in each scenario.
Our approach relies on decision-diagram (DD)-based optimization (DDO) [1,
3, 6], and more specifically on decompositions based on DDs [4, 5, 13, 7] and is
inspired by the model presented in [17]. Specifically, a DD is built for known pas-
sengers going to each building and separately for unknown passengers in each
scenario and for each building. The DDs are then integrated through channeling
constraints that can be optimized with an integer programming (IP) formulation.
This results in a large model. However, due to the tightness of the formulation,
we obtain a reliable approach for optimally solving the problem. The result-
ing solutions are significantly better than what could be obtained by solving
the problem for the known passengers to optimality and then scheduling the
unknown passengers with the remaining capacity when a scenario is realized.

This paper adds to the recent literature on DDO for stochastic optimization,
where BDDs have been used for determining decision-dependent scenario prob-
abilities [10] and, more closely related to the current study, a study of a class of
two-stage stochastic IP problems [14]. Our proposed approach differs from that
of [14] in that we model both the first-stage and second-stage decisions using
DDs and link them through assignment constraints. This provides an additional
mechanism by which decision making under uncertainty can be tackled through
DDs. The main contributions of this paper are therefore (1) an extension of
the ILMTP to incorporate uncertain passenger arrivals; (2) structural results on
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families of optimal solutions; and (3) the development of a novel DDO stochastic
programming modeling framework for solving the ILMTP-APU based on these
structural results. An experimental evaluation on synthetic instances shows great
promise. In particular, the solutions obtained are far superior to a basic heuristic
extension of the work in [17] and the algorithm scales to 100 uncertain passengers
per scenario when 1,000 confirmed passengers are scheduled.

2 Problem Description

We first describe the elements of the problem, including the mass transit system,
last-mile vehicles, destinations, passenger requests, and associated parameters.
Mass transit system: We assume that the mass transit is a train system. Let
T0 be the terminal station that links a mass transit system with a last-mile
service system. The mass transit system is described by a set of trips, denoted
by C, with nc := |C|. Each trip originates at a station in set S and ends at
T0. The trips are regular in the sense that the train stops at all stations in S
sequentially, with T0 as the last stop of each trip. A trip c leaves station s ∈ S
at time t̃(c, s) and arrives to T0 at t̃(c).
Destinations: Let D be the set of destinations where the CVs make stops, with
K := |D|, where we assume T0 ∈ D. For each destination d ∈ D, let τ(d) be
the total time it takes a CV to depart T0, travel to d (denoted by τ1(d)), stop
at d for passengers to disembark (denoted by τ2(d)), and return to T0 (denoted
by τ3(d)). Therefore, τ(d) = τ1(d) + τ2(d) + τ3(d). Let T := {1, . . . , tmax}
be an index set of the operation times of both systems. We assume that the
time required to board passengers into the CVs is incorporated in τ1(d). For
simplicity, the boarding time is independent of the number of passengers.
Last-mile system: Let V be the set of CVs, with m := |V |. Denote by vcap

the number of passengers that can be assigned to a single CV trip. Each CV
trip consists of a set of passengers boarding the CV, traveling from T0 to a
destination d ∈ D, and then returning back to T0. Therefore, passengers sharing
a common CV trip must request transportation to a common building. We also
assume that each CV must be back at the terminal by time tmax.
Known Passengers: Let J be the set of known passengers. Each passenger
j ∈ J requests transport from a station s(j) ∈ S to T0, and then by CV to
destination d(j) ∈ D, to arrive at time tr(j). The set of passengers that request
service to destination d is denoted by J (d). Let n := |J | and nd := |J (d)|. Each
passenger j ∈ J must arrive to d(j) between tr(j)− Tw and tr(j) + Tw.
Uncertain Passengers: We assume a finite set of scenarios, denoted by Q,
representing different realizations of the uncertain passengers. Let Ĵ (q) be the

set of uncertain passengers in scenario q ∈ Q. Each passenger j ∈ Ĵ (q) requests
transport from a station s(j) ∈ S to T0, and then by CV to destination d(j) ∈ D,
to arrive at time tr(j). The set of passengers that request service to destination

d is denoted by Ĵ (q, d). Let n̂q := |Ĵ (q)| and n̂q,d :=
∣∣∣Ĵ (q, d)

∣∣∣ .

Problem Statement: The ILMTP-APU is the problem of assigning train trips
and CVs to each known passenger so that the uncertain passengers in any of
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the scenarios Q can be feasibly scheduled and the expected value of a convex
combination of the total transit time and the number of CV trips utilized is
minimized. A solution therefore consists of:

– A partition g = {g1, . . . , gγ} of J , where each group gl is associated with
a departure time tgl indicating the time the CV carrying the passengers in
gl departs T0, satisfying all request time and operational constraints. For
passenger j ∈ J , let g(j) be the group in g where j belongs.

– For each scenario q ∈ Q, a partition ĝ(q) =
{
ĝq,1, . . . , ĝq,γ̂(q)

}
of Ĵ (q), where

each group ĝq,k is associated with a departure time t
ĝ(q)
k and an indicator

function σ(q, k) ∈ {1, . . . , γ} ∪ {∅}. σ(q, k) 6= ∅ indicates that uncertain
passenger group ĝq,k shares the last-mile trip with known passenger group
gσ(q,k). In other words, groups leave from the terminal at the same time (i.e.

tgσ(q,k) = t
ĝ(q)
k ) and the combination of confirmed passenger group and all

such shared passenger groups in a scenario does not exceed the CV capacity,
i.e. |gl|+

∑
k∈{1,...,γ̂(q):σ(q,k)=l} |ĝq,k| ≤ vcap for each l ∈ {1, . . . , γ} and q ∈ Q.

3 Structure of Optimal Solutions

The deterministic version of ILMTP has optimal solutions with a structure that
is particularly helpful for defining compact models. For each destination, passen-
gers can be sorted by their desired arrival times and then grouped sequentially.
This structure is valid to minimize passenger average waiting time [18] as well
as the number of CV trips [17] hence leading to the compact DD-based model
in [17]. For ILMTP-APU, however, a more elaborate structure is required.

For example, let us suppose that for a particular time range there is a single
CV of capacity 4 available, 4 known passengers, and just 1 unknown passenger
in 1 out of 10 scenarios. Furthermore, let us assume that a first trip with the
CV incurs no wait time whereas a second trip would impose a wait time of w
on any passenger involved, and that the desired arrival time of the uncertain
passenger falls strictly in the middle of those of the known passengers. If we sort
and group all passengers regardless of their categories, then at least 2 trips will
always be necessary and at least 1 known passenger has to wait w. But if we
define a second trip only for the unknown passenger, then the average cost of
the solution is reduced to a tenth because the second trip and the corresponding
wait time w only materialize in 1 out of 10 scenarios. Since uncertain passengers
have a smaller impact on the objective function, it is intuitive that they might
be delayed with respect to known passengers if the schedule remains feasible.
We formalize this two-tier structure using the groups from the previous section.

Proposition 1. When ILMTP-APU is feasible, there is an optimal solution
where the groups of passengers for each category – known or uncertain from a
scenario q – are grouped sequentially by their desired arrival times.

Proof. Let us assume, by contradiction, that there is an instance for which the
statement does not hold for a group of known passengers involving a passenger
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j with destination d in group g1 and another group g2 ⊇ {j − 1, j+} for some
j+ > j. Furthermore, among the optimal solutions for such an instance, let us
choose the optimal solution for which the first index d of the destination where
such a grouping of known passengers does not exist is maximized; and among
those solutions the one that maximizes the index j of the first passenger for
which there is a group defined by passengers before and after j is maximized.

The key to obtaining a contradiction is the fact that the length of the time
window for arrival is identical for all passengers each of whom have access to
the same public transit service. Let us denote by gA ∈ {g1, g2} the group with
earliest arrival time, say tA; let us denote the other group by gB , for which
the departure time tB is such that tB ≥ tA; and let us denote the indices of
passengers on either group as {j1, j2, . . . , j|gA|+|gB |}, where trji ≤ trji+1

for i =
1, . . . , |gA| + |gB | − 1. Note that all of these passengers have either tA or tB in
their time windows. Since at least |gA| passengers can arrive at time tA, it follows
that the time window of the first |gA| passengers includes tA. If not, then some
of these first passengers would contain tB in their time window instead, implying
that some among the remaining |gB | passengers have tA in their time window,
and thus that the passengers are not sorted by desired arrival times. Thus,
tA ∈ [trj|gA|

−ω, trj1 +ω]. Similarly, at least |gB | passengers can arrive at time tB ,

and thus tB ∈ [trj|gA|+|gB |
−ω, trj|gA|+1

+ω]. Hence, we can replace the passengers of

group gA with {j1, . . . , j|gA|} and those of group gB with {j|gA|+1, . . . , j|gA|+|gB |}
while preserving their arrival times, size, and consequently with no change to
the feasibility or optimality of the solution. However, this exhange implies that
up to destination d and passenger j all passengers are grouped by sorted arrival
times, hence contradicting the choice of d and j.

Without loss of generality, we can apply the same argument for uncertain
passengers by also choosing the maximum index of a scenario q for which the
groupings are not continuous and finding the same contradiction. ut

The following result, which is independent from Proposition 1, is also helpful
to simplify the modeling of ILMTP-APU.

Proposition 2. When ILMTP-APU is feasible, there is an optimal solution
where at most one group of uncertain passengers for each scenario is assigned
to each group of known passengers.

Proof. If multiple groups are assigned, they have the same arrival times in any
optimal solution and thus can be combined without loss of generality. ut

4 Decision Diagram for Single Building

We use a DD to represent the groups from Proposition 1 for each destination.
A DD is a set of paths between a universal source node (root) and a universal
sink node (terminal), each containing a common number of arcs. The i-th arc
corresponds to a decision regarding the i-th passenger sorted by desired arrival
time: either passenger i is the last in a group and a departure time is chosen,



6 T. Serra et al.

or subsequent passengers join the group. The endpoints of each arc are nodes
representing how many passengers have been accumulated to define a group.
Arcs either increment this number by 1 (up to CV capacity) or set it back to 0.

Following similar notation as in [17], we define for each destination d ∈ D
a DD Dd = (Nd,Ad) for the known passengers. Nd is partitioned into nd + 1
ordered layers Ld1, L

d
2, . . . , L

d
nd+1 where nd = |J (d)|. Layer Ld1 =

{
rd
}

and layer

Ldnd+1 =
{
td
}

consist of one node each; the root and terminal, respectively. Each

arc a ∈ Ad is directed from its arc-root ψ(a) to its arc-terminal ω(a). If ψ(a) ∈ Ldi ,
then ω(a) ∈ Ldi+1. It is assumed that every maximal arc-directed path connects
rd to td. Similarly, for each scenario q ∈ Q, we define a DD Dd,q = (Nd,q,Ad,q)
by using the corresponding upper index q for disambiguation.

The arcs between layers of the diagram correspond to the passengers that
request transportation to the destination. Each node u is associated with a state
s(u) corresponding to the number of immediately preceding passengers that is
grouped with the next passenger. Each arc a is associated with a label φ(a) ∈
{0, 1} on whether passenger ψ(a) is not the last one in the group, in which
case φ(a) = 0 and s(ω(a)) = s(ψ(a)) + 1 ≤ vcap, or else φ(a) = 1. There
can be multiple arcs between the same nodes in the latter case, each arc a
corresponding to a different CV start time t0(a). Accordingly, each arc a such
that φ(a) = 1 has a corresponding wait time W (a) for all passengers in the group
and a label χ(a, t) ∈ {0, 1} to indicate that a CV would be active at time t (i.e.
t0(a) ≤ t ≤ t0(a) + τ(d)) if arc a is chosen. Hence, φ(a) = 0 implies χ(a, t) = 0.

5 IP Formulation

We define a formulation by which we group the passengers using a path from
each DD. Some of the groups of known and uncertain passengers are combined,
and we aim for a feasible schedule of the resulting groups using the CV fleet.

We introduce binary variable xa ∈ {0, 1} ∀ a ∈ Ad, d ∈ D, to denote the choice
of the particular arc in the DD for known passengers. Similarly, we introduce
binary variable yqa ∈ {0, 1} ∀ a ∈ Ad,q, d ∈ D to denote the choice of the particular

arc in the DD for uncertain passengers in scenario q ∈ Q. Let Ãd,q = {(a1, a2) ∈
Ad × Ad,q |φ(a1) = 1, φ(a2) = 1, t0(a1) = t0(a2) and s(ψ(a1)) + s(ψ(a2)) + 2 ≤
vcap}. The set Ãd,q denotes the set of feasible pairs of known passenger group and
uncertain passenger group of scenario q, i.e. identical start time on the CV and
the capacity constraint is satisfied. Let zqa1,a2 ∈ {0, 1} ∀ (a1, a2) ∈ Ad,q denote
the decision of pairing the group of known passengers represented by arc a1 and
group of uncertain passengers represented by arc a2.

The objective function can be expressed as

f(α) =
∑
d∈D

∑
a∈Ad

[αW (a) + (1− α)]xa

+
1

|Q|
∑
d∈D

∑
q∈Q

 ∑
a∈Ad,q

[αW (a) + (1− α)]yqa − (1− α)
∑

(a1,a2)∈Ãd,q

zqa1,a2
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The following constraint imposes that only one group of uncertain passengers is
paired with a group of known passengers if the latter is selected:∑

a2:(a1,a2)∈Ãd,q

zqa1,a2 ≤ ya1∀d ∈ D, q ∈ Q, a1 ∈ Ad : φ(a1) = 1. (1a)

The fleet size constraint can be modeled for all t ∈ T , q ∈ Q as

∑
d∈D

 ∑
a∈Ad:χ(a,t)=1

xa +
∑

a∈Ad,q :χ(a,t)=1

yqa

−∑
d∈D

∑
(a1,a2)∈Ãdq

zqa1,a2 ≤ m. (1b)

The IP model for the ILMTP-APU is

min f(α)

s.t. Network flow constraints for Dd ∀d ∈ D (2a)

Network flow constraints for Dd,q ∀d ∈ D, q ∈ Q (2b)

Eq. (1a), (1b)

xa ∈ {0, 1} ∀d ∈ D, a ∈ Ad (2c)

yqa ∈ {0, 1} ∀d ∈ D, q ∈ Q, a ∈ Ad (2d)

zqa1,a2 ∈ {0, 1} ∀d ∈ D, q ∈ Q, (a1, a2) ∈ Ãd,q. (2e)

The network flow constraints in (2a)-(2b) guarantee that a path is taken on each
decision diagram, which corresponds to the groupings of known passengers and
uncertain passengers for each scenario.

6 Experimental Results

We ran experiments to test our approach on a machine with an Intel(R) Core(TM)
i7-4770 CPU @ 3.40GHz and 16 GB RAM. The code is in Python 2.7.6 and the
ILPs are solved using Gurobi 7.5.1. We generated instances with 1000 passen-
gers, 60 CVs with capacity 5, 10 destinations, time windows of 10 minutes, time
units of 30 seconds, and 10 scenarios each containing 50 or 100 passengers. The
instances are similar to those in [17], but smaller due to problem complexity.

For benchmarking, we also tested the following heuristic H: (1) solve the
problem optimally for known passengers using the algorithm in [17]; and (2) for
each scenario, solve the resulting MIP formulation to maximize the number of
uncertain passengers that can be scheduled with the remaining capacity of the
trips already scheduled and the remaining availability of the CVs for more trips.

Table 1 summarizes results for α = 0.5. Each instance Pk,u,i corresponds to
the i-th instance with k known passengers and u unknown passengers on each
of the 10 scenarios. We report the values for the first stage (known passengers)
and for the second stage (uncertain passengers) as well as runtimes. The first-
and second-stage values correspond to the first and second terms of f(α). If the
second stage is infeasible, we report the percentage of scheduled passengers.
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Table 1. Comparison of solution obtained with DDO and with heuristic H.

Heuristic H DDO Approach

Instance 1st Stage 2nd Stage Time (s) 1st Stage 2nd Stage Time (s)

P1000,50,1 21,940.0 (41.6%) 23.8 22,991.5 1,254.2 630.4
P1000,50,2 22,434,0 (33.4%) 25.2 23,410.5 1,257.9 535.1
P1000,50,3 22,409.5 (35.8%) 25.2 23,403.5 1,271.1 532.2
P1000,50,4 22,410.0 (38.2%) 25.6 23,397.0 1,302.2 643.5
P1000,50,5 22,099.0 (37.4%) 25.4 23,152.5 1,282.0 1019.9
P1000,50,6 22,552.0 (37.6%) 28.7 23,826.0 1,239.8 539.8
P1000,50,7 22,397.0 (34.8%) 24.3 23,621.5 1,293.3 646.1
P1000,50,8 22,002.0 (42.2%) 25.9 23,003.0 1,264.2 564.6
P1000,50,9 22,745.5 (34.8%) 26.0 23,855.0 1,276.0 704.5
P1000,50,10 22,206.0 (40.0%) 25.4 23,186.0 1,262.3 526.8
P1000,100,1 22,389.5 (31.6%) 24.8 24,078.5 2,503.4 1,171.3
P1000,100,2 21,992.5 (40.4%) 25.5 23,718.5 2,510.7 2,142.1
P1000,100,3 22,181.0 (31.6%) 39.4 23,814.5 2,523.1 1,330.6
P1000,100,4 22,409.5 (31.3%) 23.8 23,923.5 2,577.0 1,535.2
P1000,100,5 22,447.5 (40.3%) 29.5 24,162.0 2,496.3 896.0
P1000,100,6 22,725.5 (31.4%) 25.2 24,277.0 2,530.4 1,112.4
P1000,100,7 22,236.5 (36.9%) 26.5 24,286.0 2,537.8 2,776.1
P1000,100,8 22,584.0 (33.0%) 27.3 24,177.5 2,560.4 1,544.1
P1000,100,9 22,541.0 (35.6%) 24.9 24,106.5 2,477.9 1,982.5
P1000,100,10 22,552.0 (37.6%) 29.0 24,274.0 2,525.3 1,965.6

We note that ignoring the second stage leads to infeasible problems in all cases
for heuristic H, and only a portion of the uncertain passengers could be scheduled.
Interestingly, the proportion of uncertain passengers that are scheduled when the
optimal solution of the known passengers alone is fixed remains approximately
the same for 50 and 100 uncertain passengers per scenario. Hence, reducing the
number of uncertain passengers does not make heuristic H more suitable.

For α = 0, we found that the optimal solution of the deterministic case,
which is used by H, has the same value as the first stage of DDO. In that case, DDO
found solutions that are robust for the scenarios considered while also optimal
for the known passengers. In contrast, for α > 0 there is a difference between
first stage values for both approaches, which is due to minimizing travel times.

7 Conclusion

We considered a two-stage optimization problem of last-mile passenger schedul-
ing subject to a finite set of scenarios representing uncertain additional demand.
Our approach based on decision diagram optimization produces solutions that,
despite an increase in runtimes, are feasibly robust with respect to all scenarios
while minimizing the expected number of last-mile trips necessary to satisfy the
demand across all scenarios. The results show the potential of using decision
diagrams to solve such challenging problems of scheduling under uncertainty.
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