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Abstract
Understanding human activity based on sensor information is required in many applications
and has been an active research area. With the advancement of depth sensors and tracking
algorithms, systems for human motion activity analysis can be built by combining off-the-shelf
motion tracking systems with application-dependent learning tools to extract higher semantic
level information. Many of these motion tracking systems provide raw motion data registered
to the skeletal joints in the human body. In this paper, we propose novel representations for
human motion data using the skeletonbased graph structure along with techniques in graph
signal processing. Methods for graph construction and their corresponding basis functions are
discussed. The proposed representations can achieve comparable classification performance
in action recognition tasks while additionally being more robust to noise and missing data.
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ABSTRACT

Understanding human activity based on sensor information is re-
quired in many applications and has been an active research area.
With the advancement of depth sensors and tracking algorithms, sys-
tems for human motion activity analysis can be built by combining
off-the-shelf motion tracking systems with application-dependent
learning tools to extract higher semantic level information. Many of
these motion tracking systems provide raw motion data registered
to the skeletal joints in the human body. In this paper, we propose
novel representations for human motion data using the skeleton-
based graph structure along with techniques in graph signal process-
ing. Methods for graph construction and their corresponding basis
functions are discussed. The proposed representations can achieve
comparable classification performance in action recognition tasks
while additionally being more robust to noise and missing data.

Index Terms— Human activity analysis, graph-based represen-
tation, motion capture data, 3D action recognition

1. INTRODUCTION

Understanding human motion continues to be a challenging and ac-
tive area of research. Recently, cost-effective depth sensors, such as
Kinect, combined with powerful real-time tracking algorithms [1, 2],
provide fairly accurate 2D or 3D positions of skeletal joints, allow-
ing for human activity analysis systems to infer or predict specific
actions. In this work, we focus on using the skeleton-based motion
data, i.e., 2D or 3D coordinates associated with each skeletal joint,
as the captured motion data and aim to represent and analyze this
information for improved activity recognition.

Assuming that skeleton-based motion data is available, recogni-
tion systems typically extract descriptive and compact information,
i.e., representations or features, to characterize the attributes in hu-
man motion. State-of-the-art approaches to extract representations
are mostly data-driven. For example, in principal component anal-
ysis (PCA) methods [3, 4], the representation, i.e., the representa-
tions are learned from the raw motion data. PCA-based representa-
tions are efficient in terms of energy compaction, but the principal
components need to be recomputed for new datasets, thus requiring
complex retraining to generalize to new datasets. Moreover, they are
sensitive to noise and missing data, which is common in skeleton-
based motion tracking systems. PCA-based approaches do not ex-
plicitly consider the spatial dependency among body joints. Since
actions are performed by human bodies, and physical restrictions on
their motion are known a priori, incorporating knowledge about the

skeletal structure, rather than relying solely on data, can be bene-
ficial, especially in terms of robustness to noise and missing data.
The main challenge in developing such representations is the irreg-
ularity in the skeletal structure and its corresponding motion, which
can potentially be tackled by leveraging graph structure derived from
the skeleton along with graph signal processing approaches, where
notions of frequency derived from spectral graph theory are used to
process data in irregular domains [5, 6, 7].

Approaches for human motion analysis using graphs based on
natural skeletal structure have been proposed in the past. For ex-
ample, in [8, 9], an undirected skeletal graph is constructed and
motion data are regarded as signals on such graph. Furthermore,
the development of graph convolutional networks (GCNs) [10, 11]
has made it possible to use graph-based data directly for classifi-
cation. Although the GCN-based approaches [12, 13, 14] utilize
graphs to model prior knowledge about human skeleton, methods
to extract representations are still data-driven, e.g., learning the best
graph filtering functions [12, 13, 14] or learning the best graph struc-
ture [13, 14] from data. These data-driven approaches may have
advantages in terms of discriminating between different action cat-
egories, and show superior performance in the context of action
recognition, but they cannot be easily generalized across datasets,
other than by fully retraining the system for the new tasks.

As an alternative to data-driven techniques, we instead focus on
model-based approaches to construct the representations. We pro-
pose graph-based motion representations that start with a skeletal-
temporal graph and then apply an existing transform, such as graph
Fourier transform (GFT), to the graph signal defined on the con-
structed graph. A key benefit of this construction is that it allows us
to interpret the actions using the spectrum and basis vectors of the
constructed graph. Compared to PCA-based methods where trans-
formation is learned from data, the transformation we construct does
not depend on data but on knowledge about skeleton, leading to bet-
ter interpretation, robustness to noisy and missing data, and easier
generalization across datasets and tasks. Moreover, unlike GCN-
based methods where both the graph and graph filters are learned
from data, our proposed approach utilizes a fixed skeletal-temporal
graph with a known graph transformation, so that the graph itself
is not dependent on data. Our analysis on basis functions of the
skeletal graph and the resulting interpretations can also provide in-
sights on why GCN works. Furthermore, we demonstrate via action
recognition experiments that the proposed graph-based representa-
tion achieves better robustness to noise and missing data compared
to data-driven approaches such as PCA-based methods. It is worth
noting that, in order to evaluate robustness to noise of representa-



tions, we investigate the characteristics of noise in skeleton-based
motion data and propose a joint-dependent noise model for generat-
ing artificial noise to be added to skeleton data.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present the proposed framework to construct graph-based
representations for motion data, together with the interpretations it
provides. We further validate that the proposed representations are
more robust to noise and missing data in the context of 3D action
recognition in Section 3. Section 4 concludes this paper.

2. PROPOSED GRAPH-BASED REPRESENTATIONS

Suppose that 3D skeleton-based motion data are available with Ns

nodes representing tracked body joints (or some predefined key-
points). For each motion sequence, the i-th tracked joint is asso-
ciated with its estimated 3D position at frame t, denoted as pt,i =(
x
(t)
i y

(t)
i z

(t)
i

)
, where i ∈ {1, · · · , Ns} and t ∈ {1, · · · , T}.

Graph construction: We first model the human skeletal structure
as a fixed undirected skeletal graph Gs = {Vs, Es,W} with the
vertex set Vs = {v1, v2, · · · , vNs} corresponding to the Ns tracked
body joints. The edge set Es consists of undirected edges with unity
weights, which are specified in W. Es is decided based on knowl-
edge about human skeleton as follows: vi is connected to vj with
a unity weight only if there exists a physical limb directly connect-
ing the i-th and j-th body joint. In this way, the constructed skeletal
graph Gs captures the physical connectivity between body parts.

Once the graph is defined, the combinatorial graph Laplacian
matrix L is defined as L ≡ D −W while the normalized graph
Laplacian matrix L is defined as

L ≡ D−
1
2 LD−

1
2 = I−D−

1
2 WD−

1
2 (1)

where I is the identity matrix and D is the degree matrix, i.e., Dii =∑
j 6=i

Wij . Since L is real and symmetric when Gs is undirected, its

eigendecomposition can be shown to be:

L = UΛUT =

N∑
i=1

λiuiu
T
i (2)

where λi is the i-th smallest eigenvalues of L corresponding to
eigenvector ui, Λ ≡ diag(λi), U ≡

(
u1 u2 · · · uN

)
and

UUT = I. That is, the eigenvectors form an orthonormal basis and
the set of eigenvalues σ(Gs) ≡ {λ1, · · · , λN} is the spectrum of
graph Gs. The eigenvectors of L associated with larger eigenvalues
correspond to elementary graph signals exhibiting greater variation
across connected vertices. Thus U can be viewed as providing a
frequency decomposition analogous to the classical Fourier trans-
form for 1D signals (see [5, 6, 7] for more details). The matrix of
eigenvectors U defines the Graph Fourier Transform (GFT). For any
graph signal x ∈ RN , the GFT is defined as

x̃ = UTx. (3)

Fig. 1 illustrates some of the GFT basis vectors of Gs, which we
can be interpreted in terms of the corresponding elementary motion.
For example, the 4th vector can correspond to typical motion while
walking since bilateral symmetry is a well-known characterization
in normal human gait.

We can further construct the skeletal-temporal graph Gst with
Nt temporal nodes by taking the graph Cartesian product of a skele-
tal graph Gs and an unweighted temporal line graph Gt with Nt ver-
tices, i.e., Gst = Gs�Gt. Fig. 2 shows an example of constructing a
skeletal-temporal graph with 2 temporal nodes and 15 joints.

Eigenvector 1     Eigenvector 2 Eigenvector 3 Eigenvector 4

Fig. 1. First four GFT basis vectors u1, · · · ,u4 of a 15-node skeletal
graph. Blue square: positive value. Red dot: negative value. Green
pentagram: zero.
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Fig. 2. Example of constructing a skeletal-temporal graph with
Ns = 15, Nt = 2.

The GFT basis of a skeletal-temporal graph can be interpreted
by noting that they are closely related to the GFT bases of Gs and Gt.
More formally, assume that x is one GFT basis vector of Gs (x as
an eigenvector of WGs

with eigenvalue λ) and y is one GFT basis
vector of Gt (y as an eigenvector of WGt

with eigenvalue µ), then
since

WGst
· (x⊗ y)

=
(
WGs

⊗ INt

)
(x⊗ y) +

(
INs ⊗WGt

)
(x⊗ y)

= WGs
x⊗ INty + INsx⊗WGt

y

= (λ+ µ) (x⊗ y)

(4)

where ⊗ denotes the Kronecker product, we can see that x ⊗ y
is one GFT basis vector of Gst. That is, the GFT basis vectors of
the skeletal-temporal graph can be derived as the Kronecker product
between basis vectors of typical skeletal graph and basis vectors of
temporal line graph. Fig. 3 provides an illustrative example.
Graph signals: Any spatial-temporal cube of length Nt in the
motion sequence can be regarded as a graph signal residing on the
skeletal-temporal graph. Specifically, a graph signal f

(t)
d ∈ RNs×Nt

can be defined on this skeletal-temporal graph Gst when having
f
(t)
d (i, s) = d

(t+s−1)
i , where i ∈ {1, · · · , Ns}, s ∈ {1, · · · , Nt},

for any d ∈ {x, y, z} and t ∈ {1, · · · , T −Nt + 1}.
Proposed representations: Once the skeletal-temporal graph is
constructed, we can use transforms associated with the graph to
represent motion data. Specifically, for GFT-based representation,

we apply the GFT to graph signals as f̃
(t)
d = UTf

(t)
d as in (3) and

utilize the transform coefficients f̃
(t)
d as the representation.

3. EXPERIMENTS: 3D ACTION RECOGNITION

3.1. Feature Design

As the proposed representations are constructed frame-wise, given
a motion sequence and its associated frame-wise representation,
we need to choose a temporal model to capture the temporal dy-
namics. In our experiments, we adopt temporal pyramid matching
(TPM) [15] to model the dynamics in the sequence of frame-wise
representations, but alternative temporal models could be used



(a) (b) (c) (d)

Fig. 3. (a) A GFT basis vector of Gs. (b) Two GFT basis vectors
of Gt with Nt = 2. (c)(d) Two GFT basis vectors of Gst, each of
which is Kronecker product between (a) and one of (b).

as well. Specifically, given a motion sequence with T frames, we

extract the frame-wise GFT-based representation f̃
(t)
d . Assume GFT-

based representations with a skeletal graph are used, a coefficient
matrix C ∈ RT×3D can be constructed where the i-th row of C is(
f̃
(i)
x

T

, f̃
(i)
y

T

, f̃
(i)
z

T
)

withD as the dimension of f̃
(i)
d . Then a pooling

function is defined to apply column-wise pooling for a sub-block of
C. Here we adopt a mean pooling function p : Rr×3D → R1×3D ,
which takes column-wise mean for a block of coefficients. Further-
more, we apply this pooling function to sub-blocks of C of different
sizes, which can capture the temporal order of actions spanning dif-
ferent duration. The maximum pyramid level needs to be specified,
denoted as M . For the pyramid level m ≤ M , we first uniformly
divide C into a set of non-overlapping sub-blocks {Bi} so that
C =

(
BT

1 , · · · ,BT
2m−1

)T. The feature vector for this pyramid level
is then computed as zm =

(
p (B1) , · · · , p (B2m−1)

)
. Finally, the

feature vector for this motion sequence is given by the concatenation
of the feature vectors of all the pyramid levels, i.e.,

(
z1, · · · , zM

)
.

This temporal pooling scheme (TPM) will be used in the following
experiments to extract the feature vector for each motion sequence.

3.2. Datasets & Experimental Settings

We evaluate the proposed representations in the context of action
recognition using two public datasets: MSR-Action3D [16] and
UTKinect-Action3D [17]. Both datasets were captured by a depth
sensor, e.g., Kinect, and the 3D positions of 20 skeletal joints are
provided. MSR-Action3D contains 20 action categories which re-
sults in 557 motion sequences while UTKinect-Action3D contains
10 actions which leads to 199 motion sequences in total.

For both datasets, we adopt the cross-subject evaluation scheme,
where the motion sequences from half of the subjects are used for
training while the other half are used for testing. The unweighted
skeletal-temporal graph is constructed for each dataset based on the
number of tracked skeletal joints, i.e., Ns = 20 for both datasets.
The number of temporal nodes in the skeletal-temporal graph is se-
lected by cross validation. Once the graph is constructed, we com-
pute the proposed GFT-based representations for frames in each se-
quence and the TPM scheme mentioned in Section 3.1 is adopted to
generate the final feature vector for each sequence. For TPM, the
maximum pyramid level M is set to 3 in all the experiments.

3.3. Robustness to Noisy Data

In our experiments we add noise at various peak signal-to-noise ratio
(PSNR) levels to both datasets and compare the classification accu-
racy of our proposed approach with that achieved by a PCA-based
method. A naive approach to incorporate noise into the simulations
would simply consist of selecting some existing model (say, additive
white Gaussian noise) and adding noise with equal variance to all
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Fig. 4. Examples demonstrate that the level of noise at joint, mea-
sured by the variation in the length of attaching bone between con-
secutive frames, depends on the joint velocity.

motion measurements. Instead, we propose a more realistic model
where the noise is joint dependent.

We start by analyzing how measurement noise may depend on
the specific joint. Because the bone length between a physically con-
nected pair of joints is constant, we first measure the standard devi-
ation of the bone length measurements obtained from the sequence,
i.e.,

σbk = std
(
‖pt,i − pt,j‖2

)
, (5)

where bk is the k-th bone connecting joint i and joint j. Then the
standard deviation of noise at each joint is computed as the average
over the standard deviations of the lengths of all bones connected to
that joint. As for the signal energy, based on the observation that the
signal energy should be zero in a static motion, we calculate the peak
signal energy Es by considering the maximum squared norms of all
motion vectors at all joints along time, i.e.,

Es = max
t∈{1,··· ,T−1}, i∈{1,··· ,N}

‖vt,i‖22, (6)

where vt,i = pt+1,i − pt,i. Finally, the empirical PSNR can be
calculated by taking the ratio between the peak signal energy across
all joints and the average noise energy at each joint.

To simulate realistic added noise, we consider a noise model
where noise level at each joint is proportional to the moving veloc-
ity of that joint. This model is reasonable, as shown in Fig. 4. A
joint-dependent model was also proposed in [18] using a different
methodology (with manual annotations to obtain the ground truth
position).

In the following experiment to validate robustness to noisy data,
for each joint i at time t, an independent Gaussian noise with stan-
dard deviation as

σi,t = σpsnr ×

√
‖vt,i‖22
ES

(7)

is added to the original data, leading to a noise-corrupted dataset,
where σpsnr is decided by the targeted PSNR value. The range of
PSNR values for the experiment is selected based on the empiri-
cal PSNR in each dataset, which is 59.21dB in MSR-Action3D and
34.17dB in UTKinect-Action3D, averaged across joints. Our pro-
posed GFT representation and PCA are applied to the corrupted data
to generate frame-based representations. The same temporal pooling
scheme, i.e., temporal pyramid pooling with three pyramid levels, is
used for both representations to produce the feature vector for each
sequence. Finally, a linear SVM classifier is applied to the feature
vectors and the classification accuracy is reported and plotted, as in
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Fig. 5. Classification accuracy over PSNR on MSR-Action3D
dataset.
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Fig. 6. Classification accuracy over PSNR on the UTKinect-
Action3D dataset.

Fig. 5 and 6. The experiment is repeated 10 times for each PSNR
level in order to average over the random noise realizations.

Based on the experimental results, we can observe that GFT-
based method consistently outperforms the PCA-based method on
both datasets when the PSNR is greater than 0, which demonstrates
the robustness to noisy data of the proposed graph-based representa-
tions.

3.4. Robustness to Missing Data

Next, we evaluate the performance of our proposed schemes in cases
where there are missing data (e.g., the position of a joint cannot
be obtained at some point in time.) Given a skeleton-based motion
dataset, we first synthesize the corresponding corrupted dataset with
missing entries. Each entry in the dataset is kept with probability
p; otherwise, that entry is thrown away. This error is introduced
independently at each joint. Here we only consider the scenario
where the percentage of missing data is less than 50%. Based on this
corrupted dataset, classification is performed with either PCA-based
method or GFT-based method. For PCA-based method, following
the conventional approach, we use alternating least squares (ALS)
algorithm to jointly learn the principal components and estimated
coefficients [19, 20].

For GFT-based method, we propagate the signals based on
the predefined skeletal graph. Given each graph signal f ∈ Rn,
i.e., the motion data per dimension per frame, and the predefined
skeletal graph G with normalized Laplacian as L, f can be writ-
ten as

(
f l fu

)> where f l represents the observed data while fu
represents the missing values. L can then be split accordingly as(
Lll Llu

Lul Luu

)
. We then solve for the optimal fu such that fTLf
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Fig. 7. Classification accuracy over percentage of missing data on
MSR-Action3D dataset.
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Fig. 8. Classification accuracy over percentage of missing data on
the UTKinect-Action3D dataset.

is minimized. The closed-form solution is f̂u = −L−1
uu Lul f l.

The propagated signal f̂ =
(
f l f̂u

)>
is regarded as the recon-

structed data matrix to extract the representation with the proposed
GFT-based method described in Section 2.

For each p value, the experiment is repeated 10 times and the av-
eraged classification accuracy is reported for each dataset, see Figs. 7
and 8. We can see that GFT-based method with signal propagation
on graph consistently outperforms the PCA-based method with ALS
algorithm on both datasets.

4. CONCLUSION

This paper presents a novel framework to construct representations
for human motion data by leveraging graph structures. The hu-
man skeleton is modeled with a skeletal-temporal graph, where the
tracked body joints are the graph vertices and the motion data is the
graph signal residing on this graph. Existing graph transforms such
as GFT are utilized to extract representations for the captured human
motion data. Evaluation of our proposed representations in the con-
text of 3D action recognition demonstrate comparable classification
performance compared to conventional PCA-based methods, while
providing greater robustness to noisy and missing data. Although
not described in detail due to space constraints, it should be men-
tioned that there is no need to re-compute the transform given a new
dataset with the proposed method. As such, the proposed method
has significantly lower time complexity to compute the feature rep-
resentation compared to PCA-based methods, making the proposed
method more readily applicable to new datasets.
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