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Abstract. In this paper, we propose a new wide-area algorithm to secure the

Global Positioning System (GPS) timing from spoofing attack. To achieve a trusted

GPS timing, belief propagation (BP), recognized as one of the Artificial Intel-

ligence (AI) approaches, and the recurrent neural network (RNN) are jointly

integrated. BP is employed to authenticate each GPS receiving system in the

wide-area network from malicious spoofing attacks and estimate the correspond-

ing spoofing-induced timing error. To evaluate the spoofing status at each of the

GPS receiving system, RNN is utilized to evaluate similarity in spoofing-induced

errors across the antennas within the GPS receiving system. Having applied a

proper training stage, simulation results show that the proposed joint BP-RNN

algorithms can quickly detect the spoofed receiving system comparing with ex-

isting work.
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1 Introduction

Now-a-days, Artificial Intelligence (AI) has been emerging as an important tool for rev-

olutionizing different safety-critical infrastructures, such as, banking, electrical grids

and communication networks. In electrical grids, AI offers unique solutions [1] to im-

prove the overall grid resilience and localize the power disruptions caused by the in-

creasing complexity of interconnected grids, high power demand and distributed gen-

eration with the usage of renewable sources.

AI techniques are already being incorporated in the power plants to increase the

production and also by grid operators to optimize the energy consumption [2]. Recently,

GE developed an AI related technology [3] for wind turbines in Japan that is expected

to lower the overall maintenance costs by 20% and increase the power output by 5%.

Similarly, Google’s DeepMind is in discussion with the UK’s National Grid to develop

AI solutions [4] that balance the requirements of supply and demand in Britain. Also,

IBM showed an improvement of 30% in solar forecasting while working with the U.S.

Department of Energy SunShot Initiative [5].

In addition to efficient energy production and consumption, another critical research

area is related to improving the grid resilience against power disruptions that can poten-

tially destabilize the grid [6]. A few notable incidents that occurred in the recent past

are the Northeastern blackout in 2003 [7], which is caused due to the shutdown of a
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high-voltage power line and power outrage of Ukraine [8] in 2015, which caused by

the malicious cyber attacks. Recently, there has been a world-wide effort to modernize

the grid, coined as Smart Grid, which refers to a fully automated power network that

monitors and controls every node as well as ensures a steady flow of electricity and

exchange of information [9].

Smart grids utilize the concept of microgrids [10] in power distribution networks,

which possess the capability to function both when connected to a traditional grid as

well as an independent electrical island. However, unlimited power consumption causes

the microgrid to be vulnerable to voltage collapse, which needs to accurately moni-

tored. Therefore, smart grids rely on advanced devices, namely, Phasor Measurement

Units (PMUs), which provide better insights into the state of the smart grid and in turn

help optimize the grid efficiency. PMUs require precise time-keeping sources, such as

GPS, to obtain global timing for synchronization [11]. However, GPS civilian signals

are unencrypted and their power is as low as -160 dBW, which makes them vulnera-

ble to external spoofing attacks [12]. Based on the IEEE C37.118.1-2011 standard for

synchrophasors [13], in this work, we consider 1% TVE equivalent to a timing error of

26.5 µs, as a benchmark in our power grid stability analysis.

In this paper we mainly focus on a sophisticated type of spoofing attack, known as

signal-level spoofing [14]. However, our proposed algorithm is also directly applicable

for the detection and mitigation of other spoofing attacks [15]-[16]. One scenario of a

sophisticated signal-level spoofing is a three-stage attack during which, a spoofer simu-

lates and broadcasts malicious look-alike GPS signals identical to the authentic signals

received at the target receiver and thereafter, increases the power of these malicious sig-

nals. Once the target receiver locks onto the malicious signals, the spoofed manipulates

the receiver time to deviate slowly from its authentic value. Given there are no abrupt

changes in GPS timing, this attack is harder to detect and more dangerous as compared

to other attacks.

AI has immense potential to serve as a automated brain that can analyzes the GNSS

measurements to tackle these malicious spoofing attacks [17]-[18]. In [19], spoofing

detection has been performed by computing the wavelet transformation coefficients of

both spoofing and authentic signal, which are later fed into support vector machines,

the probabilistic neural networks and the decision tree. In our prior work [20], to iso-

late spoofing attacks, we proposed a geographically Distributed Multiple Directional

Antennas (DMDA) setup, with each antenna facing a different part of the sky, thereby,

each receiving signals from only a subset of the total visible GPS satellites. In par-

ticular, we designed a Belief Propagation (BP)-based Extended Kalman Filter (EKF)

algorithm for single power substation that utilizes the proposed DMDA setup to detect

timing anomalies caused due to spoofing. Next, in [21], we extended our work to de-

velop a wide-area-based BP-EKF algorithm that reduces the overall sensitivity of the

prior distribution of timing error at each antenna.

To improve the resilience of the grid during sophisticated spoofing attacks, we fur-

ther extend our work to develop an innovative wide-area joint BP and Recurrent Neural

Network (RNN) algorithm, which is based on two powerful tools used in the AI com-

munity, namely, BP [22] that isolates the timing errors observed at each antenna and

RNN [23] that adaptively analyzes the timing errors to authenticate the spoofing status



Joint BP and RNN for Resilient GPS Timing Against Spoofing Attacks 3

of each power substation in the wide-area network. Using our joint BP-RNN algorithm,

we can not only detect and isolate these malicious attacks but also mitigate the corre-

sponding spoofing-induced timing errors.

2 Joint BP and RNN algorithm

In this section, we first briefly outline the details of our DMDA setup [20] and later ex-

plain the proposed wide-area communication structure. Next, we describe the algorithm

details of our wide-area joint BP-RNN algorithm.

2.1 DMDA Setup

Several advantages of the employed DMDA setup in [20] are summarized as follows:

– During a spoofing attack, an attacked antenna may see more satellites in its section

of the sky than expected, whereas each of the directional antennas in authentic

conditions sees the expected number of satellites in its section of the sky.

– Due to a limited height of physical location of a directed attack, all the directional

antennas are not in the line of sight from the attacker. Thus, a geographical diversity

can be achievable from malicious spoofing attacks.

– All the antennas are triggered by the same clock, so that a metric, which distinguish

an authentic condition from a non-authentic spoofing condition, can be developed.

Central
processing

1 2

3
4

spoofed

authentic

RX RX

RX RX

Fig. 1: Configuration of the DMDA setup [20]. Each directional antenna is provided

with selective visibility by pointing it towards a different section of the sky, such that,

not all the directional antennas can be spoofed simultaneously. Sector of circle repre-

sents the field-of-view of each antenna.

2.2 Proposed wide-area communication structure

To perform a wide-area authentication of GPS timing against spoofing attacks, we con-

sider a network of N power substations, as seen in Fig. 2. We assume the system con-

figuration as follows:
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– Any ath infrastructure, with ∀a ∈ {1, · · · , N}, is equipped with a single DMDA

based GPS receiving system that includes a common clock and a DMDA setup

composed of Ma antennas. For the ath infrastructure, we define Sa as the set of

neighboring infrastructures. Note that bth infrastructure is included in Sa only

when a communication link, πab, between ath and bth infrastructure exists, that

is, b ∈ Sa, if πab = 1, ∀b ∈ {1, · · · , N}, b 6= a.

– For any kth antenna in the ath receiving system, with k ∈ {1, · · · ,Ma}, its neigh-

boring antennas Ba
k represents the set of antennas in its infrastructure excluding

itself, as well as the antennas belong to its neighboring infrastructures Sa,

Ba
k =

{

{1, · · · ,Ma} − k
}

⋃

b∈{1,··· ,|Sa|}

{1, · · · ,Mb}.

Fig. 2: Wide-area network of GPS receiving systems, each equipped with a common

clock and a DMDA setup.

The overall framework of the proposed wide-area joint BP-RNN algorithm, illus-

trated Fig. 3, is described as follows:

– Across the infrastructures, pseudoranges are measured at each directional antenna,

in each of the receiving systems. Based on the communication structure, the system

data is exchanged across the receiving systems.

– At each of the receiving systems, we form Ba
k . Then, we compute the single dif-

ference pseudorange residual vector by considering one satellite visible to the first

antenna and the another satellite visible to the second antenna in Ba
k .

– At each antenna, belief is computed according to the marginal Gaussian distribution

of the antenna-specific timing error.

– Using the BP estimates of antenna-specific timing errors, at each GPS receiving

system, the pseudoranges are corrected, which are utilized by EKF in the CP unit.

The CP unit provides the trustworthy GPS timing, which is given to the infrastruc-

tures for a time synchronization.
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– A Bidirectional LSTM-based RNN [24] utilizes the BP estimates of the antenna-

specific timing errors to compute a test statistic, which authenticates the spoofing

status of each GPS receiving system.

Across the wide-area network, by implementing a distributed architecture, it is possi-

ble to efficiently utilize the already in-place communication platform. Highly computa-

tional extensive calculation of marginal distribution is simplified through the distributed

AI algorithm, namely, BP. BP plays a pivotal role in maintaining accuracy while reduc-

ing the latency involved in spoofing detection, which is critical for timing-related appli-

cations. Our wide-area algorithm can be easily scaled to any number of GPS receiving

systems and any number of directional antennas within the GPS receiving system. Due

to using a larger number of widely-distributed antennas, correlation between errors will

be lower, which in-turn lead to a lower false alarm and missed detection probability.

Unlike single area BP-EKF algorithm, the wide-area setup overcomes the case where

spoofing affects all the antennas in one GPS receiving system. Similarly, by utilizing a

BP-RNN framework, it is possible to adaptively analyze the antenna-specific timing er-

rors to quickly detect different kinds of spoofing attacks, ranging from easy-to-execute

meaconing to sophisticated signal-level spoofing attack.

Fig. 3: Flowchart of the wide-area joint BP-RNN algorithm.

2.3 Detailed Descriptions of the Proposed Algorithm

By utilizing the GPS signals received at multiple infrastructures geographically dis-

tributed, we describe the proposed wide-area joint BP-RNN algorithm as follows:

Pre-conditioning the GPS measurements

Considering a wide-area network of N GPS receiving systems, the baseline vectors

between the antennas installed at the ath receiving system are computed as bakn, k, n ∈
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{1, . . . ,Ma}. The three-dimensional (3D) position and 3D velocity of the kth antenna

at tth time are respectively defined as xa
k,t

△
=[x, y, z]k and va

k,t

△
=[ẋ, ẏ, ż]k. At the ath

receiving system, the pseudorange observed at the kth antenna corresponding to the ith

satellite is given by

ρik = ||xa
1 − ba1k − yi||+ (cδtat + αa

k − cδti) + Ii + ωi
k,

= ha
k

(

x1, T
a, yi

t

)

+ αa
k,

(1)

where i ∈ Lk,t denotes the ith satellite among the Lk,t visible satellites at the kth

antenna in the ath receiving system. In addition, yi
t and cδti respectively denote the

3D position and clock corrections of the ith visible satellite. Note that since all the

antennas installed at the ath receiving system is triggered by the same clock, the clock

bias, cδtat , is independent of k. The antenna-specific timing errors in pseudorange are

denoted by αa
k. For a proper processing, the antenna, specified by k = 1, is recognized

as the reference antenna. Furthermore, ha
k(·, ·, ·) denotes the measurement model of the

kth antenna of the ath receiving system, which depends on the reference antenna’s 3D

position, xa
1,t, receiver clock bias, cδtat , baseline vector, ba

1k, and the satellite position,

yi
t. The atmospheric errors Iit related to ionosphere and troposphere are estimated using

existing models [25]. The additive Gaussian white noise in the satellite measurements

is represented by ωi
k.

Having utilized the predicted state vector β̂a
t

△
=[x̂1, cδt̂, v̂1, cδ

˙̂t]Tt obtained from the

EKF time update at time t, the known baseline vector, ba1k, with respect to the refer-

ence antenna, the satellite 3D position, yi
t, and clock corrections, cδti, the pseudorange

residuals at tth time can be computed as follows:

∆ρik,t
△
=ρik,t − ||x̂k,t − yi|| − (cδt̂− cδti)− Ii, (2)

where x̂k,t
△
=x̂1 − ba

1k.

System data exchange and measurement likelihood

Based on the communication structure of the wide-area network, the system data is

exchanged across different GPS receiving systems. In particular, system data transmit-

ted from the ath receiving system comprises of the following: number of antennas Ma,

pseudorange residuals, ∆ρik,t, and beliefs at the kth antenna of the receiving system,

bt−1(α
a
k). At the ath receiving system, we collect the system data from all the receiving

systems that belong to its neighboring system, Sa. Thereafter, we form all the possible

pairs of antennas, by considering the first antenna, k ∈ {1, · · · ,Ma}, and the second

antenna, n ∈ Ba
k . After then, the single difference pseudorange residuals between the

ith satellite visible to the kth antenna and that of the jth satellite visible to the nth

antenna as follows:

γ
ij
kn,t

△
= ∆ρik,t −∆ρ

j
n,t

= αa
k − αb

n + ω
ij
kn

=

{

0 k, n ∈ {1, . . . ,Ma}, k 6= n

ηab k ∈ {1, . . . ,Ma}, n ∈ {1, . . . ,Mb}, a 6= b,
(3)
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where in authentic conditions, γ
ij
kn ≈ 0 across any two antennas that belong to the

same receiving system. However, across antennas that belong to two different receiving

systems, that is, a 6= b, γ
ij
kn is a non-zero value ηab due to the error in predicted clock

bias estimates and the receiver noise. Thereafter, we calculate the measurement metric

vector, denoted by γkn,t
△
={γij

kn,t, i ∈ Lk,t, j ∈ Ln,t} across all the pairs of antennas

and the corresponding satellites observed at the respective antennas. Across a pair of

antennas, the corresponding measurement likelihood probability is calculated as

p(γkn,t|α
a
k, α

b
n) =

1
√

(2πν2)Lk,tLn,t

exp

{

−Lk,tLn,t

2ν2kn

(

1
Tγkn,t

Lk,tLn,t

+ (αa
k − αb

n)
)2
}

∀ n ∈ Ba
k, (4)

where ν2kn denotes the measurement variance of the summation of single difference

residual components which comprises errors observed from pseudoranges, and errors

in satellite ephemeris, predicted position and velocity of the antenna.

Belief Propagation (BP)

To authenticate each receiving system against spoofing attacks and estimate the

corresponding spoofing-induced timing errors at each antenna, the marginal distribution

using a factor graph-based BP framework is used as an AI approach. BP [22] is a sum-

product message passing algorithm to make inferences on graphical models, such as the

factor graphs. Factor graph is a probabilistic graphical model [26], which consists of two

nodes: variable nodes that represent the unknowns to be estimated and factor nodes that

represent the relationship between different variable nodes. At the ath receiving system,

given the joint posterior distribution, p(α1, . . . , αMa
|γkn), the marginal distribution,

g(·), is formulated as follows:

g(αa
k) =

∫

αa
1
,...,αa

k−1

∫

αa
k+1

,...,αa
M

p(αa
1 , . . . , α

a
Ma

|{γkn}k=1,...,Ma,n∈Ba
k
)

dαa
1 . . . dα

a
k−1 dα

a
k+1 . . . dα

a
Ma

, (5)

where Ba
k denotes the neighboring antennas of the kth antenna in the ath receiving

system. With an increased total number of antennas, that is,
∑N

a=1
Ma in the wide-

area network, (5) becomes computationally intractable. Thus, a factor graph-based BP

is formulated to approximate the marginal distribution in a computationally-efficient

manner, which is termed as belief, bt(α
a
k). Belief at the kth antenna, bt(α

a
k), is com-

puted as the product of its prior distribution and all the incoming messages from all the

neighboring antennas Ba
k . Given that the attacker transmits counterfeit GPS signals, the

corresponding spoofing-induced timing errors follow a Gaussian distribution N (:, ·, ·).
Therefore, belief can be represented by Gaussian process [27] with mean, µa

k,t, and

variance, (σa
k,t)

2, as follows:

bt(α
a
k) = mfa

k
→αa

k

∏

n∈Ba
k

mfa
kn

→αa
k
(αa

k),

= N
(

αa
k : µa

k,t, (σ
a
k,t)

2

)

,

(6)
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where the factor node, fa
kn, connects two variable nodes, αa

k and αb
n, based on the

likelihood probability, p(γkn|αa
k, α

b
n), and the other factor node, fa

k , connects to its

corresponding variable node, αa
k, and indicates the prior distribution of αa

k.

As seen from (6), at the kth antenna of the ath receiving system, belief, bt(α
a
k), is

updated by computing two kinds of messages, namely, measurement-related messages,

mfa
kn

→αa
k
, and prior-related message, mfa

k
→αa

k
, as follows:

– The message, mfa
kn

→αa
k
, is based on the factor node, fa

kn, and represents the belief

of the nth neighboring antenna, n ∈ Ba
k , on the variable node, αa

k. From (4) and (6),

we derive the message, mfa
kn

→αa
k
, as follows:

mfa
kn

→αa
k
(αa

k) =

∫

n∈Ba
k

p(γkn|α
a
k, α

b
n) bt−1(α

b
n)dα

b
n,

=

∫

1
√

(2πν2)LkLn

exp

{

−LkLn

2ν2

(

1
Tγkn,t

LkLn

− (αa
k − αb

n)
)2
}

exp

{

−(αb
n − µb

n,t−1)
2

2(σb
n,t−1)

2

}

dαb
n,

= N
(

αa
k : µa

kn,t, (σ
a
kn,t)

2

)

, (7)

where µa
kn,t = µb

n,t−1 −
1
Tγkn,t

Lk,tLn,t

and (σa
kn,t)

2 =
ν2kn

2Lk,tLn,t

+ (σa
n,t−1)

2.

– The message, mfa
k
→αa

k
, represents the prior distribution formulated as a Gaussian;

that is,

mfa
k
→αa

k
= p(αa

k)

∫

b(αa
k)dα

a
k = p(αa

k) = N
(

αa
k : µa

pk,t, (σ
a
pk,t)

2
)

. (8)

Based on (7) and (8), the updated belief at time instant t is computed as follows:

bt(α
a
k) = N

(

αa
k : µa

pk,t, (σ
a
pk,t)

2

)

∏

n∈Ba
k

N
(

αa
k : µa

kn,t, (σ
a
kn,t)

2

)

,

= N
(

αa
k : µa

k,t, (σ
a
k,t)

2

)

,

(9)

where

(σa
k,t)

2 =

(

1

(σa
pk,t)

2
+
∑

n∈Ba
k

1

(σa
kn,t)

2

)−1

, and

µa
k,t = (σa

k,t)
2

(

µa
pk,t

(σa
pk,t)

2
+
∑

n∈Ba
k

µa
kn,t

(σa
kn,t)

2

)

.

(10)

Dependency of wide-area BP on prior distribution

Note that (8) specifies the prior distribution of the antenna-specific timing error. In
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our prior work [20], if the mismatch between the observed and the expected set of satel-

lites is ≥ 2, then we assumed that µa
pk,t = 0 and (σa

pk,t)
2 = ∞, thereby representing

an approximated uniform distribution. However, by utilizing a wide-area network of

antennas, we significantly reduce the dependency of the attack-resilience of the GPS

timing on this prior distribution. To achieve this, among the N widely-dispersed infras-

tructures, we choose the GPS receiving system with the least spoofing risk, that is,

am = argmin
a∈{1,··· ,N}

rat ,

where rat , ∀a ∈ {1, · · · , N}, is computed later in Section 2.3. Except the amth receiv-

ing system, we assign the prior distribution of GPS receiving system, such that, µa
pk,t =

0 and (σa
pk,t)

2 = ∞, ∀a ∈ {1, · · · , N} − am. However, for the amth receiving system,

µpk,t and σ2
pk,t are computed from the empirical distribution calculated on-the fly by

considering the most recent W timing errors; that is, αam

k,t−W :t, ∀k = {1, · · · ,M}.

RNN-based authentication of GPS receiving systems

Based on the belief estimates of the timing error at each antenna, we design an AI-

based RNN framework to authenticate each GPS receiving system in the wide-area net-

work. To evaluate the spoofing status at each ath receiving system, we need to monitor

the values of the BP estimates of antenna-specific timing error as well as their similarity

across the antennas within the GPS receiving system. By utilizing the vast amounts of

available GPS data, we initially train a coarse RNN-based framework offline that we

later finely train during the initialization stage, to adaptively estimate the spoofing sta-

tus of each ath receiving system, which is denoted by rat ∈ {0, 1}, such that, 0 indicates

authentic and 1 indicates spoofed.

The architecture of our RNN framework is such that, at any time instant, the shape

of the input features θat
△
=[αa

1 , · · · , α
a
Ma

]Tt is a Ma × 1 vector that stacks the estimated

antenna-specific timing errors across all antennas in each ath receiving system. This

captures the spatial similarity in the antenna-specific timing errors. We also consider

multiple time instants of input features as input to our RNN, so as to capture the tem-

poral variations in the absolute values of these input features. In particular, we utilize

Long Short Term Memory (LSTM) [24], a special kind of RNN, for training our data,

given its capability to retain the information learned from long time sequences. This is

especially useful during signal-level spoofing attacks, described in Section 1, where the

rate of change in timing errors are not abrupt but increases gradually over time. The

overall architecture of our multivariate time-series-based Bidirectional-LSTM [28], as

seen in Fig. 4, consists of an input layer, forward layer, backward layer, activation layer

and finally an output layer. In the input layer, we consider W a time instants of input

nodes denoted by θt−Wa:t. In the output layer, we consider one output node at each in-

stant, which either takes the value 0 or 1, thereby indicating the spoofing status rat of the

ath receiving system. The input to the final output layer is obtained by combining the

outputs from the forward and backward layers in a activation layer, which is governed

by a softmax function [29].

The forward and backward layers are comprised of LSTM units, which consists of a

cell that analyzes the dependencies between elements in our multivariate time sequence.
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Fig. 4: Overall architecture of our Bidirectional-LSTM, which takes the antenna-

specific timing errors of all antennas within the ath GPS receiving system, denoted

by θat and estimates the spoofing status, denoted by rat .

Within each cell, we consider regulators called gates, which control the information that

is passed through the LSTM unit. The equations related to the processing within each

LSTM unit are provided in (11). Our LSTM network utilizes three kinds of gates: an

input gate, an output gate, and a forget gate. The input gate controls the extent to which

a new value flows into the cell, the forget gate controls the extent to which a value

remains in the cell and the output gate controls the extent to which the value in the cell

is used to compute the output activation of the LSTM unit. We implement a logistic

activation function [30], denoted by σg at each gate. The associated unknown weights

and biases at these connections are estimated during the training stage.

ft = σg (Wfθ
a
t + Ufht−1 + bf) ,

it = σg (Wiθ
a
t + Uiht−1 + bi) ,

ot = σg (Woθ
a
t + Uoht−1 + bo) ,

ct = ft ◦ ct−1 + it ◦ σc (Wcθ
a
t + Ucht−1 + bc) , and

ht = ot ◦ σh (ct) ,

(11)

where θat denotes the input feature at tth time instant given as an input to the LSTM net-

work, ht denotes the hidden state vector, and ct denotes the cell state vector. Similarly,

ft, it, ot denotes the activation vector associated with the forget gate, input gate and

output gate, respectively. As mentioned above, Wf , Wi, Wo, Uf , Ui, Uo, bf , bi, bo
represents the weights and biases in different layers indicated by their subscripts, and

are estimated during the training stage.

During our training stage, considering same number of antennas in each GPS re-

ceiving system, we utilize the antenna-specific timing errors obtained from different

GPS receiving systems to train our coarse Bidirectional-LSTM network. Using a GPS
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simulator, we generate various cases of authentic and simulated spoofing attacks. There-

after, during an initialization, by processing several minutes of received data, we further

finely train our Bidirectional-LSTM network to account for the individual GPS receiv-

ing system-based noise distribution related to timing.

Adaptive EKF

According to [20], we summarize the adaptive EKF as follows:

– Define corrected psedoranges: ζa
t

△
=[ρ1c , . . . , ρ

La
c ], ∀a, with ρic

△
=ρik − αa

k and

La△=L1 + · · ·+ LMa
.

– Define required quantities: the measurement noise covariance matrix, Ra
t , mea-

surement model, Ha
t , predicted state vector, β̂a, predicted state covariance matrix,

P̂ a
t , state transition matrix, F , and static process noise covariance, Qa

t .

– Perform measurement update:

β̄a
t =

(

I8 −KtH
a
t

)

β̂a
t +Ktζ

a
t ,

P̄ a
t =

(

I8 −KtH
a
t

)

P̂ a
t ,

Kt = P̂ a
t (H

a
t )

T
(

Ha
t P̂

a
t (H

a
t )

T +Ra
t

)−1

,

ha
t (βt) =







h1,t

(

x1,t, Tt, b1k
)

...

hL,t

(

x1,t, Tt, b1L
)






,

Ht =
∂ha

t (β
a
t )

∂βa
t

∣

∣

∣

∣

∣

β̂a
t

,

ǫt = ζt − ht(β̄
a
t ), and

Ra
t+1 = Ra

t d+ (ǫTt ǫt +Ha
t P̂

a
t (H

a
t )

T )(1 − d),

(12)

where Kt represents the Kalman gain and I8 denotes the 8 × 8 identity matrix.

According to [31], a forgetting factor fixed by d = 0.3.

– Perform time update:

β̂a
t+1 = F β̄a

t , and P̂ a
t+1 = F P̄ a

t F
T +Qa

t , (13)

where

F =

[

I4 δtI4
04×4 I4

]

,Qa
t = F

[

04×4 δtI4
04×4 κa

]

F T , and κa =

[

03×3 0
0 cτa

]

with τa representing allan deviation of the front-end oscillator, δt representing the

update interval of our adaptive EKF step, I4 denotes the identity matrix of size 4×4
and 04×4 denotes the zero matrix of size 4× 4.
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3 Experiments

In this section, we validate our wide-area joint BP-RNN algorithm via two experimen-

tal scenarios, to detect and mitigate the timing error caused by simulated signal-level

spoofing attacks. We demonstrate the capability of our BP algorithm to accurately es-

timate the associated timing errors and our RNN-framework to adaptively authenticate

the spoofing status of the GPS receiving systems in the wide-area network.

3.1 Experimental setup and implementation details

As seen in Fig. 5, we consider four GPS receiving systems, such that, the DMDA setup

in each GPS receiving system comprises of three antennas. In our wide-area network,

we consider the GPS receiving systems to be located in Austin, Boston, Chicago, and

Pasadena, denoted by A,B,C, and D, respectively. We considered realistic pre-computed

baseline vectors across the antennas in each DMDA setup, marked in the Fig. 5, to

mimic the setup of actual power substations.

(a) System A, Austin (b) System B, Boston (c) System C, Chicago

(d) System D, Pasadena (e) Wide-area network and communication links

Fig. 5: The simulated experimental setup consists of four GPS receiving systems in the

wide-area network, with three antenna-based DMDA setup in each. In the first exper-

iment case, the GPS receiving system in Boston is attacked by simulated signal-level

spoofing, such that, the B1 antenna of the DMDA setup experiences spoofing. In the

second experiment case, the GPS receiving station in Pasadena is attacked by a differ-

ent simulated signal-level spoofing, during which the D3 antenna is affected.
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For a given stationary configuration of the antenna and an associated ephemeris file,

we simulated the GPS signals received at each antenna and at each receiving system,

using a C++-based software-defined GPS simulator known as GPS-SIM-SDR [32]. We

collected the simulated GPS signals at a sampling rate of 2.5MHz, where each raw sam-

ple is a 16-bit complex. At each DMDA setup, the corresponding antennas are provided

with selective visibility of the sky, such that, the field of view are 150−270◦, 270−30◦,

and 30− 150◦, respectively, in reference to geographic north.

Utilizing this setup, we simulated the authentic GPS signals received at each an-

tenna in the three GPS receiving systems, i.e., Austin, Chicago, and Pasadena for the

first experiment and Austin, Boston, and Chicago for the second experiment. Based

on the signal-level spoofing attack explained in Section 1, we generated the spoofed

GPS signals at the attacked GPS receiving system, i.e., Boston for the first experiment

and Pasadena for the second experiment, by adding high-powered and simulated ma-

licious samples to the generated authentic simulated GPS samples. We post-processed

the simulated GPS signals using a MATLAB-based software-defined radio known as

SoftGNSS [33]. We utilized the external ephemeris to extract authentic satellite posi-

tions, which are provided as input to the algorithm.

Fig. 6: Loss function obtained for train-

ing and validation of Bidirectional-LSTM,

which consists of 50 hidden nodes and a

batch size of 1028.

Hyper-parameters Accuracy (%)

Hidden

nodes

Batch

size
Iterations Training Validation

50 1028 300 83.4 84.1

100 1028 300 76.9 71.3

50 512 300 72.6 73.7

Table 1: Training and validation accuracy for

different hyper-parameter settings

For training and validating our Bidirectional-LSTM, we considered 1000000 data

samples of input features, that is, antenna specific timing error-based vector θat , ∀a, ob-

tained from different GPS receiving systems. Out of the 1000000 data samples of input

features considered, 99% of the data is used for training our Bidirectional-LSTM, while

rest is used for validating the neural network at the end of each epoch. The total con-

sidered data samples consists of 65% authentic data, which is obtained from real-world

GPS signals collected using a GPS receiver as well as simulated GPS signals obtained

from a GPS simulator. In addition, rest of the 40% of the training data comprises of sim-

ulated GPS signals affected by different configurations and types of simulated spoofing
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attacks. We executed back propagation by considering the cost function to be mean

squared error and utilized an Adam optimizer [34]. We considered W a = 60, ∀a time

instants of the past antenna-specific timing errors at each ath GPS receiving system to

estimate the spoofing status rat at each time instant. Based on the training and valida-

tion accuracy for different hyper-parameter settings, as seen in Table 1, during testing,

we utilize our trained RNN that is initialized with 50 hidden nodes and a batch size of

1028. The training and validating loss for the chosen hyper-parameters is seen in Fig. 6.

3.2 Under simulated signal-level spoofing attack

In the simulated authentic GPS signals received at the Bth GPS receiving system, during

the time duration t = 25 - 60s we induced simulated signal-level spoofing that causes an

increasing timing error from 0 - 28µs in a span of 35s. Due to the DMDA configuration

at the GPS receiving system, the attacker can only affect B1 antenna, thereby, causing

it to receive malicious GPS signals from 9 satellites instead of the expected 3 satellites.

At the B1 antenna, the attacker causes the pseudoranges to show an increasing time

error during t = 25 - 60s. For t ≥ 60s these errors further continue to grow due to the

destabilization of receiver tracking loops.

Fig. 7: Timing error estimated using our wide-area joint BP-RNN algorithm, indicated

by dotted-solid line, as compared to least-squares, indicated by the dashed line.

As seen in Fig. 7, the conventional least-squares approach with one omni-directional

antenna, showed an RMS timing error of 29.8µs as indicated by the red-dashed line. Af-

ter the spoofing starts at t = 25s, we observed that the timing error computed via least-

squares increases with time, even after spoofing ends, thereby, exceeding beyond 26.5µs

and violating the IEEE C37.118-1 standards. However, our proposed joint BP and RNN

algorithm, which is executed for t ≥ 12s, showed steady convergence and demonstrated
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significantly lower RMS timing errors of 0.13µs, 0.14µs, 0.13µs and 0.13µs at A,B,C,

and D GPS receiving systems, respectively, during the simulated signal-level spoofing.

Fig. 8: Antenna-specific timing errors µa
k estimated during BP step at all the GPS re-

ceiving systems. The different antennas in the DMDA setup of each receiving system

are indicated by red, blue and magenta lines.

As seen in Fig. 8, the wide-area BP-RNN algorithm not only isolates the presence of

spoofing attacks to B1 antenna but also accurately estimates the increasing timing error

as αa
k,t -αa

k,t−1 ≈ 0.4µs/s induced during the spoofing attack, that is, t = 25 − 60s.

This can be observed by the red solid line at the Bth GPS receiving system whereas the

timing error in other antennas is close to zero.

In addition, we also analyzed the spoofing status associated with each GPS receiv-

ing system, based on the Bidirectional-LSTM. We compared the performance of our

RNN approach, seen in Fig. 9(a) with that of a KL-divergence approach [35], seen in

Fig. 9(b) with pre-determined threshold manually set as Π = 25. When the KL-test

statistic ma
KL,t > Π , the KL-based metric raKL,t = 1 indicating spoofed GPS re-

ceiving system and raKL,t = 0 otherwise, indicating authentic conditions. The KL-test

statistics, ma
KL,t, are calculated as follows:

ma
KL,t =

W
∑

ν=0

Ma
∑

i=1

Ma
∑

j=1,j 6=i

(

αa
i,t−ν ln

(

αa
i,t−ν

αa
j,t−ν

)

)

. (14)

In Fig. 9, we observed that while demonstrating similar consistency in performance

as that of the KL-divergence-based metric, our RNN-based metric quickly detects that

the Bth receiving system is being spoofed at t = 25.7s, that is, 0.7s after the spoof-

ing starts, as compared to the KL-based metric that first detects spoofing at a later

time t = 34.6s. Therefore, even though the simulated signal-level spoofing does not

cause abrupt changes in the timing errors, by analyzing the multivariate time-series of
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antenna-specific timing errors, our trained RNN-based metric quickly as well as accu-

rately detects spoofing attacks at the Bth GPS receiving system.

(a) RNN-based metric (b) KL-based metric

Fig. 9: Spoofing status estimated using (a) RNN-based metric; (b) KL-based metric.

RNN-based metric detects the presence of spoofing at the Bth receiving system 0.7 s

after the spoofing starts at t = 25 s, whereas KL-divergence first detects spoofing 9.6 s

after the spoofing starts.

3.3 Under simulated coordinated spoofing attack

In the next set of experiments, we generated a simulated signal-level spoofing attack

that induces both a constant change in position of 55m and an increasing timing error

of 33µs in a span of 25s. During a time duration of t = 25 - 50s, these simulated

spoofing signals are added to the simulated authentic GPS signals received at the Dth

GPS receiving system are induced with spoofing signals. Due to our DMDA setup, the

attacker only successfully spoofs the satellite signals received at the D3 antenna. Similar

to Section 3.2, due to the destabilization of receiver tracking loops caused during the

attack, the pseudorange errors continue to grow unbounded.

Due to unbounded increase in pseudorange errors, the error in both position and

timing obtained via conventional least-squares approach diverged, which is indicated

by the green dashed line in the Fig. 10(a) and Fig. 10(b), respectively. In particular,

we observed that the IEEE C37.118-1 standards related to the timing error obtained

via least-squares approach is violated within 10 s after the start of spoofing attack.

However, as seen in Fig. 10(b), our proposed joint BP and RNN algorithm, which is

initialized at t = 12s, similar to the Section 3.2, showed a convergence trend with

RMS timing errors of 0.14µs, 0.16µs, 0.15µs and 0.15µs at A, B, C, and Dth GPS

receiving systems respectively. Similarly, as seen in Fig. 10(a), the RMS position errors

computed using BP-RNN algorithm are 5.11m, 19.28m, 1.38m, 0.77m at A, B, C, and

Dth GPS receiving systems, respectively, whereas least-squares approach showed an

RMS position error of 2410.71m.
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(a) Position error

(b) Timing error

Fig. 10: Position and timing errors estimated using the proposed wide-area joint BP-

RNN algorithm, indicated by the dotted-solid lines, as compared to the conventional

least squares approach, indicated by the dashed line. In particular, green represents the

Dth GPS receiving system. Due to spoofing, the least squares solution in both position

and timing diverged, whereas our wide-area BP-RNN showed steady convergence.

Based on the Bidirectional LSTM, explained in Section 3.1, we analyzed the spoof-

ing status computed using our BP-RNN algorithm, as seen in Fig. 11(a) and compared

its performance with that of the KL-divergence approach, as seen in Fig. 11(b) and de-

scribed in (14). The KL-divergence approach detected the spoofing attack for the first

time at t = 31.2s, whereas our BP-RNN approach quickly detected the spoofing attack

at t = 25.4s, while simultaneously demonstrating low false alarms and misdetections.

Therefore, we validated the improved performance of the proposed wide-area joint BP

and RNN algorithm even during more sophisticated attacks that involve both position

and timing being spoofed.

4 Conclusions

To summarize, we have proposed a wide-area joint Belief Propagation and Recurrent

Neural Network (BP-RNN) algorithm to detect and mitigate the spoofing attacks as well
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(a) RNN-based metric (b) KL-based metric

Fig. 11: Spoofing status estimated using (a) RNN-based metric; (b) KL-based metric.

RNN-based metric detects the presence of spoofing at the Bth receiving system 0.7 s

after the spoofing starts at t = 25 s, whereas KL-divergence first detects spoofing 9.6 s

after the spoofing starts.

as estimate the attack-resilient GPS timing that is given to the geographically distributed

infrastructures, which are monitored by PMUs. By considering a wide-area network of

GPS receiving systems, we have estimated the marginal distribution of the spoofing-

induced timing errors at each antenna using distributed BP algorithm. In addition, based

on the BP-estimated timing errors, we have adaptively evaluated the spoofing status

of each GPS receiving system using an RNN framework. We have validated the pro-

Spoofing attack

RMS timing error of attacked

GPS receiving system

BP-RNN Least-Squares

Timing error of 28µs

in a span of 35s
0.14µs 29.8µs

Position error of 55m and timing

error of 33µs in a span of 25s
0.16µs 37.94µs

Table 2: Summarizing the RMS timing errors of the attacked GPS receiving system

estimated via the proposed wide-area BP-RNN and conventional least-squares approach

posed wide-area BP-RNN using four GPS receiving systems, with three-antenna-based

DMDA setup each and subjecting one GPS receiving system to a simulated signal-level

spoofing attack. For two cases of simulated spoofing attacks, the RMS timing errors

obtained via the proposed wide-area BP-RNN algorithm and conventional least squares

approach are listed in Table 2. While one omni-directional antenna-based least squares

has shown large RMS timing errors that violated the IEEE-C37.118 standards, the wide-

area BP-RNN algorithm has demonstrated low RMS timing errors of less than 0.16µs.

Also, as compared to the existing works, we have assessed the improved performance
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of our RNN-based metric, which has shown a quick detection of spoofing, that is, 0.7s

after the spoofing attack starts in the first experiment and 0.4 after spoofing attack starts

in the second experiment.
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