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based attack detection scheme to limit communication overhead. An attractive feature of
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of our algorithm uses an approximation to the state covariance matrix, which allows for a
trade-off between computation, communication, and accuracy. In numerical experiments, we
demonstrate the effectiveness of this approach.
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Abstract—Dynamic state estimation, enabled by phasor 
measurement units (PMUs), opens new opportunities to improve 
detection of cyber-physical attacks in power networks. Distributed 
approaches to estimation and attack detection have many 
advantages, such as reduced processing times and increased 
security, and are arguably necessary for large size networks. In 
this work, we present a fully-distributed dynamic state estimation 
algorithm using PMU measurement data. The dynamic state 
estimation is jointly designed with an innovation-based attack 
detection scheme to limit communication overhead. An attractive 
feature of our work is that each control area utilizes a local model 
of reduced dimension. The design of our algorithm uses an 
approximation to the state covariance matrix, which allows for a 
trade-off between computation, communication, and accuracy. In 
numerical experiments, we demonstrate the effectiveness of this 
approach.  
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I. INTRODUCTION 
With the advent of phasor measurement unit (PMU) sensors, 

it is becoming possible to do truly dynamic state estimation of 
electric power systems. One of the main motivations of 
promoting dynamic state estimation is for real-time monitoring 
and predictive capability to anticipate system problems. In 
particular, the dynamic state estimate can be used to more 
effectively monitor for line outages, faulty sensors, and cyber-
physical attacks[1]. A cyber-physical attack may be 
undetectable from tampered measurements if there is a set of 
normal operating conditions consistent with the tampered 
measurements. Dynamic state estimation aids such 
circumstances, because although there may be a set of 
consistent normal operating conditions at any point in time, it 
is less likely that the set will remain consistent over many time 
steps [1].  

For real-time security applications, distributed algorithms are 
critically important: 1) the reduced processing time compared to 
centralized schemes allows for quicker detection and 
remediation, which is critical for power systems where 
blackouts can spread quickly, and 2) by avoiding centralized 
processing, it is more difficult for attackers to stage a global 
attack on the entire system at a given time instant. In [2], a 
distributed algorithm is presented for detecting cyber-physical 
attacks in power networks using a sparse residual filter on a 
descriptor system model for the power system without 
consideration of noise presence. Given that noise is ubiquitous 
in real systems, we are interested in extending [2] to a noisy 
setting. The introduction of noise fundamentally changes certain 

aspects of the attack detection problem. Unlike in the noiseless 
case, the question of attack detectability no longer has a binary 
answer which can be assessed with deterministic filters. The 
noise introduces a level of ambiguity under which we assess 
how likely an attack has occurred. Rather than deterministic 
filters, the noise necessitates the use of inference algorithms, 
such as Kalman filters. There has been much recent interest on 
how to develop fully distributed Kalman filters. Several works 
have investigated the use of consensus-based [3] and diffusion-
based [4] algorithms to accomplish this goal. One drawback of 
such methods is that they require each control area to process, 
communicate, and carry out computations on quantities of 
global dimension. For large systems, this becomes especially 
prohibitive. Instead, one would like to decompose the problem 
in such a way that each area solves a problem of reduced 
dimension. For an interconnected power system, the estimated 
state covariance used in the Kalman filter is in general full. 
Therefore, it is a non-trivial problem to devise local 
approximations to the state covariance. In [5], an approximate 
information filter is developed to achieve local, low-order filters. 
The use of iterative linear solvers and banded approximations in 
[5] inspires portions of our work. There are however several key 
differences. We focus specifically on the dynamic state 
estimation problem for power systems and consider the 
structure- preserving model for power system dynamics studied 
in various works [2], [6]. We find that the information filter 
formulation in [5] is not amenable for distributed processing 
under the structure-preserving model for power systems due to 
the resulting global coupling of the bus voltages with the 
generator rotor angles. Our formulation achieves a distributed 
solution by considering measurement noise with a non-block 
diagonal covariance matrix, as well as correlated process and 
measurement noise. These generalizations do not allow for a 
simple extension of the ideas in [5].  

To this end, we propose a fully distributed dynamic state 
estimation and attack detection scheme. Both the generator state 
(i.e., rotor angle and frequency of each generator) and the 
network state (i.e., voltage phase angle at each bus) are 
considered in the estimation. Our dynamic state estimation uses 
iterative linear solvers and an approximation to the estimated 
state covariance matrix based on proximity. Such 
approximations are useful for modeling systems where 
correlations are expected to decay with distance [7], [8]. Under 
certain assumptions [9], [10], matrices related to power 
networks have a local, sparse structure. The main contributions 
of this work include: 1) A new decoupled state-space 
formulation for power system dynamic state estimation is 
proposed to avoid communication requirements between all 



 

 

generators. 2) A fully distributed algorithm for attack detection 
based on dynamic state estimation is proposed that takes into 
account measurement noise. Such work is lacking under the 
structure-preserving dynamic model for power systems. 3) A 
local attack detection statistic is designed jointly with the 
dynamic state estimation in order to limit communication 
requirements. The communication requirements consist of 
buses’ sharing their weighted measurement residuals within a 
user-specified neighborhood. The size of the neighborhood can 
be tuned to allow for a tradeoff between accuracy and 
communication overhead. Numerical experiments verify the 
effectiveness of using limited neighborhoods (e.g., “2-hop” 
neighbors). 

II. PROPOSED FORMULATION 
A. Preliminaries on the Structure-Preserving Model 

Consider the linearized structure-preserving model from 
[6],[11]:  

!
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(1)	
The state 𝑿(𝑡) = [𝛅(𝑡) 𝛚(𝑡) 𝛉(𝑡)]E  consists of the rotor 
angle 𝜹  and frequency 𝝎  at every generator and the voltage 
phase angle 𝜽  at every bus. The matrix 𝑴IJKL  is a diagonal 
matrix with whose ith entry is 𝑀I, the inertia of the ith generator. 
Similarly, the matrix 𝑫5678 is a diagonal matrix whose ith entry 
is 𝐷I, the damping coefficient of the ith generator. The matrix 

𝑳 = O
𝑳33 𝑳39
𝑳93 𝑳99

P is a Laplacian matrix with a sparsity structure 

related to the underlying network. We note that 𝑳33 is a diagonal 
matrix, 𝑳99  is related to the bus admittance matrix, and 𝑳39 =
𝑳93E . The control input 𝑼(𝑡) = [𝟎 𝑷R(𝑡) 𝑷>(𝑡)]E  is given 
by the mechanical power output at the generators, 𝑷R, and the 
electrical power demand at each bus, 𝑷> , including those 
connected to a generator.  

To extend upon the work in [1], [2], we consider process and 
measurement noise. Additionally, the measurements are taken 
to be a discrete-time process rather than a continuous-time 
process, which is more realistic for digitally sampled systems. 
The process noise 𝒗(𝑡)~𝒩(𝟎,𝑸X)  ) and measurement noise 
𝒏[𝑘]~𝒩(𝟎, 𝑹 ) are assumed to be Gaussian noise processes. 
With the introduction of noise, we cannot apply a deterministic 
filter for attack detection as in [2]. For the noisy setting, we 
appeal to Kalman filtering techniques. However, since the 
dynamic system matrix in (1) is a singular matrix, the dynamic 
model in (1) is not directly applicable for Kalman filtering. One 
solution is to eliminate 𝜽 from the state dynamics through the 
equation 

𝛉(𝑡) = 𝑳99[\(𝑷>(𝑡) − 𝑳93𝛅(𝑡)).                      (2) 
Although 𝑳99  is sparse, its inverse is not, which leads to a 

coupling of the dynamics for 𝛚(𝑡) amongst all generators that 
is not present in the original formulation (1). Such a global 
coupling makes developing a distributed solution with 
reasonable communication requirements infeasible. 

B. Dynamic Model 
To solve the problem described above, we propose to treat 

the voltage phase angle as a control input rather than eliminating 

it from the dynamics. Consider a network with a total of 𝑛 buses. 
Let the subset of buses with generators be denoted 𝐺 and the 
number of generators |𝐺| = 𝑛3 . Then, the state given by the 
generator variables is  

𝒙(𝑡) = a𝒙\(𝑡) 𝒙b(𝑡) ⋯ 𝒙Jd(𝑡)e
E
,          (3) 

𝒙I(𝑡) = [δI(𝑡) ωI(𝑡)]E,   ∀𝑖 ∈ {1, . . . , 𝑛3}.      (4) 
The dynamics for the generator rely only on local and 
neighboring quantities, 

δ̇I(𝑡) = ωI(𝑡) + 𝑣I,p(𝑡),                           (5) 
ω̇I(𝑡) =

[\
qrsr

δI(𝑡) −
>r
qr
ωI(𝑡) +

\
qr
t𝑃3,I −

\
sr
θIw + 𝑣I,x(𝑡), (6) 

where 𝑣I,p(𝑡) and 𝑣I,y(𝑡) are the process noise on δz  and 𝜔I , 
respectively, and 𝑍I is the transient reactance. Therefore, these 
equations can be collected in matrix-form:  

�̇�(𝑡) = 𝑨X𝒙(𝑡) + 𝒖(𝑡) + 𝒗(𝑡),                    (7) 
where 𝑨X is block diagonal. The control input is  

𝒖(𝑡) = a𝑢\,p(𝑡) 𝑢\,y(𝑡) ⋯ 𝑢Jd,p(𝑡) 𝑢Jd,y(𝑡)e, (8) 
𝑢I,�(𝑡) = 0, 𝑢I,x(𝑡) =

\
qr
�𝑃3,I − θI 𝑍I⁄ �.             (9) 

The process noise is assumed to be 𝒗(𝑡)~𝒩(𝟎,𝑸X )  and 
uncorrelated in time. After digital sampling with sampling 
period 𝑇�, the continuous-time dynamic system is converted to 
a discrete-time system [12] as,  

𝒙[𝑘 + 1] = 𝑨𝒙[𝑘] + 𝑩𝒖[𝑘] + 𝒗[𝑘],           (10) 
where 

𝑨 = 𝑒E�𝑨X , 𝑩 = ∫ 𝑒𝝉𝑨X𝑻X
𝟎 𝑑𝜏,                        (11) 

and 𝒗[𝑘]~𝒩(𝟎,𝑸 ). The sampled process noise covariance 
matrix 𝑸 is related to the unsampled covariance matrix 𝑸X   via 

𝑸 = ∫ 𝑒𝑨�𝑻X
𝟎 𝑸X𝑒𝑨��𝑑𝜏.                          (12) 

C. Measurement Model  
We consider measurements of the generator rotor 

frequencies ω and the voltage phase angles θ. Similar to the 
dynamics, using θ directly in the measurement equations yields 
the following measurement model:  

ω��[𝑘] = ωI[𝑘] + 𝑛z,x[𝑘],                            (13) 
θ�� [𝑘] = a−𝑳99[\𝑳93eI𝛅[𝑘] + [𝑳99

[\]I𝑷>[𝑘] + 𝑛I,�[𝑘],  (14) 
where 𝑷>[𝑘] is a known input. This formulation is not desirable 
for distributed processing since 𝑳99[\ couples the measurement 
of the phase angle 𝛉� at any given bus to the rotor angle 𝛅 at all 
generators and the electrical power demand 𝑷> at all buses. We 
handle this by instead considering measurement of  

θI∗[𝑘] ≜ [𝑳99]I𝛉�[𝑘] − 𝑃I>[𝑘]                            (15) 
= 𝛿I[𝑘] 𝑍I⁄ + 𝑛I,�∗[𝑘],                            (16) 

Let 𝒚[𝑘] = [𝒚\[𝑘] … 𝒚J[𝑘]]E where  

𝒚I[𝑘] = �ω��[𝑘]θ�I∗[𝑘] 𝑖 ∈ 𝐺
θ�I∗[𝑘] 𝑖 ∉ 𝐺

                (17) 

is the measurement set local to bus 𝑖. Then 𝒚[𝑘] = 𝑯𝒙[𝑘] +
𝒏[𝑘], yields a decoupled measurement model matrix 𝑯 since in 
(13) and (16), the measurements 𝒚I involve only local variables 
ωI and 𝛿I. We stress that this new formulation maintains the 
original sparse, localized coupling inherent to power systems 
rather than a global coupling. The quantity θI∗ in (15) is a linear 
combination of voltage phase angles at neighboring buses and 
thus can be calculated in a distributed fashion with limited 
communication. Furthermore, only the local electric power 
demand PI> is needed at each bus rather than the global 𝑷>. 



 

 

However, measurement of 𝛉∗  introduces the following 
complication. If 𝑹� is the covariance matrix for the phase angle 
measurements, then 𝑹�∗ = 𝑳99𝑹�𝐋99E  . In particular, if 𝑹�  is 
diagonal, this is no longer the case for 𝑹�∗. In Section III, we 
will show how 𝑹�∗  introduces coupling and communication 
requirements that depend on neighboring rather than global 
information. In summary, we have a new formulation that 
transfers all of the coupling to the measurement covariance 
matrices and process-measurement covariance. 

D. Attack Model 
We introduce the vectors 𝒇\  and 𝒇b , which represent 

additive state and measurement attack vectors, respectively.  
𝒙[𝑘 + 1] = 𝑨𝒙[𝑘] + 𝑩𝒖[𝑘] + 𝒗[𝑘] + 𝒇\[𝑘]           (18) 

𝒚[𝑘] = 𝑯𝒙[𝑘] + 𝒏[𝑘] + 𝒇b[𝑘].                   (19) 
In terms of hypothesis testing, our aim is to distinguish between 

𝐻¡(𝑁𝑜	𝐴𝑡𝑡𝑎𝑐𝑘):	∀𝑘, 𝒇\[𝑘] = 𝟎,	𝒇b[𝑘] = 𝟎. 
𝐻\(𝐴𝑡𝑡𝑎𝑐𝑘):	𝑇ℎ𝑒𝑟𝑒	𝑒𝑥𝑖𝑠𝑡	{𝑘∗}	𝑓𝑜𝑟	𝑤ℎ𝑖𝑐ℎ 

𝒇\[𝑘∗] ≠ 𝟎 and/or 𝒇b[𝑘∗] ≠ 𝟎.           (20) 
Bad data from a faulty sensor can be viewed as one particular 
attack in this framework. This approach allows for a more 
general problem than bad data detection by including the 
possibility of directly attacking the state [2]. 

III. DISTRIBUTED ALGORITHM FOR ESTIMATION AND 
ONLINE ATTACK DETECTION 

In this section, we present our distributed algorithm for joint 
dynamic state estimation and attack detection. The distributed 
and dynamic nature of our algorithm facilitates detecting attacks 
in an online fashion as new measurements become available, 
making this particularly attractive for monitoring the health of 
critical cyber-physical systems, such as power grids. The first 
task is to carry out dynamic state estimation, because our 
criterion for detecting attacks is a statistic based on the output of 
the dynamic state estimator. 

A. Preliminaries on Kalman Filtering with Correlated Process 
and Measurement Noise 
Due to the presence of 𝜽 as a control input in (9) and in the 

measurements in (15), the process noise 𝒗[𝑘] is correlated with 
the measurement noise 𝒏[𝑘 + 1]. Let  

𝔼a𝒗[𝑘]𝒏[𝑗]e ≝ 𝑴𝛿²,³´\,                       (21)  
where 𝛿  is the Kronecker delta. The Kalman gain and state 
covariance estimation update formulas with process and 
measurement noise correlated according to 𝑴 [13] are given 
below. The Kalman filter proceeds in two steps:  

1) Dynamic Update: 
𝒙µ³[ = 𝑨𝒙µ³[\´ + 𝑩𝒖[𝑘 − 1],                               (22) 
𝑷³[ = 𝑨𝑷³[\´ 𝑨E + 𝑸.                                    (23) 

2) Measurement Update: 
𝒙µ³´ = 𝒙µ³[ + 𝑲³(𝒚[𝑘] −𝑯𝒙µ³[),                            (24) 

𝑺³ = 𝑯𝑷³[𝑯E + 𝑯𝑴+𝑴E𝑯E + 𝑹,                         (25) 
𝑲³ = (𝑷³[𝑯E +𝑴)𝑺³[\,                                 (26) 

𝑷³´ = 𝑷³[ −𝑲³(𝑯𝑷³[ +𝑴E).                             (27) 
In the Dynamic Update step, the estimated state, 𝒙µ³[\´ , and 
estimated covariance, 𝑷³[\´ , are updated according to the system 
dynamics. In the Measurement Update step, the predicted state 
estimate, 𝒙µ³[ , and the predicted covariance estimate, 𝑷³[ , are 

updated with the measurements to produce the current estimate, 
𝒙µ³´ and 𝑷³´. 
B. Distributed Dynamic State Estimation 

In addition to eliminating the need for communication with 
a centralized control center, we would like each control area to 
solve a problem of reduced dimension with respect to the 
original global problem. In this aim, we introduce the notion of 
local states and local measurements. The network buses are 
partitioned into a set of 𝑁 control areas. For example, Fig. 1 is a 
14 bus system with 4 control areas. The state local to control 
area 𝐼 is the generator voltage angle and frequency at the buses 
in control area I, 𝒙¹ = [𝜹¹ 𝝎¹]E . There is no overlap between 
neighboring areas’ states. The local measurements for control 
area I, 𝒚¹, are the frequencies of all generators contained in the 
control area and the 𝜽¹∗ at buses contained in the control area. 
We note that 𝜽¹∗ depends on measurements of phase angles at 
neighboring buses, so border buses must exchange their 
measurements with their neighbors in other control areas.  

 
Fig. 1. Experimental setup of IEEE 14-bus network with 4 control areas.  

One remarkable feature of the Kalman filter is that the 
estimated covariance matrices do not depend on the 
measurements. Therefore, they can be computed in advance 
offline. We stress again that the dynamic system matrix 𝑨 and 
measurement model matrix 𝑯  are both decoupled (i.e. no 
mixing is introduced between states in different areas). 
Assuming buses are labelled consecutively across control areas, 
the state-space model can be written as,  

𝒙¹[𝑘 + 1] = 𝑨¹𝒙¹[𝑘] + 𝑩¹𝒖¹[𝑘] + 𝒗¹[𝑘], 
𝒚¹[𝑘] = 𝑯¹𝒙¹[𝑘] + 𝒏¹[𝑘], 

 𝐼 = {1,… ,𝑁}.  
Since the power network is an interconnected system, we 
expect a need to exchange information between control areas. 
Indeed, this need is reflected in the fact that the Kalman gain 
𝑲³  is not a block-diagonal matrix. The innovation, or 
measurement residual, for control area 𝐼 is defined as:  

𝜸¹[𝑘] ≝ 𝒚¹[𝑘] − 𝑯¹[𝑘]𝒙¹µ [𝑘][.                       (28)  
The measurement update to the local estimate is then  

𝒙¹µ [𝑘]´ = 𝒙¹µ [𝑘][ + 𝑲¹[𝑘]𝛾¹[𝑘],                       (29)  
where 𝑲¹[𝑘]  are the rows of 𝑲[𝑘]  corresponding to control 
area 𝐼. Since 𝑲[𝑘] is not a block-diagonal matrix, entries of 
𝜸¹[𝑘] will need to be communicated for a control area to update 
its local estimate 𝒙¹µ [𝑘]´ . Using our formulation, this is the 
remaining key challenge for developing a distributed algorithm. 
The formula for 𝑲[𝑘] in (26) contains a matrix inverse 𝑺³[\ , 
which is difficult to calculate in a distributed way. Instead, 



 

 

iterative linear solvers can be used as follows. Consider the 
linear system 

𝑺³𝒂[𝑘] = 𝜸[𝑘].                              (30)  
Then, the measurement update in (29) is given as 

𝒙¹µ [𝑘]´ = 𝒙¹µ [𝑘][ + (𝑷³[𝑯E +𝑴)𝒂¹[𝑘]            (31) 
The key to dealing with the inverse in a distributed way is to 
iteratively solve (30) for 𝒂[𝑘] without explicitly calculating the 
inverse and use the result in (31). We will show that the damped 
Jacobi method allows for a fully distributed solution to (30). 
Since the method is iterative, an inner-loop of iterations is 
introduced for each outer-loop k of the Kalman filter. We drop 
the outer-loop index k here for simplicity. The matrix 𝑺 can be 
decomposed into the difference of a diagonal matrix 𝑫 and a 
matrix containing the remaining off-diagonal entries,  

𝑺 = 𝑫− 𝑬.                                  (32) 
Iteratively solving for 𝒂 using the damped Jacobi method [14] 
amounts to finding the fixed point of 

𝒂¾´\ = 𝒂¾ + 𝛼𝑫[\(𝜸 − 𝑺𝒂¾),                       (33) 
where 𝛼  is the damping parameter. Since 𝑫  is diagonal, its 
inverse is diagonal, and each block can be computed locally. 
The sparsity of 𝑺 determines the entries from 𝒂¾ that need to be 
communicated with neighboring areas. The following 
proposition guarantees the method’s convergence when applied 
in our formulation for dynamic state estimation.  

Proposition 1. The damped Jacobi method in (33) converges 
if 𝛼 < 𝑚𝑖𝑛I(2𝑆II/∑ Æ𝑆I²Æ² ) .(The proof is in Appendix VI-A.) 

Our distributed dynamic state estimation algorithm is 
presented in Algorithm 1.  

Algorithm 1: Distributed Algorithm for Dynamic State Estimation and 
Attack Detection Statistic Calculation  
1: Initialization: Using (23), (25), and (27), {𝑷³[}³Ç¡È , {𝑷³´}³Ç¡È  and {𝑺³}³Ç¡È

 
are calculated offline and communicated to each control area.  
2: for 𝑘 do = 1 to 𝐾  
3:  Each control area 𝐼 calculates [𝒙µ³[]¹ = 𝑨¹[𝒙µ³[\´ ]¹ + 𝑩¹[𝒖³[\]¹.  
4:    for 𝑡 = 1: 𝑇IJJKL	do 𝒂¹¾´\ = 𝒂¹¾ + 𝛼[𝑫³]¹[\([𝜸³]¹ − [𝑺³𝒂¾]¹).  
5:   Using a neighbor-limited approximation to 𝑷³[, 𝑷Ê³[, each area calculates 
[𝒙µ³´]¹ = [𝒙µ³[]¹ + (𝑷Ê³[𝑯E +𝑴)𝒂¹¾.  
6:   Use 𝒂¹  to update the local attack detection statistic 𝑑¹[𝑘] in (37).  

After completing 𝑇IJJKL  inner iterations, we obtain 𝒂ErËËÌÍ 
which is multiplied by (𝑷³[𝑯E +𝑴) in order to calculate (31). 
Since 𝑷³[  is in general a full matrix, in order to avoid 
communication between all generators, we propose the 
following masking approximation. Let  

ℕ9 ≝ Ï1, 𝑖, 𝑗	𝑎re	𝑙 − hop	neighbors
0,																												 otherwise.            (34) 
𝑷Ê³[ ≝ ℕ9 ⊙ 𝑷³[.                                   (35)  

where, ⊙ denotes the entry-wise matrix multiplication. Thus 
[𝑷Ê³[]I² is nonzero if and only if the buses corresponding to 𝒙I 
and 𝒙²  are at most l-hops away (e.g., direct neighbors are 𝑙-
hop neighbors) . By tuning 𝑙, there is a tradeoff between 
accuracy of estimation and communication requirements. 
C. Attack Detection 

Assumed that the attack vectors 𝒇\  and 𝒇b  from the attack 
model in Section II-D are unknown, a sliding window attack 
statistic can be defined based on the Kalman innovation (i.e., 
measurement residual) [7]. The global attack statistic at time 𝑘 
is defined as follows: 

𝑑[𝑘] = ∑ 𝜸[𝑗]E𝑺³[\𝜸[𝑗]³
²Ç³[Þ´\ ,                    (36) 

where the sliding window is of length 𝑊 and 𝑚 is the number 
of measurements. The Kalman innovation is a zero-mean 
Gaussian random variable [13], and the statistic 
𝑑[𝑘]~𝜒b(𝑊𝑚)) is a chi-squared random variable with 𝑊𝑚 
degrees of freedom [15]. This is due to the following 
proposition.  

Proposition 2. The global innovation 𝜸[𝑘] has covariance 
matrix 𝑺³. (The proof is in Appendix VI-B.) 

In Algorithm 1, the quantity 𝒂¹[𝑗] = [𝑺³[\𝜸[𝑗]]¹ is calculated 
locally in each control area 𝐼  during the dynamic state 
estimation. Therefore, no additional communication is required 
to calculate the local attack statistic  

𝑑¹[𝑘] = ∑ 𝜸¹[𝑗]E𝒂¹[𝑗]³
²Ç³[Þ´\ .                    (37) 

If one had access to the global detection statistic, a classic chi-
squared detection test could be used. For real-time attack 
detection in large networks, it is not feasible to collect ∑ 𝑑¹[𝑘]³  
over all areas. Instead, we propose that each area base its attack 
detection on its local attack statistic information. If 𝑺³[\ were 
block diagonal, then 𝑑¹[𝑘]  would be distributed as a chi-
squared random variable with 𝑊𝑚¹ degrees of freedom, where 
𝑚¹  is the number of measurements in area 𝐼 . However, in 
general 𝑺³[\ is a full matrix, and 𝑑¹[𝑘] does not have an easily 
characterized distribution. We have the following proposition 
for the analytical mean and variance of 𝑑¹[𝑘] under hypothesis 
𝐻¡ (No Attack) using a sliding window 𝑊=1. For simplicity of 
notation, the timestep index k is omitted.  

Proposition 3. Let 𝒀 be the inverse of 𝑺. Using W = 1, the 
mean and variance of the local attack statistic without an attack 
can be quantified as follows 

𝐸[𝑑¹] = ∑ ∑ 𝑌I9𝑆I9J
²Ç\I∈¹ ,                        (38a) 

𝑉𝑎𝑟(𝑑¹) = 𝐸[𝑑¹b] − 𝐸[𝑑¹]b,                      (38b) 
where, 

𝐸[𝑑¹b] = ∑ ∑ 𝑌I9𝑌²³(𝑆I9𝑆²³ + 𝑆I²𝑆9³ + 𝑆³I𝑆9²)J
³,9Ç\I,²∈¹ .  (38c) 

The proof follows from Proposition 2. Given the analytical 
value for the variance, a threshold 𝜏¹ is set such that if |𝑑¹[𝑘]| >
𝜏¹𝑉𝑎𝑟(𝑑¹) an attack is declared. For example, the threshold can 
be a multiple of 𝑉𝑎𝑟(𝑑¹[𝑘]). A nice feature of our algorithm is 
that different false alarm probabilities can be set per area based 
on the areas’ noise characteristics, and extra information about 
the location is available since we monitor the local partial sums 
of the global attack variable. 
D. Communication Analysis 

We analyze the communication requirements of our 
distributed algorithm in terms of the sparsity patterns of relevant 
matrices and the 𝑙-hop neighbor approximation in (35). Note 
that Steps 3 and 6 of Algorithm 1 do not require any 
communication since 𝑨 is block diagonal and [𝒖]¹ only depends 
on local information.  

To iteratively solve for 𝒂¹  in Step 4, neighbors need to 
communicate their entries of the vector 𝒂  according to the 
sparsity pattern of 𝑺³.  

Proposition 4. Using a 𝑙-hop neighbor mask in (35), the 
sparsity pattern of 𝑺³  has non-zero entries only at pairs of 
measurements corresponding to buses that are at most 𝑙-hops 
away. (The proof is in Appendix VI-C.)  

After calculating 𝒂¹ , there are additional communication 
requirements for calculating (𝑷Ê³[𝑯E +𝑴)	𝒂¹  in Step 5 of 
Algorithm 1. Before discretization the control input to 𝛿I is zero, 



 

 

and the control input to ωI  depends only on 𝜃I . After 
discretization, the matrix 𝑩  in (11) is block-diagonal 
introducing a coupling between 𝑢pr  and 𝜃I . Therefore, we 
specify 𝑴 to have non-zero entries only at:  

𝑴�𝑢�ç, θ�²
∗�	if	𝑗 = 𝑖	or j∈ 𝒩I                         (39a) 

𝑴�𝑢xç, θ�²
∗�	if	𝑗 = 𝑖	or j∈ 𝒩I                         (39b) 

𝒩I is the set of neighbors of bus 𝑖. 
The sparsity of 𝑷³[𝑯Eis such that the columns corresponding 

to measurements of 𝜽�∗  at a load bus are zero. In order to 
calculate the entry of vector [𝑷³[𝑯E]𝒂  corresponding to 
measurement 𝜔µI ,the entries of 𝒂  corresponding to the 
measurements of 𝝎 and 𝛉∗ at all other generators are needed. If 
an 𝑙-hop neighbor mask is applied, then only the entries of 𝒂 
corresponding to measurements at generators at most 𝑙 -hops 
away are needed. In summary, to approximately calculate local 
entries of the vector  [𝑷³[𝑯E +𝑴]𝒂, areas must communicate 
local entries of 𝒂 with at most their l-hop neighbors. 

IV. NUMERICAL RESULTS 
We have tested the proposed distributed estimation and 

cyber- attack detection method on the IEEE 14-bus network 
shown in Fig. 1.  

Fig. 2 shows the performances of the dynamic state 
estimation using different communication structures. The case 
where all generators communicate with each other is labeled 
(“Full Comm.”), and the case where generators at most 𝑙-hops 
away communicate with each other is labeled (“ 𝑙  -hop 
Comm.”). In the 14-bus network in Fig. 1, the generators are at 
buses 1, 7, and 14. Since buses 1 and 14 are 3-hop neighbors, 
they will communicate under the (“3- hop Comm.”) scenario 
but not under the (“2-hop Comm.”) scenario. Estimation 
performance is not significantly degraded using the 𝑙 -hop 
approximations. In addition, Fig. 2 verifies the accuracy of the 
iterative (distributed) inversion with respect to the direct 
(centralized) inversion for the (“Full Comm.”) scenario. In our 
simulations, the measurement noise for PMUs is σ = 10[ê 
[16], the process noise 𝑸X  is diagonal with a variance of 10[ë, 
and the entries of 𝑴 are 10[ì for the correlation between the 
process and measurement noise. The inner-loop tolerance is set 
to 𝜀 = 10[î for the matrix-splitting iterations. To evaluate the 
integrals in (11)-(12), we use a second-order approximation. 
Since the sampling rate of the PMUs is high enough to track the 
system dynamics, we assume the second-order approximation 
is accurate.  

Fig. 3 demonstrates the local attack detection statistic 
behavior. A 3-hop communication approximation with iterative 
inversion is used. In each of the six figures, the histogram of the 
attack statistic, 𝑑¹ without an attack present (red) and with an 
attack present (blue) is overlaid. Each event in the histogram 
corresponds to different values for the correlated process and 
measurement noise. We examine the attack statistic at three 
different timesteps (before, during, and after the attack) and in 
two different control areas. The attack is a corruption of the 
signal reading the power demand at bus 2 in Control Area 1 in 
Fig. 1. The power demand at bus 2 is taken to be ten times its 
actual value in the state estimation algorithm. Fig. 3 (a)-(c) show 
the attack statistics in Control Area 1,where the attack takes 
place. The analytic values for the mean and variance from 

Proposition 3 are calculated using the covariance matrix from 
our simulations. The blue vertical line is the analytic mean, and 
the dashed red lines are at plus and minus 1 analytic standard 
deviation. As expected, before the attack the histogram for  𝑑\ 
matches exactly with or without an attack. At the time step 
where the attack occurs, the variance of the statistic 𝑑\  is 
increased with respect to the case when no attack is present. 
Fig.3 (d)-(f) show the histogram for the attack statistic 𝑑ê  in 
neighboring Control Area 4. We see that during the attack, the 
variance of 𝑑ê is only slightly increased. This points to another 
potential advantage of using the local attack statistic 𝑑¹ in (37) 
rather than the global attack statistic 𝑑  in (36). Since the 
variance of the local attack statistic where the attack is taking 
place is increased with respect to the local statistics in other 
areas, this suggests that using the local attack statistic helps not 
only in detecting the presence of an attack but also in identifying 
where the attack is taking place. 

 
(a) MAE for δ                               (b) MAE for ω 

Fig. 2: The mean absolute error (MAE) for δ and ω averaged over all generators 
of the 14-bus system as shown in Fig. 1.  

 
(a) 𝑑\ (Area 1 Before Attack)       (b) 𝑑\ (Area 1 During Attack) 

 
(c) 𝑑\ (Area 1 After Attack)       (d) 𝑑ê (Area 4 Before Attack) 

 
(e) 𝑑ê (Area 4 During Attack)       (f) 𝑑ê (Area 4 After Attack) 

Fig. 3: The attack statistics in Area 1 and Area 4 where the attack takes place 
in Area 1 as corrupting the value of the power demand at bus 2.  



 

 

V. CONCLUSION 
In summary, we present a new formulation of the dynamic 

state estimation problem for power networks under the 
structure-preserving model that preserves the sparse coupling of 
the dynamics. We propose a new distributed Kalman filtering 
algorithm based on iterative linear solvers and a neighborhood-
approximation to the estimated state covariance matrix. Our 
dynamic state estimation allows for calculation of a local attack 
detection statistic without any additional communication. 
Numerical results demonstrate the effectiveness of the 
estimation scheme and the utility of the local attack detection 
statistic.  

VI. APPENDIX 
A. Proof of Proposition 1 

From Proposition 2, since S is the covariance matrix for the 
innovations, it is symmetric and positive semi-definite. 
Furthermore, by the standard assumptions for Kalman filtering, 
𝑺 is an invertible matrix, thus 𝑺 is positive definite, i.e. 𝑺 ≻ 𝟎. 
For 𝑺 ≻ 𝟎, the damped Jacobi method converges if and only 
𝟎 ≺ 𝑺 ≺ (2/𝛼)𝑫 [14]. A sufficient condition is to choose 𝛼 so 
that (2/𝛼)𝑫 − 𝑺 is diagonally dominant which requires that 
 ñb
ò
𝑫 − 𝑺ó

II
= (b

ò
− 1)𝑆II > ∑ ôñb

ò
𝑫 − 𝑺ó

I²
ô = ∑ Æ𝑆I²Æ²õI²õI  

(40) 
⇔ 𝛼 < b÷rr

∑ Æ÷røÆø
	∀𝑖.                                                                   (41)  

The result utilizes the fact that 𝑆II > 0 since it is the value of a 
variance. 
B. Proof of Proposition 2 

Here we show that the global innovations covariance matrix 
is given by 𝑺³.  
𝐸[𝛾[𝑘]𝛾[𝑘]E] = 𝐸[(𝒚[𝑘] − 𝑯𝒙µ𝒌[)(𝒚[𝑘] −𝑯𝒙µ𝒌[)E]          (42a)  
= 𝐸{[𝑯(𝒙³ − 𝒙µ𝒌[) + 𝒏³][𝑯(𝒙³ − 𝒙µ𝒌[) + 𝒏³]E}              (42b) 
= 𝑯𝑷³[𝑯E + 𝑹+ 𝐸[𝑯(𝒙³ − 𝒙µ𝒌[)𝒏³E] + 𝐸[𝒏³(𝒙³ − 𝒙µ³[)E𝑯E] 

(42c) 
From (22) we have that  
𝒙³ − 𝒙µ𝒌[ = (𝑨³[\𝒙³[\ + 𝑩³[\𝒖³[\ + 𝒗³[\) − (𝑨³[\𝒙µ³[\´ +

𝑩³[\𝒖³[\)  (43a)  
= 𝑨³[\(𝒙³[\ − 𝒙µ³[\´ ) + 𝒗³[\          (43b) 

𝐸[(𝒙³ − 𝒙µ𝒌[)𝒏³E] = 𝐸[𝑨³[\(𝒙³[\ − 𝒙µ³[\´ )𝒏³E] + 𝐸[𝒗³[\𝒏³E] 
= 𝑴 (44) 

where the last line follows from the fact measurement noise at 
time 𝑘 is uncorrelated with the measurements and state at the 
previous time step. Plugging into (42c), we obtain the desired 
result 

𝐸[𝛾[𝑘]𝛾[𝑘]E] = 𝑯𝑷³[𝑯E + 𝑹+ 𝑯𝑴+𝑴E𝑯=𝑺³     (45) 
C. Proof of Proposition 4 

The matrix 𝑺³  consists of the sum of four terms. For 
convenience, we drop the time step index 𝑘 . Consider the 
sparsity pattern of 𝑨 = 𝑯𝑷Ê[𝑯E. 

𝐴I² = ∑ 𝐻I³ ∑ 𝑃ú³9[𝐻²99³                           (46) 
For concreteness, take row 𝑖  of 𝑯  to correspond to 
measurement θI∗ and take row 𝑗 to correspond to measurement 
ωµû.  

𝐴I² = ∑ 𝐻�r
∗,³ ∑ 𝑃ú³9𝐻xü,99³                           (47) 

= ∑ 𝐻�r
∗,³𝑃úý,xü

[
³ = 𝐻�r

∗,pç𝑃úpç,xü                           (48) 

is nonzero if and only if 𝑃úpç,xüis nonzero. From the definition of 
𝑙-hop mask in (35), this is equivalent to having bus 𝑖 and bus 𝑗 
be at most 𝑙-hop neighbors. A similar argument follows for the 
other measurement types. In conclusion, the calculation of 𝑨 
requires 𝑙-hop neighbor communication. Without the masking 
approximation, the estimate of the state covariance matrix 𝑷[ 
is full, and each generator would need to communicate with 
every other generator.  

The measurement noise covariance matrix is  

𝑹 = O
𝑹x 𝟎
𝟎 𝑳99𝑹�𝐋99E

P,                              (47) 
where 𝑹x  and 𝑹�  are assumed to be diagonal. The sparsity 
pattern of 𝑳99  is the same as the adjacency matrix of the 
underlying network. The matrix [𝑳99]I² is nonzero if and only if 
bus 𝑖 and bus 𝑗 are neighbors, and [𝑳99𝑹�𝐋99E ]I² is nonzero if and 
only bus i and bus j are at most 2-hop neighbors. Therefore, 𝑹 
requires at most 2-hop neighbor communication. The last 
component to analyze is the matrix 𝑯𝑴. The entry [𝑯𝑴]I² is 
nonzero if and only if the states that measurement 𝑖 depends 
upon have overlap with the control inputs correlated to 
measurement 𝑗 . Measurement 𝑖  can either be ωµz  or 𝜃I∗  which 
depends on 𝜔z and 𝛿z, respectively. From (39), a measurement 
of 𝜔²   is not correlated to the control inputs, so [𝑯𝑴]I² is zero 
for columns j corresponding to measurements of 𝜔 . 
Measurements of 𝜃I∗ are correlated with the control input at bus 
𝑖  and neighboring buses. Therefore, 𝑯𝑴  only requires 
neighbor to neighbor communication. The same argument 
holds for 𝑴E𝑯E  . In summary, at most 𝑙 -hop neighbor 
communication is needed due to calculation of 𝑯𝑷[𝑯E.  
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