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paper thus proposes a quantitative approach to estimate a bearing fault severity based on
the air gap displacement profile, which is reconstructed from the mutual inductance variation
profile estimated from a novel electrical model that only takes the stator current as input.
In addition, the accuracy of the electrical model and the estimated bearing fault severity are
validated by simulation results. The proposed method can be used to monitor bearing faults
in induction machines with any power ratings that operate under any speeds and loads, and a
bearing fault alarm will be triggered if the fault severity exceeds a universal threshold value.
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Abstract—The characteristic frequencies of different types of
bearing faults can be calculated by a well-defined frequency-
based model that depends on the motor speed, the bearing
geometry and the specific location of a defect inside a bearing.
Therefore, the existence of a bearing fault as well as its specific
fault type can be readily determined by performing frequency
spectral analyses on the monitored signals. However, this tradi-
tional approach, despite being simple and intuitive, is not able to
identify the severity of a bearing fault in a quantitatively manner.
Moreover, it is often tedious and time-consuming to apply this
approach to electric machines with different power ratings, as
the bearing fault threshold values need to be manually calibrated
for each motor running at every possible speed and carrying
any possible load. This paper thus proposes a quantitative
approach to estimate a bearing fault severity based on the air
gap displacement profile, which is reconstructed from the mutual
inductance variation profile estimated from a novel electrical
model that only takes the stator current as input. In addition, the
accuracy of the electrical model and the estimated bearing fault
severity are validated by simulation results. The proposed method
can be used to monitor bearing faults in induction machines with
any power ratings that operate under any speeds and loads, and a
bearing fault alarm will be triggered if the fault severity exceeds
a universal threshold value.

Index Terms—Bearing fault, fault severity, analytical model,
mutual inductance variation, air gap displacement.

I. INTRODUCTION

Induction machines are broadly used in various industry

applications that include pumps, chemical, petrochemical,

electrified transportation systems, etc. In many applications,

these machines are operated under unfavorable conditions,

such as high ambient temperature, high moisture and overload,

which can eventually result in motor malfunctions that lead to

high maintenance costs and unexpected downtime [1]–[3].

The malfunction of induction machines can be generally

attributed to various faults of different categories, which

include the drive inverter failures, stator winding insulation

breakdown, broken rotor bar faults, as well as bearing faults

and air gap eccentricity. Several surveys regarding the likeli-

hood of induction machines failures conducted by the IEEE In-

dustry Application Society (IEEE-IAS) [4]–[6] and the Japan

Electrical Manufacturers’ Association (JEMA) [7] reveal that

a bearing fault is the most common fault type that accounts

for 30% to 40% of the total faults.

Therefore, bearing fault detection has attracted the attention

of many researchers and engineers from both mechanical engi-

neering and electrical engineering. Specifically, this problem

is approached by interpreting a variety of signals, including

vibration, acoustic noise, and stator current, etc. The existence

of a bearing fault as well as its specific fault type is readily

determined by performing frequency spectral analyses on

the monitored signals and analyzing the components at the

characteristic fault frequencies, which can be calculated by a

well-defined model [8] that depends on the motor speed, the

bearing geometry and the location of a bearing defect.

However, monitoring the vibration or acoustic noise signals

requires additional sensors that add to the system cost, or they

can even become unfeasible to install due to space constraints.

In addition, the fault detection accuracy can be also affected

by background vibration or noise. Despite the advantages

such as economic savings and simple implementation, stator

current signature analysis can also encounter many practical

issues. For example, the magnitude of stator currents at bearing

fault signature frequencies can vary at different loads, speeds,

and power ratings of the motors themselves, thus bringing

challenges to identify the threshold stator current values to

trigger a fault alarm at an arbitrary operating condition. There-

fore, a thorough and systematic testing is usually required

while the motor is still at the healthy condition, and the

healthy data would be collected while the targeted motor is

running at different load and speed. Moreover, this process,

also referred to as the “Learning Stage” in [10], needs to be

repeated for any motor with a different power rating, thus

demanding heavy dataset to detect even nonfatal faults. In

addition, the detection of bearing faults is mostly performed

in a qualitative manner, whereas the exact faulty condition

cannot be quantified. Therefore, there is a strong demand for

a diagnostic method that is universal and accurate to quantify

bearing faults with any power ratings and operating under any

possible speed and load conditions.

In this context, this paper proposes a methodology to

estimate the bearing fault severity in terms of radial air gap

displacement by first developing a novel analytical model

of an induction machine with bearing faults. The model is

based on the transient partial differential equations of the

induction machines, and it describes a relationship between

the variations of mutual inductance induced by the bearing

faults, as well as the corresponding changes of stator current.

Using either the first-order or a series of Fourier Series
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Fig. 1. Flow diagrams of bearing fault diagnostics (a) the traditional approach and (b) a new vision.

terms, the cumulative mutual inductance variation profile in

the time domain can be reconstructed. The frequencies of

the base cosine functions are multiples of the characteristic

bearing fault frequency, and their amplitudes are determined

by the faulty current through the proposed analytical model.

Later, a transfer function is adopted to express the relation-

ship between the mutual inductance variations and the air

gap length variations, which is defined as a measure of the

bearing fault severity in this study. The proposed mechanism

enables a generalized and convenient bearing fault detection

for induction machines with any power ratings and operating

under arbitrary speeds and loads, and the fault alarms will

be triggered if the estimated bearing fault severity exceeds a

universal, predefined maximum tolerable bearing fault severity.

II. A NEW VISION FOR BEARING FAULT DETECTION

A. Traditional Bearing Fault Detection Techniques

Fig. 1(a) is a flow diagram of the procedures undertaking

by mechanical and electrical engineers to detect the presence

of a bearing fault and its fault type. From the physical point

of view, when a bearing fault appears on certain locations

that characterizes its bearing fault type with a certain fault

severity, some periodic vibration pulses will be generated

as a result of the impacts between the rolling elements and

the bearing raceways with a characterization frequency fc
solely determined by its fault type, which includes a cage

defect hitting the inner/outer bearing raceways, an inner/outer

raceway defect hitting the rolling elements, and a rolling

element defect hitting both the inner and outer raceways. The

mechanical mechanism for generating such vibrations can be

constructed as a mechanical model [12], which is typically de-

scribed with analytical equations [13] or finite element analysis

[14]. While the relationship between a bearing fault type and

its associated vibration frequency is already well-defined in

Ref. [8], mechanical engineers have been investigating how

the shape and intensity of vibration signals would change

with respect to bearing defects of different width, depth and

location. The vibration signals from a bearing fault can induce

a periodic air gap displacement in the radial direction, which

further causes a periodic variation of the mutual inductance

Lm of the same characteristic fault frequency fc according to

Transfer Function II. Due to this mutual inductance change,

the frequency component of the stator current at |fs ± n · fc|
will be present in response to the bearing fault, where fs is the

fundamental frequency of the input voltage. This mechanism

can be formulated as a Qualitative Electrical Model, e.g., [9],

which can identify the presence of a bearing fault and its

fault type. However, this traditional approach is not able to

predict the size or severity of such a bearing fault, either from

vibration signals or from stator current signals.

B. A New Vision of Bearing Fault Detection

Fig. 1(b) is another flow diagram of a new vision proposed

in this paper to estimate both the bearing fault type and fault

severity with the integration of both electrical and mechanical

models. The only input would be the extracted faulty current

amplitudes of fault frequency fc determined by the bearing

geometry and the instantaneous motor speed [8]. Then the

mutual inductance variation profile can be reconstructed with

the developed Quantitative Electrical Model of induction ma-

chines with bearing faults, which can be further transformed

into an air gap displacement signal with a Transfer Function II.

With the knowledge of the bearing mounting positions on the

shaft relative to the center of the air gap, the vibration intensity

at the bearing locations can be inferred by a Transfer Function

I based on either complex beam theories or simple linear

decay functions of mechanical vibrations. The Mechanical

Model can be constructed as direct analytical relationships

between vibration signal pattern and bearing fault size/severity

[13], or perform reverse mapping with finite element analysis



[14] for bearing defects with irregular shapes and thus its

corresponding analytical equations are difficult to formulate.

Similarly, the type of a bearing fault can be directly inferred

from its associated faulty current frequency.

Compared to the traditional approach illustrated in Fig. 1(a),

this new vision is an integrated approach of mechanical and

electrical modeling. While the traditional approach can only

determine the type of a bearing fault, this new vision can also

estimate the actual fault severity. In addition, the proposed

vision is nonintrusive as only the stator current information is

used, and there is no need to install additional sensors such

as the vibration and acoustic emission sensors.

This paper fulfills the electrical parts of this vision, namely

the Quantitative Electrical Model and the transfer functions,

and later determines the bearing fault severity in terms of

the normalized air gap displacement estimated from the stator

current. However, the final goal of this vision is to predict

the size and location of a defect inside a bearing by only

measuring and interpreting the stator current.

III. THE QUANTITATIVE ELECTRICAL MODEL

ESTIMATING THE MUTUAL INDUCTANCE VARIATION

The Quantitative Electrical Model is developed to estimate

the mutual inductance variation from the input faulty current.

The response to bearing faults can be considered as a combi-

nation of the mutual inductance variations due to the induced

dynamic air gap eccentricity and the load torque oscillations

due to the bearing defect that would further lead to speed

oscillation. For most induction machine setups, however, the

system inertia is large enough to suppress speed oscillations,

and thus the effect of load torque oscillations is neglected in

the later model development stage.

The mathematical model for the squirrel-cage induction

machines in an arbitrary reference frame with an angular

frequency ωc can be expressed as





uds = Rsids + pλds − ωcλqs

uqs = Rsiqs + pλqs + ωcλds

0 = Rridr + pλdr − (ωc − ωr)λqr

0 = Rriqr + pλqr + (ωc − ωr)λqr

(1)





λds = Lsids + Lmidr
λqs = Lsiqs + Lmiqr
λdr = Lmids + Lridr
λqr = Lmiqs + Lriqr

(2)

where u is the input voltage, R and L are the motor resistance

and inductance, ω is the angular frequency, λ is the flux

linkage, p is the differential operator, while the subscripts

d and q represent the direct and quadrature axes, and the

subscripts s, r and m denote the stator, rotor, and their mutual

electromagnetic correlation.

Then a matrix form of the above equation can be written in

(3), where U is the input matrix, L̂
(0)
1 is the parametric matrix

for a healthy induction machine, X(0) is the response matrix in

the steady-state containing all the state variables of the stator

and rotor flux linkages and currents, and K is the coefficient

matrix for the first-order derivatives of the state variables X .

Similar to a small signal representation of equations (1) to

(3) [15], consider a bearing fault that leads to a periodic air

gap variation, which further leads to a periodic change of the

mutual inductance. While the pattern of the periodic air gap

variation can be decomposed into a series of Fourier Series,

the simplest form is to only take its fundamental frequency

component at fc and its magnitude as ∆Lm1. The model can

be formulated with this assumption first, and the final result

of mutual inductance variation would be the superposition of

all the harmonic contents derived in the same manner from

this model. In this scenario, the updated mutual inductance is

Lnew
m = Lm +∆Lm1 cos(wfct) (4)




uds

uqs

0
0
0
0
0
0




︸ ︷︷ ︸
U

=




0 −wc 0 0 Rs 0 0 0
wc 0 0 0 0 Rs 0 0
0 0 0 −(wc − wr) 0 0 Rr 0
0 0 (wc − wr) 0 0 0 0 Rr

−1 0 0 0 Ls 0 Lm 0
0 −1 0 0 0 Ls 0 Lm

0 0 −1 0 Lm 0 Lr 0
0 0 0 −1 0 Lm 0 Lr




︸ ︷︷ ︸
L̂

(0)
1

·




λds

λqs

λdr

λqr

ids
iqs
idr
iqr




︸ ︷︷ ︸
X(0)

+

[
I 0

0 0

]

︸ ︷︷ ︸
K

·




pλds

pλqs

pλdr

pλqr

pids
piqs
pidr
piqr




(3)

[
L̂
(0)
1 +

∆L

2
(eiwfct + e−iwfct)M̂

]
· (X(0) +X+ +X−)

+
[
(−iωe)K̂X(0)e−iωet + (−iω+)K̂X+e−iω+t + (−iω−)K̂X−e−iω−t

]
= U · e−iωet

(6)



Then the new form of matrix L can be updated to




L̂1 = L̂
(0)
1 +∆L̃1(t)

∆L̃1(t) = ∆Lm1 cos(wfct) · M̂

M̂ =




0 0

0
I I

I I




(5)

Therefore, in the frequency domain, the complete induction

machine equation under mutual inductance change can be writ-

ten as (6), where “+” and “−” represent the fault component

for a faulty frequency pair 60 + fc and 60− fc.

Then the complete solutions X+ and X− for a faulty

frequency pair 60 + fc and 60− fc are




(
L
(0)
1 − iω+K

)
X+ +

∆Lm1

2
M̂X(0) = 0

(
L
(0)
1 − iω−K

)
X− +

∆Lm1

2
M̂X(0) = 0

(7)

where X(0) is the solution of
(
L
(0)
1 − iωeK

)
X(0) +

∆Lm1

2
M̂X(0) = U (8)

Since the faulty stator current that can be measured is

contained in the state variable matrix X , and matrix (L1(0)−
iω±K) is invertible under the context of induction machines,

thus the corresponding rows of the stator current in matrix

(L1(0) − iω±K)−1MX(0) can be extracted as A+ and A−

for frequencies ω+ and ω− specified in the model.

Since ∆Lm1 is a scalar, the following results can be

obtained as 



|∆I+| = |A+| ·
∆Lm1

2

|∆I−| = |A−| ·
∆Lm1

2

(9)

in which |∆I+| and |∆I−| are the magnitudes of the faulty

stator current for a faulty frequency pair 60+ fc and 60− fc.

The next stage task is to extract the values of |∆I+| and |∆I−|
to the best possible accuracy via a variety of signal processing

techniques to estimate the mutual inductance variation ∆Lm.

IV. SIGNAL PROCESSING TECHNIQUES

A. Challenges

Unfortunately, accurately extracting the faulty stator current

at the bearing fault characteristic frequencies is not simple, as

there are several technical challenges that affect the perfor-

mance of conventional signal processing techniques.

1) Irrational fault frequency fc: The bearing characteristic

fault frequency fc depends on both the bearing geometry and

the motor speed ωr, which can be an arbitrary value for mains-

fed induction machines depending on the load condition.

Moreover, it is almost certain that the fault frequency fc is

not an integer, but rather an irrational number. As a result, the

most commonly used Fast Fourier Transform (FFT) cannot be

readily used, as the FFT window length (number of sampling

points) need to be adjusted to be an integer multiple of fc,

Receiving measurement 

of  stator current

FIG. 3

Perform Park

transformation

Perform subtraction as 

notch-filtering

Band-pass filtering to 

extract the faulty 

current

Determine the 

characteristic fault 

frequencies with motor 

speed and bearing type

Low-pass filtering

Quantitative 

Electrical Model

Determine the mutual 

inductance variation

Motor parameters 

and grid voltage

Fig. 2. Proposed signal processing technique for extracting the sum of the
stator current component of the faulty frequency pairs for estimating the
mutual inductance variation.

otherwise the accurate values of this frequency component

cannot be extracted. A preliminary study shows the error can

be well over 30% if the FFT window length is not selected,

even if the window length is sufficiently long.

2) Proximity to the fundamental frequency fs: When FFT

or band-pass filtering is used to extract the faulty current, the

accuracy of which would suffer if the bearing fault frequency

fc is very small, i.e., only a few Hz, so the resultant first-order

faulty current frequency component |fs ± fc| would be very

close to the fundamental frequency fs. An example would be

when the bearing fault type is inner race to cage fault, and

the motor speed is low, i.e., a few hundred rpms. In addition,

the faulty current component is generally 30 to 50 dB lower

compared to the fundamental current, which further increases

its chance of disturbance. Although this large current spike at

fs can be filtered out with analog notch filters prior to ADC,

this would still add components to the existing system.

3) Real-time implementation: Although for many appli-

cations it would be acceptable to perform a bearing fault

detection during an extended period of time, i.e., one to a few

hours. It would be desirable if the proposed signal processing

technique is able to reveal accurate faulty current components

in a real-time manner, and thus the bearing fault can be also

monitored in real-time, which would be beneficial for some

safety-critical applications, i.e., the electric vehicles.

B. The Proposed Method

Taking the above challenges into consideration, an alter-

native approach based on “software-based notch filtering” is

proposed in Fig. 2. While there exists many other signal

processing techniques that may fulfill the same purpose, i.e.,

the compressive sensing [16], it is believed the proposed

method is simple, accurate, and can be readily embedded in a

controllers or DSPs for real-time monitoring.



In Fig. 2, a flow diagram is shown that extracts the input

faulty current, which is then fed into the Quantitative Electrical

Model for estimating the mutual inductance variation ∆Lm.

The proposed method takes direct measurements of stator

current in a time domain, and for an induction machine

with n phases, only n − 1 phase current measurements are

required, since the additional phase current can be calculated

with Kirchhoff’s current law. Then the Park Transformation is

applied on the measured stator currents to obtain the direct

and quadrature axis current in the synchronous reference

frame with a rotation speed ωc = ωs, and thus the largest

fundamental AC component in the stator current is transformed

into a DC value, which can be easily filtered out from the

resultant direct and quadrature currents by performing low-

pass filtering and subtraction, a process that is defined as

“software-based notch filtering”. The algorithm then deter-

mines the set of characteristic fault frequency pairs using

bearing geometry data and real-time motor speed. Then the

multiple fault frequency pairs are selected as the passband

frequencies to design multiple band-pass filters to extract the

faulty current from the current signals. Eventually, the root-

sum-of-squres of the direct and quadrature axis currents is

calculated that represents the final input faulty current to be

evaluated by the Quantitative Electrical Model to determine

the mutual inductance variation.

After taking the Park transformation, the frequencies of

the bearing fault frequency pairs would be transformed to

| ± fc| from |fs ± fc|, and thus the final extracted faulty

current after band-pass filtering would approximately be the

superposition of the faulty current magnitude |∆I+| at |fs+fc|
and |∆I−| at |fs−fc| before the transformation. Therefore, a

new expression for estimating the mutual inductance variation

∆Lm can be derived from (9) as

∆Lm = 2
|∆I+|+ |∆I−|

|A+|+ |A−|
(10)

where |∆I+| + |∆I−| is the direct output of the extracted

faulty current with the proposed signal processing technique.

V. TRANSFER FUNCTION II

The mechanism that the air gap radial vibrations create

harmonic components in the stator current is modeled as an

analytical development in [17]. The motivation of Transfer

Function II is to transform the mutual inductance variation

profile into air gap displacement. The form of Transfer Func-

tion II is exemplified in the subfigures of Fig. 3. In the time

domain, the air gap permeance, which is proportional to the

mutual inductance, can be defined as the following form with

the presence of a bearing fault as

Λ(t) = Λ0
1

1− [c0 +
∑n

k=1 ck cos(2kπfct)]
(11)

where fc is the characteristic bearing fault frequency, n is the

order of the Fourier series and ck is the coefficient, as known

as ∆Lmk, which is obtained from the Quantitative Electrical

Model by taking the extracted kth order faulty current as input.
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Fig. 3. Exemplar plots for (a) the reconstructed normalized mutual inductance
profile in the time domain and (b) calculating the normalized air gap length
profile in the time domain by taking the reciprocal of (a).

With the new mechanism proposed here, the mutual induc-

tance profile can be reconstructed with Fourier Series terms up

to the nth order cosine functions and with frequencies up to

n·fc, while their amplitudes are determined by the faulty stator

current of corresponding frequencies through the Quantitative

Electrical Model. In this manner, the width and shape of the

mechanical vibration pulses can be reconstructed with pure

electrical stator current information.

As shown in Fig. 3(a), the periodic variations of mutual

inductance are triggered by the periodic air gap displacement,

which is originated from the impacts of the bearing defects

to other rotating parts of the bearing. This waveform can be

viewed as a pulse-train pattern in the time domain, and the

centers of the adjacent pulses are 1/fc apart, where fc is

the characteristic bearing fault frequency. Then the air gap

length profile in the time domain, as shown in Fig. 3(b), can

be calculated by simply taking the reciprocal of (11) as

g(t) =
µ

Λ(t)
= g0{1− [c0 +Σn

k=1ck cos(2kπfct)]} (12)

where µ is the air permeability, and the maximum normal-

ized displacement of air gap length is the maximum value

of [c0 +Σn
k=1ck cos(2kπfct)], which is also defined as the

maximum bearing fault severity.

With the inclusion of higher order harmonic contents, the

cumulative mutual inductance variation in the time domain can

be estimated with an improved accuracy, and the reciprocal of

which, the air gap length variation, defined as the bearing fault

severity, can be also estimated with better accuracy.

VI. SIMULATION VALIDATION

A. Validation of the Quantitative Electrical Model

An inner race to cage fault is simulated on a 6022-ZZ

bearing mounted on a 5-hp induction machine running at
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Fig. 4. Simulation results of the faulty current response with (a) 1% Lm variation, (b) 2% Lm variation and (c) 10% Lm variation.

TABLE I
COMPARISON OF THE STATOR CURRENT RESPONSE FROM SIMULATION AND QUANTITATIVE ELECTRICAL MODEL.

Case Number
Current Amplitude from Simulation

(Reference) [A]
Current Amplitude from

Analytical Model [A]
I− % Error I+ % Error

Case 1: 1% [I−∗; I+∗] = [0.0305; 0.0273] [I−; I+] = [0.0302; 0.0255] −0.7% −6.6%

Case 2: 2% [I−∗; I+∗] = [0.0609; 0.0530] [I−; I+] = [0.0605; 0.0510] −0.7% −3.8%

Case 3: 10% [I−∗; I+∗] = [0.3044; 0.2573] [I−; I+] = [0.3023; 0.2548] −0.1% −1.0%

TABLE II
EXPERIMENTAL VALIDATION WITH BEARING FAULT DATASETS.

Dataset Description Fault Freq. Air Gap Vibration Estimated Air Gap Vibration Error

Dataset F1 Electrolytic corrosion, 90% load
fo = 95.5 Hz 1.23 1.15 -6.5%
fi = 144 Hz 1.43 1.54 7.7%

Dataset F2 Electrolytic corrosion, 90% load fo = 95.5 Hz 0.73 0.66 -9%

Dataset F3 Contaminated particle, no load fi = 144 Hz 1.33 1.26 -5.3%

1,780 rpm. The corresponding characteristic bearing fault

frequency fc is equal to 11.86 Hz, and thus the resultant

first order stator current response consists of a frequency pair

at 48.14 Hz and 71.86 Hz. Three bearing fault severities

are modeled with different amplitudes of mutual inductance

variation, namely 1%, 2% and 10%, and the stator current

FFT spectral plots obtained from simulation are demonstrated

in Fig. 4. These faulty conditions are also imported to the

developed quantitative electrical model and the comparison

results of the magnitudes of the faulty current pairs I+ and

I− are displayed in TABLE I. The close agreement of the

comparison results can validate the accuracy of the proposed

model, as the maximum error is around 6%.

In addition, it is worthwhile to mention that the three

subfigures of Fig. 4 are only shown for explanatory purposes,

demonstrating the faulty current magnitude would be inten-

sified with an increase in bearing fault severity. Moreover,

the simulation reference values of the stator current pair are

extracted when the FFT window length is deliberately selected

as the integer multiple of the electrical fault frequency |fs±fc|,
in other words, the accurate values of I− and I+ cannot be

identified in a single FFT plot under most scenarios.

B. Validation of the Proposed Signal Processing Technique

To demonstrate the effectiveness of the proposed signal

processing technique, an accelerated simulation is performed

on bearing degradation, and the resultant mutual inductance

variation is estimated after extracting the sum of the faulty

current pairs and applying equation (10). Fig. 5 demonstrates

the dynamic degradation process starting from 1 %, and then

experience some step changes to 2% and 10%. Again, the close

agreement observed between the reference maximum mutual

inductance variation rate to the estimated value, wherein the

maximum error is only around 2%, successfully verified the

effectiveness of the proposed quantitative electrical model and

the “software-based notch filtering” technique.

VII. EXPERIMENTAL RESULTS

As shown in Fig. 6, an experimental setup is established

with an 1-hp induction machine with an air gap length of 0.28

mm and two 6022-ZZ bearings mounted on the load side and

the opposite side respectively. The bearing fault on the load

side 6022-ZZ is created by either contaminating the bearing

with powders consisting of tiny particles [18] or through

electrolytic corrosion, while the opposite side bearing is kept

healthy. To validate the proposed bearing fault quantification

methodology via air gap displacement, two accelerometers are
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Fig. 5. Comparison of the reference and the estimated mutual inductance
variation with accelerated aging study of the rolling-element bearing.
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Fig. 6. Experimental setup with vibration sensors mounted close to the
bearings on both the load side and the opposite side.

installed close to the bearings on both sides of the motor caps

to measured the real-time vibration signals. Three datasets

are collected with synchronization of the stator current and

bearing vibration measurements. Since the motor shaft is

considered rigid, a simple linear vibration decay model will be

used to calculate the reference air gap vibration based on the

two acceleration measurements transformed to displacement

on both the load side and the opposite side, considering

the distances between the air gap center to the two sensor

mounting positions, respectively.

To validate the accuracy of the proposed bearing fault quan-

tification model, stator current measurements from the three

faulty bearing datasets are taken as the input to the proposed

model, and the model output, which is the estimated air gap

displacement, is compared against the benchmark air gap

displacement calculated with the measured bearing vibrations

using the linear vibration decay model. The complete results

are summarized in TABLE II, where the largest discrepancy

of the proposed quantification model for bearing fault severity

is below 10%.

VIII. CONCLUSION

In this paper, a new vision for fault-severity based bear-

ing fault detection is proposed, and its preliminary form of

estimating the bearing fault severity in terms of radial air

gap displacement is developed. The method is based on a

developed analytical model of an induction machine with

bearing faults that describes a relationship between the varia-

tions of mutual inductance induced by the bearing faults and

the corresponding changes of stator current. The cumulative

mutual inductance variation profile in the time domain can

then be reconstructed with Fourier series, and the amplitudes

of which are determined by the faulty current through the

proposed analytical model. Later, a transfer function is adopted

to transform the mutual inductance variation into the air gap

length variation profile, which is used as a measure of the

bearing fault severity in this study. The proposed mechanism

is able to quantify bearing faults for induction machines with

any power ratings and operating under any speeds and loads.
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