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Abstract
In this paper, we optimize vapor compression system power consumption through the appli-
cation of a novel proportional–integral extremum seeking controller (PI-ESC) that converges
at the same timescale as the process. This extremum seeking method uses time-varying pa-
rameter estimation to determine the local gradient in the map from manipulated inputs to
performance output. Additionally, the extremum seeking control law includes terms propor-
tional to the estimated gradient, which requires subsequent modification of the estimation
routine in order to avoid bias. The PI-ESC algorithm is derived and compared to other meth-
ods on a benchmark example that demonstrates the improved convergence rate of PI-ESC.
PI-ESC is applied to the problem of compressor discharge temperature setpoint selection
for a vapor compression system such that power consumption is driven to a minimum. A
physicsbased simulation model of the vapor compression system is used to demonstrate that
with PI-ESC, convergence to the optimal operating point occurs faster than the bandwidth
of typical disturbances—enabling application of extremum seeking control to vapor compres-
sion systems in environments under realistic operating conditions. Finally, experiments on a
production room air conditioner installed in an adiabatic test facility validate the approach
in the presence of significant noise and actuator and sensor quantization.
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Proportional–Integral Extremum Seeking
for Vapor Compression Systems

Daniel J. Burns,† Senior Member, IEEE, Christopher R. Laughman, Member, IEEE
and Martin Guay, Senior Member, IEEE

Abstract—In this paper, we optimize vapor compression sys-
tem power consumption through the application of a novel
proportional–integral extremum seeking controller (PI-ESC) that
converges at the same timescale as the process. This extremum
seeking method uses time-varying parameter estimation to deter-
mine the local gradient in the map from manipulated inputs to
performance output. Additionally, the extremum seeking control
law includes terms proportional to the estimated gradient, which
requires subsequent modification of the estimation routine in
order to avoid bias. The PI-ESC algorithm is derived and
compared to other methods on a benchmark example that
demonstrates the improved convergence rate of PI-ESC.

PI-ESC is applied to the problem of compressor discharge
temperature setpoint selection for a vapor compression system
such that power consumption is driven to a minimum. A physics-
based simulation model of the vapor compression system is used
to demonstrate that with PI-ESC, convergence to the optimal
operating point occurs faster than the bandwidth of typical
disturbances—enabling application of extremum seeking control
to vapor compression systems in environments under realistic
operating conditions. Finally, experiments on a production room
air conditioner installed in an adiabatic test facility validate the
approach in the presence of significant noise and actuator and
sensor quantization.

I. INTRODUCTION

VAPOR compression machines move thermal energy from
a low temperature zone to a high temperature zone,

performing either cooling or heating depending on the config-
uration of the refrigerant piping. The relative simplicity of the
machine and its effective and robust performance has enabled
the vapor compression machine in various forms and packages
to become widely deployed, and it is critical to modern com-
fort standards and the global food production and distribution
industries. It is the most common means for commercial and
residential space cooling [1], often employed for space or
water heating [2], and extensively used in refrigeration (both
stationary and mobile [3]), desalination [4], and cryogenic
applications [5].

In many control formulations for vapor compression ma-
chines the evaporator superheat temperature is selected as a
regulated variable for cycle efficiency and equipment protec-
tion [6], [7], [8]. However, a measurement of the evaporator
superheat is often not available on production equipment.
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Instead, cycle efficiency can be maintained through the regu-
lation of the compressor discharge temperature to a setpoint
that depends on the heat load and the outdoor air temperature
disturbances. The discharge temperature is often measured
for equipment protection making it a commonly available
signal, and because the refrigerant state at this location in
the cycle is always superheated, this signal is a one-to-one
function of the disturbances over the full range of expected
operating points [9]. Because discharge temperature changes
with heat loads and outdoor air temperatures, its setpoint
cannot be regulated to a constant, but instead must vary with
external conditions. It is the aim of this paper to automate the
generation of such setpoints.

However, determining these energy-optimal setpoints is not
straightforward. Models of the vapor compression system that
attempt to describe the influence of commanded inputs on
thermodynamic behavior and power consumption are often
low in fidelity, and while they may have useful predictive
capabilities near the conditions at which they were calibrated,
the environments into which these systems are deployed are so
diverse as to render comprehensive calibration and model tun-
ing intractable. Therefore, relying on model-based strategies
for realtime optimization is problematic.

Recently, model-free extremum seeking methods that op-
erate in realtime and aim to optimize a cost have received
increased attention and have demonstrated improvements in
the optimization of vapor compression systems and other
HVAC applications [10], [11], [12], [13], [14]. To date, the
dominant extremum seeking algorithm that appears in the
HVAC research literature is the traditional perturbation-based
algorithm first developed in the 1920s [15] and re-popularized
in the late 1990s by an elegant proof of convergence for a
general class of nonlinear systems [16].

Most extremum seeking controllers can be viewed as a
gradient descent optimization algorithm implemented as a
feedback controller [17] and therefore consists of two main
components: (1) an estimation part that determines the local
gradient of the performance map with respect to the decision
variables, and (2) a control law part that manipulates the
decision variables to steer the system to the optimizer of the
map. In the traditional perturbation-based method, a sinusoidal
term is added to the input at a slower frequency than the
natural plant dynamics, inducing a sinusoidal response in the
performance metric and introducing a timescale slower than
the process dynamics. The controller then filters this signal to
obtain an estimate of the gradient. Averaging the perturbation
introduces yet another (and slower) time scale in the opti-
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mization process. Using a gradient estimate obtained in this
way, the control law integrates the estimated gradient to drive
the gradient to zero. As a result, the traditional perturbation-
based extremum seeking converges to the neighborhood of the
optimum at about two timescales slower than the plant dy-
namics due to inefficient estimation of the gradient, and slow
(integral-action dominated) adaptation in the control law. For
thermal systems such as vapor compression machines where
the dynamics are already on the order of tens of minutes, the
slow convergence property of perturbation-based extremum
seeking becomes an impediment to wide-scale deployment.

However, convergence rates can be improved by addressing
both components of the extremum seeking algorithm. An
efficient method for estimating gradients is developed that
treats the gradient as an unknown time-varying parameter to
be identified. Time-varying extremum seeking (TV-ESC) uses
adaptive filtering techniques to estimate the parameters of the
gradient—eliminating the timescale associated with averaging
perturbations [18]. However, that method does not modify the
control law, and while convergence is significantly improved
compared to the perturbation-based method, the control law
of TV-ESC remains integral-action dominated. In this paper,
we apply PI-ESC [19] to vapor compression systems in which
the algorithm estimates the gradient using the efficient time-
varying approach, but also modifies the control law to include
a term proportional to the value of the estimated gradient. This
term drives the system toward the optimum operating point at
the same timescale as the vapor compression system dynamics.

The remainder of this paper is organized as follows: The
vapor compression system and control objectives are described
in Section II. The discrete-time PI-ESC algorithm is then
derived in Section III and its convergence properties are
demonstrated in comparison to other ESC methods. Section IV
presents simulated and experimental results and concluding
remarks are offered in Section V.

II. VAPOR COMPRESSION SYSTEM

This section briefly describes the operation of the vapor
compression system (VCS) and control inputs, measurements
and objectives. The specific application considered in this
paper employs the VCS as an air conditioner, and therefore
certain assumptions on heat exchanger type, refrigerant flow
direction and control objectives have been made, although
other applications of VCS (refrigeration, heat pumps, etc.) can
be considered with straightforward substitutions of machine
configurations.

A. Physical Description

The arrangement of the four principal components of the
VCS are shown in Fig. 1A, and the refrigerant state between
those components are shown on an idealized pressure–enthalpy
cycle diagram in Fig. 1B. Starting from the point labeled
‘1,’ low pressure refrigerant in the vapor state enters the
compressor suction port. The compressor performs work on
the refrigerant to increase the pressure and temperature, and
the amount of work is controlled by the compressor rotational
frequency CF. A sensor measures the refrigerant discharge
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Fig. 1. A. Principal components of the vapor compression cycle. B. Idealized
refrigeration cycle shown in pressure–enthalpy coordinates. Inset: Visualiza-
tion of evaporator superheat temperature.

temperature Td exiting the compressor. High temperature and
pressure refrigerant (point ‘2’) is then routed to a heat ex-
changer across which a fan forces air. Heat is removed from
the refrigerant and rejected to the surrounding air, which is
at a temperature measured by an ambient sensor, Tamb. The
ambient temperature is considered a measured disturbance. As
the specific enthalpy of the refrigerant is reduced inside the
heat exchanger, it condenses and ultimately exits as a high
pressure liquid (point ‘3’). The refrigerant then flows through
an electronic expansion valve which simultaneously reduces
the pressure and temperature in an isenthalpic process. The
electronic expansion valve position (EEV) controls the size of
the valve orifice. The low pressure, low temperature refrigerant
exiting the valve (point ‘4’) is a two-phase mixture of liquid
and vapor and is passed to another heat exchanger. Again, a fan
forces air across the heat exchanger. Heat is absorbed by the
refrigerant from the air in the zone to be conditioned, which is
at a temperature measured by a zone temperature sensor, Tr. As
the specific enthalpy of the refrigerant increases, it evaporates
and exits the heat exchanger as a low pressure vapor. The
refrigerant is routed to the compressor inlet, completing the
cycle. Finally, a heat load is assumed in the zone and is
an unmeasured disturbance. If the heat load balances the
heat removed by the evaporator, the zone temperature does
not change, otherwise the zone temperature will increase or
decrease when the heat load is greater or less than the energy
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removed by the evaporator.
Remark 1: Note the lines of constant temperature in Fig. 1B.

The evaporating and condensing processes of refrigerant phase
change occurs at a constant temperature (within the ‘two-
phase’ region between the saturation curves of Fig. 1B) when
the refrigerant used is a pure or near-azeotropic fluid [20], as is
the case for many commercially-available systems. Therefore,
the thermodynamic state of refrigerant undergoing a phase
change process is not measurable from temperature or pressure
sensors.

B. Evaporator Superheat vs. Discharge Temperature

Consider again the refrigerant in the evaporator. As heat
is absorbed, the state changes from a mostly liquid two-
phase mixture to a mostly vapor mixture, ultimately reaching a
saturated vapor state during an isothermal process. As further
heat is absorbed by a saturated vapor, a measurable change
in temperature occurs. This increase in temperature above the
saturation temperature is called the superheat temperature Tsh,

Tsh = T1−Tsat, p1 , (1)

where T1 is the temperature of the refrigerant at point ’1’
on Fig. 1B, and Tsat, p1 is the saturation temperature of the
refrigerant at that pressure p1. Note that superheat temperature
is not defined for values less than zero (see Remark above.)

Many control designs use Tsh as a process variable and
regulate it to a small positive value using the EEV. A low
superheat temperature ensures that the majority of the evapo-
rator contains two-phase refrigerant, which has a much higher
heat transfer coefficient than refrigerant in the vapor state,
and therefore low Tsh is associated with good cycle efficiency.
However, disturbances can perturb the superheat temperature
to zero, causing the feedback loop to open. As a result, many
Tsh controllers have low gain in order to tolerate occasional
open loop operation, and this leads to the well-known issue of
valve ‘hunting,’ which is limit cycling induced by low gain
feedback [21], whether that feedback is mechanical as for
thermostatic expansion valves or electronic as for EEVs. In
contrast to previous work, we select the compressor discharge
temperature Td as a process variable. As seen from point ‘2’
of Fig. 1B, the refrigerant at the compressor outlet is far from
the saturation boundary and within the measurable superheated
region where temperatures at this point in the cycle are a one-
to-one function of the disturbances, which maintains system
observability and enables higher gain feedback.

However, while controlling Td has certain advantages, it
cannot be regulated to a constant, but instead must be sched-
uled on system disturbances. In following sections, we use
extremum seeking to determine setpoints for a Td regulator.

C. Controller Architecture

The control objective is to regulate the zone temperature Tr
to a setpoint determined by an occupant, rejecting heat load Q
and ambient air temperature Tamb disturbances. Further, power
consumption P must be minimized at steady state. The system
actuators are the compressor frequency CF, and electronic
expansion valve position EEV. We assume that the fan speeds
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Fig. 2. Actuator commands are computed by the feedback regulator, which
drives the the vapor compression system toward setpoints that consist of
external setpoints (e.g., a desired zone temperature setpoint) and machine
setpoints (e.g., a compressor discharge temperature setpoint). The PI-ESC
selects discharge temperature setpoints uk that minimize the system power
consumption yk in the presence of disturbances such as changes in outdoor
air temperature and heat load.

are not manipulated by the controller. The zone temperature
Tr, discharge temperature Td , and system power consumption
P are measured.

The control architecture is shown in Fig. 2. A multivariable
feedback controller K is designed to drive the room temper-
ature error and the discharge temperature error to zero. A
relative gain array (RGA) analysis has shown good decoupling
is achieved by pairing Tr regulation with CF, and Td tracking
with the EEV, and therefore we begin with K as two decen-
tralized PI controllers. However, we introduce coupling in the
controller K as follows: the output of the CF PI controller
(suitably scaled and filtered) is provided as an input to the EEV
PI controller. This coupling has been shown to dramatically
improve disturbance rejection when the compressor frequency
is a control input and the compressor discharge temperature is
a controlled output [22].

The Tr setpoint is assumed to originate from an exogenous
source (i.e., a thermostat). The Td setpoint is determined from
an extremum seeking controller (ESC) configured to obtain
the discharge temperature that minimizes power consumption.
Sensor information is quantized in roughly 0.5 C increments.
Permissible compressor frequency commands in Hz are quan-
tized to integer values, with some additional ranges excluded
to avoid mechanical resonances and detrimental electrical
interactions between the power inverters and the supply mains.
Finally, because the system power consumption is strongly
dependent on CF, power measurements also attain discrete
values.

III. PROPORTIONAL–INTEGRAL EXTREMUM SEEKING
CONTROLLER

This section outlines the development of an extremum
seeking controller based on a time-varying estimate of the
gradient of the cost and a PI control law to drive the system to
its optimum operating point. See [19] for the full development
and stability and convergence analysis in discrete time.
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ŷk

-
predict 
output

z�1

1 � 1
↵z�1

z�1

1 � z�1

pre-condition: �k = [1, (uk � ûk)T ]T
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Fig. 3. Overview of the PI-ESC algorithm.

A. PI-ESC Development

We consider a class of nonlinear systems of the form:

xk+1 = xk + f (xk)+g(xk)uk (2)
yk = h(xk) (3)

where xk ∈ Rn is the vector of state variables at time k, uk
is the input variable at time k taking values in U ⊂ R and
yk ∈ R is the objective function at step k, to be minimized.
It is assumed that f (xk) and g(xk) are smooth vector valued
functions and that h(xk) is a smooth function.

We assume that the cost h(x) is relative order one and
satisfies the optimality conditions:

1) ∂h(x∗)
∂x = 0

2) ∂ 2h(x)
∂x∂xT > β I, ∀x ∈ Rn

where β is a strictly positive constant.
We let α(xk, ûk) = xk + f (xk)+g(xk)ûk. The rate of change

of the cost function yk = h(xk) is given by:

h(xk+1)−h(xk) =h(xk + f (xk)+g(xk)uk)

−h(α(xk, ûk))+h(α(xk, ûk))−h(xk).

Using a second order Taylor expansion on the first two terms
we can rewrite the cost dynamics as:

yk+1− yk = Ψ0,k(xk, ûk)+Ψ1,k(xk,uk, ûk)(uk− ûk).

where Ψ0,k(xk, ûk) = h(α(xk, ûk)) − h(xk), and
Ψ1,k(xk,uk, ûk) = (∇h(α(xk, ûk))g(xk) + 1

2 (uk −
ûk)
>g(xk)

>∇2h(ỹk)g(xk) where ỹk = α(xk, ûk) + cg(xk)(uk −
ûk) for c ∈ (0,1). By the relative order one assumption on
h(x), the system’s dynamics can be decomposed and written
as:

ξk+1 = ξk +ψ(ξk,yk) (4)
yk+1 = yk +Ψ0,k(xk, ûk)+Ψ1,k(xk,uk, ûk)(uk− ûk) (5)

where ξk ∈ Rn−1 and ψ(ξk, yk) is a smooth vector valued
function. Based on Equation (5), the cost function dynamics
is parameterized as follows:

yk+1 = yk +θ0,k +θ1,k(uk− ûk)

where the time-varying parameters θ0,k and θ1,k represent Ψ0,k
and Ψ1,k, and are to be identified. It is important to note that
the unbiased correct estimation of θ1,k requires the estimation
of the drift parameter θ0,k.

Let θ̂0,k and θ̂1,k denote the estimates of θ0,k and θ1,k,
respectively, and consider the following state predictor

ŷk+1 = ŷk + θ̂0,k + θ̂1,k(uk− ûk)

+ Kkek−wk+1(θ̂k− θ̂k+1) (6)

where θ̂k = [θ̂0,k, θ̂
T
1,k]

T is the vector of parameter estimates at
time step k given by any update law, Kk is a correction factor
at time step k, ek = yk− ŷk is the state estimation error. We let
φk = [1,(uk− ûk)

T ]T and we denote the parameter estimation
error at step k by θ̃k = θk− θ̂k. The variable wk is the following
output filter at time step k

wk+1 = wk +φk−Kkwk, (7)

with w0 = 0. Using the state predictor defined in (6) and the
output filter defined in (7), the prediction error ek = yk− ŷk is
given by

ek+1 = ek +φkθ̃k+1−Kkek

+ wk+1(θ̂k− θ̂k+1)+wk+1(θk+1−θk)

e0 = y0− ŷ0. (8)

An auxiliary variable ηk is introduced which is defined as
ηk = ek−wT

k θ̃k. Its dynamics are given by

ηk+1 = ek+1−wk+1θ̃k+1

η0 = e0. (9)

Since the rate of change of the parameter vector, θk+1−θk,
is unknown, the auxiliary variable ηk is unknown. Therefore,
it is necessary to use an estimate, η̂ , of η . The estimate is
generated by the recursion:

η̂k+1 = η̂k−Kkη̂k (10)

Let the identifier matrix Σk be defined as

Σk+1 = αΣk +wT
k wk, Σ0 = αI � 0 (11)
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with an inverse generated by the recursion

Σ
−1
k+1 =Σ

−1
k +

(
1
α
−1

)
Σ
−1
k

− 1
α2 Σ

−1
k wk(1+

1
α

wT
k Σ
−1
k wk)

−1wT
k Σ
−1
k (12)

Using (6), (7), and (10), the parameter update law is

θ̂k+1 = θ̂k +
1
α

Σ
−1
k wT

k

(
I +

1
α

wkΣ
−1
k wT

k

)−1

(ek− η̂k) (13)

In order to prevent any peaking arising from the estimation, the
parameter estimate are constrained to remain inside compact
convex set in the parameter space denoted by Θ. Consequently,
the true value, θk, is assumed to be contained inside Θ.
To ensure that the parameter estimates remain within the
constraint set Θ, we use a projection operator [18], [23]

¯̂
θk+1 = Proj{θ̂k+Σ

−1
k wT

k
(
I +wkΣ

−1
k wT

k
)−1

(ek− η̂k),Θ} (14)

which completes the parameter estimation component of the
controller.

Finally, the proposed control law is given by:

uk =−kgθ̂1,k + ûk (15)

ûk+1 = ûk−
1
τI

θ̂1,k. (16)

where kg and τI are positive constants to be assigned.

B. PI-ESC Summary

The final PI-ESC algorithm consists of a time varying
parameter estimation routine for determining θ̂0,k and θ̂1,k
and consists of Equations (6), (7), (10), (12), and (14) with
tuning parameters K and α . The control law is given by
Equations (15) and (16) and contains terms proportional to
the estimated gradient and with integral action necessary to
identify optimal equilibrium conditions, and is tuned using the
parameters kg and τI . A block diagram of the PI-ESC algo-
rithm summarizing the main signal flow is shown in Figure 3.
Guidance for tuning the parameters of these equations can be
found in [19].

Note that the PI-ESC algorithm does not require averaging
the effect of the perturbation as with traditional perturbation-
based extremum seeking. For this reason, proportional-integral
extremum seeking converges substantially faster, as demon-
strated in the following comparison.

C. Comparison of extremum seeking methods

This section discusses the convergence performance of
three extremum seeking controllers applied to a previously
published example problem [9]. Traditional perturbation-based
extremum seeking control [24], time-varying extremum seek-
ing control [18] and proportional–integral extremum seeking
control [19] are each applied to the problem of finding input
values to a simple Hammerstein system that minimize its
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Fig. 4. A. A simple Hammerstein system under extremum seeking control.
B. A comparison of the convergence performance of three extremum seeking
algorithms. The top plot shows the decision variable uk and the bottom
plot shows the performance metric yk . The perturbation-based ESC (green)
converges to the optimum after about 4000 steps (ultimate convergence not
shown for space), Time-varying ESC (blue) converges in about 100 steps,
while the PI-ESC (red) converges in about 15 steps—roughly 10 steps longer
than the perfect control method (black) which has prior knowledge of the
optimizer. The inset figure in the bottom plot shows a detailed view of the
convergence.

output, where the controllers have no knowledge of the plant
(see Fig. 4A). The system equations are

xk+1 = 0.8xk +uk (17)

yk = (xk−3)2 +1, (18)

which has a single optimum point at u∗ = 0.6, y∗ = 1.
The pole near the unit circle represents the dominant process

dynamics and establishes a fundamental limit on convergence
rate. Reasonable effort is made to obtain parameters for all
ESC methods that achieve the best possible convergence rates.
The perturbation ESC parameters are

dk = 0.2sin(0.1k)

ωLP = 0.03
K =−0.005

Where dk is the sinusoidal perturbation, ωLP is the cutoff
frequency for a first-order low-pass averaging filter, and K
is the (integral-action) adaptation gain. A high-pass washout
filter is not used as convergence rate is improved without it.
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The parameters used for the TV-ESC are

dk = 0.001sin(0.1k) ki = 0.001
α = 0.1 ε = 0.4,

where ki is the (integral-action) adaptation gain, α is the
estimator forgetting factor, and ε is the estimator timescale
separation parameter.

The parameters used for the PI-ESC are

dk = 0.001sin(0.2k), τI = 60
α = 0.5, kg = 0.0003

Kk = 0.1,

where τI is the integral time constant, kg is the proportional
gain and is computed from the relationship kg = 1/(τ2

I ), α is
the estimator forgetting factor, and Kk is the estimation gain.
See [18] for detailed parameter definitions.

Simulations are performed starting from an initial input
value of u0 = 2 and the ESC methods are turned on after
100 steps. The resulting simulations are shown in Fig. 4B.
The perturbation ESC method converges to a neighborhood
around the optimum in about 4000 steps (not shown in the
figure), the TV-ESC method converges in about 100 steps,
while the PI-ESC method converges in about 15 steps. The
resulting controller performance is compared to the response
obtained from a controller that has a priori knowledge of the
system optimizer and applied directly in one time step, for
which the output settles in about 10 steps. Thus, the PI-ESC
approach convergence to the optimizer at the same timescale
as the process.

IV. RESULTS

The fast convergence characteristic of PI-ESC is well suited
to the optimization of thermal systems with their associated
long time constants. In this section, we apply the PI-ESC
algorithm to the problem of selecting setpoints for the dis-
charge temperature of a vapor compression system. In the first
part, a multiphysics-based model of the vapor compression
system is detailed and used to compare TV-ESC and PI-ESC
for an initial condition response and disturbance rejection
response wherein the boundary conditions are changed. In
the second part, experimental work is presented demonstrating
convergence on a production-grade room air conditioner.

A. Model Description

A detailed model1 describing the nonlinear dynamics of
the vapor compression cycle is developed using the equation-
oriented modeling language Modelica [25]. Physics-based
models are constructed for the four principal components
shown in Fig. 1A: the evaporating and condensing heat
exchangers, the compressor, and the electronic expansion
valve. Algebraic models are used for the compressor and the

1We emphasize here that although a brief discussion is offered on model
development, the ESC algorithms themselves are not model-based. The
model in this section is used as a synthetic plant for controller evaluation
and comparison, and does not inform PI-ESC design beyond satisfying the
assumptions in Section III-A.
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Fig. 5. PI-ESC is compared to TV-ESC using a simulation model of a room
air conditioner. Steady state maps are obtained at 35◦C and 40◦C (black). The
system is initially operated with Td Setpt= 81◦C at Tamb = 35◦C. PI-ESC (red)
and TV-ESC (blue) then drive the Td setpoint such that power is minimized,
representing an initial condition response. Next, the ambient conditions are
changed to 40◦C and the ESC methods both converge to the new optimum,
rejecting ambient temperature disturbance.

expansion valve because the dynamics of these components
are much faster than that of the heat exchangers. The partial
differential equations representing the mass, momentum, and
energy balances for the refrigerant in the heat exchangers
are discretized into 48 volumes along the direction of flow
using the 1-D finite volume method. A real gas model of
the refrigerant R410A is used for the primary working fluid,
and a dry air model is used to describe the changes in the
temperature of the secondary working fluid due to heat transfer
between the refrigerant and the air through the discretized tube
wall. Additional details for this model are found in [26].

The feedback controller K of Fig. 2 is implemented in
Modelica as two PI controllers with the additional dynamic
coupling previously described and tuned for disturbance rejec-
tion. The PI-ESC algorithm given by Equations (6), (7), (10),
(12), (14), (15) and (16) is also implemented in Modelica.
Because the PI-ESC algorithm is discrete-time while the
model of the vapor compression cycle is continuous-time,
the Modelica.Synchronous library is used to interface
between these two types of system representation using a
clocked approach. The resulting cycle and control system
comprise a set of 8,663 differential-algebraic equations with
124 state variables, and is compiled and simulated using the
Dymola 2016 compiler [27] running on an i7 desktop machine
with 8GB of memory.

Using the simulation model, the steady-state map relating
power consumption to discharge temperature is obtained at
two different ambient temperatures Tamb = {35◦C,40◦C} by
slowing sweeping the discharge temperature from 83◦C to
45◦C while recording power consumption. The room temper-
ature tracking error and discharge temperature tracking errors
are monitored during the sweep to ensure no dynamics are
excited. These two maps are convex, as shown in Fig. 5.
The convexity can be understood physically as follows: At



BURNS et al.: PI-ESC FOR VAPOR COMPRESSION SYSTEMS 7

the high temperature end of this sweep, the elevated discharge
temperatures require relatively little refrigerant returning to
the compressor and therefore the compressor discharge tem-
perature feedback loop selects expansion valve commands
that are more closed than optimal. As a result, the amount
of refrigerant entering the evaporator is restricted, causing a
high degree of superheating. As the compressor temperature
setpoint is reduced, the feedback loop opens the expansion
valve, allowing more refrigerant into the evaporator, which in
turn provides more cooling to the zone. As the zone cools
below the setpoint temperature, the compressor frequency is
reduced by the zone temperature feedback controller, thereby
reducing power consumption. This explains the downward
slopes in the steady state maps from about 83◦C toward the
two optimizers.

As the downward ramp continues through the optimum and
toward lower Td setpoints, the power consumption increases.
This is explained by the reduction in the system pressure ratio
and corresponding loss of cooling capacity caused by opening
the expansion valve too much. When the compressor discharge
temperature setpoint is set to a value lower than optimum, the
expansion valve is opened, causing the evaporating pressure
to increase and the condensing pressure to decrease. In order
to compensate for the reduced cooling capacity, the zone tem-
perature feedback loop increases the compressor frequency,
which in turn increases power consumption at setpoint values
lower than the respective map minimizers.

B. Simulation results

Simulations are performed comparing TV-ESC to PI-ESC
using the model. We initially tried perturbation ESC, but
convergence time was similar in scale to the Hammerstein
system of Fig. 4 and too long to be practical. Two types of
system responses are tested: the ESC algorithms are initialized
at a suboptimal operating point and converge to the optimizer
under fixed conditions, demonstrating the initial condition
response, and a subsequent step change in ambient temperature
demonstrates disturbance rejection performance.

In the following simulations, TV-ESC and PI-ESC methods
are executed every 60 seconds. The parameters used for the
TV-ESC are

dk = 0.5sin(0.2k) ki = 0.02
α = 0.05 ε = 0.9,

and the parameters used for the PI-ESC are

dk = 0.5sin(0.3k), τI = 1
α = 0.06, kg = 0.5

Kk = 0.4, Θk = 50.

Initial values for the PI-ESC parameters are obtained us-
ing the guidance offered in [19]. We have found it helpful
to further refine these parameters in a iterative manner by
simulating an approximate model of the optimization target.
In this approach, we assume the vapor compression system
is a Hammerstein system of the form (17)-(18), with suitable
substitutions for a the dominant pole and approximate convex
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Fig. 6. Extremum seeking decision variable (Td setpt) and objective (power)
as explicit functions of time for TV-ESC (blue) and PI-ESC (red) algorithms.
Adaptation is turned on at t = 60 min. PI-ESC converges to minimum power
in about 60 min. The ambient air temperature is rapidly increased from 35
to 40◦C at t = 610 min and the new optimal Td setpoint is discovered on a
similar timescale.

map. While it is generally assumed that the ESC algorithm has
no knowledge of the plant, for the practical issue of parameter
tuning, approximating the system time constant and steady
state map can provide a simple model for ESC parameter
tuning, which is further refined on in nonlinear simulations
or experiments.

The convergence trajectories are overlaid on the steady state
maps and shown in Fig. 5, and the evolution of Td setpoint,
power and zone temperature as explicit functions of time are
shown in Fig. 6. Td setpoint is the ESC decision variable
uk, power is the ESC objective yk, and the zone temperature
Tr is a process variable regulated by the feedback controller
K using the compressor. For the first 60 minutes, the dither
signal is applied and the estimation equations for each ESC
algorithm are turned on, but the adaptation is disabled. This
allows the estimator states to settle before control is activated.
The adaptation is turned on at t = 60 min. Both TV-ESC and
PI-ESC converge to the optimal inputs Td setpoint = 55.5◦C,
with PI-ESC settling in about 60 min, and TV-ESC settling in
about 120 min. The zone temperature initially decreases as the
lowered Td setpoint from t = 60 to t = 180 introduces more
cool refrigerant into the evaporator. The CF is then be reduced
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by the feedback controller to bring the room temp back up to
its setpoint, reducing power consumption.

At t = 610 min., the ambient air temperature is rapidly
increased (over a five-minute ramp) from 35 to 40◦C. Both
ESC algorithms converge to the new optimizer on the order
of an hour, with PI-ESC exhibiting an overshoot during the
transient we attribute to parameter tuning. The zone temper-
ature becomes overheated during the transient, requiring the
compressor frequency to increase. The previously discussed
feedforward term in K couples the increase in compressor fre-
quency to an increase in Td setpoint, which improves settling
time during this disturbance rejection test. The convergence
trajectories toward minimum power are shown as explicit
functions of both time and Td setpoint in Fig. 7. This view
illustrates the convex performance map and transient responses
of the two ESC methods.

We emphasize that the ambient disturbance is rapidly
changed during this simulation with the ESC methods active,
and the new optimizer is attained within about 60 min for
PI-ESC. During operation of the real system the ambient
temperature is expected to vary with a diurnal period of 24
hours, this extremum seeking algorithm has the bandwidth to
reject expected Tamb disturbances, a capability that has not
been previously demonstrated.

C. Experimental Setup

This section describes experiments wherein PI-ESC is used
to determine optimal discharge temperature setpoints for a
2.8 kW split-ductless style room air conditioner. The indoor
unit (consisting of the evaporating heat exchanger and associ-
ated fan) is installed in a 9.8 m3 adiabatic test chamber, and the
outdoor unit (consisting of the compressor, expansion valve,

condensing heat exchanger and associated fan) is installed in
a 6.2 m3 adiabatic test chamber. A secondary balance-of-plant
system controls the heat load in the indoor unit test chamber
and regulates the temperature in the outdoor unit test chamber.

Custom interface electronics are created to enable direct
control of the vapor compression system’s actuators, and
LabVIEW (National Instruments) software collects data from
the air conditioner’s onboard sensors and additional laboratory
instrumentation, and executes the control code for the balance-
of-plant system and the vapor compression system under test.
The balance-of-plant system is configured to hold the air
temperature in the outdoor test chamber to 35◦C and the
thermal power introduced by electrical resistive heaters in the
indoor test chamber to 2100 W for these experiments.

For the subsequent experiments, the air conditioner’s pro-
duction control algorithm is disabled and replaced by a
discrete-time feedback controller K regulating zone temper-
ature and discharge temperature as depicted in Fig. 2. The
desired zone temperature is set to 26◦C, and the compressor
discharge temperature setpoint is an experimental variable to
be manipulated by either the extremum seeking algorithm, or
a slow ramp function to determine the steady state map as
described below. The evaporator and condenser fan speeds are
held constant.

D. Experimentally-obtained Steady State Map

In order to establish a convex relationship between power
consumption and the discharge temperature setpoint, an initial
sweep of discharge temperature is performed. The initial
discharge temperature setpoint is set to 83◦C and the system
is operated for two hours in order to reach steady state
conditions. The discharge temperature setpoint is subsequently
ramped down at a rate of 6◦C/hr stopping at a temperature
of 40◦C. The measured power consumption as a function of
the discharge temperature setpoint obtained during this ramp
are shown as the gray points of Fig. 8 and the underlying
experimentally-obtained map is indeed convex with an opti-
mal discharge temperature setpoint of around 58◦C for these
conditions.

Note that the experimentally-obtained steady state map of
Fig. 8 appears significantly noisier and less smooth than the
corresponding signals from the simulations. The reasons are
attributed to quantization in both the actuators and sensors
described in Sec. II-C which are not included in the sim-
ulation model. Additionally, several ranges of compressor
frequencies are not accessible by the feedback controller in
order to avoid machine resonances or unwanted electrical
interactions between the power inverter circuitry and the AC
power supply. This accounts for the discrete nature of the
steady state map. Within this range, the compressor frequency
commands selected by the zone temperature feedback loop
alternate between two ends of a large gap in permissible
CF commands. Moreover, the sensors used in the feedback
loop are also quantized, resulting in ‘deadband’ areas where
the feedback loops cannot obtain zero steady state error and
instead cause the process variables to oscillate around their
setpoints. This oscillation therefore causes multiple power
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Fig. 8. Experimental data showing PI-ESC convergence on a production-grade room air conditioner. The power-optimal Td setpoint is automatically discovered
by PI-ESC. Discontinuities and discrete-valued setpoints are due to sensor and actuator quantization.

consumption measurements to be obtained for a particular
discharge temperature setpoint, explaining the multiple power
measurements for a given discharge temperature setpoint—the
measured map is not one-to-one due to interactions from the
quantization nonlinearities in the feedback loops. Despite this
phenomenon, a clear convex trend is observable in this data.

E. Experimental Results

The system is tested under the same thermodynamic con-
ditions used to characterize the steady state map, with the
discharge setpoint initially set to 83◦C, and the system is
allowed to reach steady state under the direction of the PI-
ESC algorithm. The PI-ESC selects setpoints for the discharge
temperature and is provided with a measurement of the vapor
compression machine power consumption. The PI-ESC has
no additional information about the location or nature of the
optimum setpoint. The parameters used are

dk = 0.05sin(0.2k), τI = 0.6
α = 0.05, kg = 1

Kk = 0.13, Θk = 10

with a sampling period of one minute.
As in the simulations, the estimator part of PI-ESC is turned

on and allowed to settle without activating adaptation for the
first 10 mins of the transient data shown in Fig. 9. At t = 10
min., adaptation is turned on. Discharge setpoints trend toward
the optimum and converge after about a 50 min transient.
Fig. 9 (top) shows the discharge temperature setpoints selected
by the PI-ESC algorithm as well as the discharge temperature
controlled by the feedback controller K.

Power consumption (Fig. 9 (middle)) is driven from about
710 W to 440 W, which is a bit higher than the minimum
found from the quasi-steady sweep. We note that during the
sweep, the feedback controller was disabled, whereas in this
experiment it is active and inducing transients in the room
temperature (see from Fig. 9 (bottom)) that cause a slightly
higher power consumption.

In regions of low compressor setpoint temperatures, two-
phase refrigerant may be exiting the evaporator and entering
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the compressor, potentially damaging the compressor if this
condition is allowed to persist for too long. Consequently, the
projection operator parameter Θk is selected to limit the rate of
change of the setpoint in order to eliminate overshoot that may
have caused excessively low setpoint values and potentially
damaging liquid refrigerant ingestion. Projecting the estimated
parameters θ̂ back into the constraint set therefore serves as an
important feature for practical problems where regions of the
state space must be avoided for equipment protection. In future
work, explicit constraints on the ESC decision variables will
be considered, which will require reformulating the estimator
for bumpless transition as constraints become active.

V. CONCLUSION

We have applied a novel proportional-integral extremum
seeking algorithm to energy-optimal setpoint selection for
a vapor compression system. The rapid convergence prop-
erties of the PI-ESC algorithm are especially attractive for
vapor compression systems because the relative bandwidths
of disturbance rejection of the closed loop system and typical
disturbances are such that the system is rarely in equilibrium
for periods to satisfy the two timescale separation requirement
of traditional perturbation-based ESC. We have demonstrated
the improved convergence properties of PI-ESC relative to
other methods on an example problem, and used a physics-
based model with realistic disturbance properties to show ap-
plicability of extremum seeking to vapor compression systems.
Finally, we have validated the approach in an experimental
scenario where noise and actuator and sensor quantization are
significant.
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