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Abstract
We train a convolutional neural network (CNN) that can predict the optical response of
randomly generated nanopatterned photonic power splitters in a 2 to the 400th power design
space with a prediction correlation coefficient of 85%.
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Abstract: We train a convolutional neural network (CNN) that can predict the optical
response of randomly generated nanopatterned photonic power splitters in a 2400 design space
with a prediction correlation coefficient of 85 %.
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1. Introduction
Subwavelength scatterers can be carefully postioned on the propagation path of an incident optical beam to control
its transmision and reflection wavefronts for a wide range of applications [1, 2]. However, it is computationally costly
to optimize a nanostructure starting from scratch every time. For example, to design photonic power divider with an
arbitrary splitting ratio, photonic designers often begin with intuition or analytical models, and fine tune the structure
using parameter sweep in numerical simulations after numerous iterations [3, 4]. Inspired by recent progress at use
of machine learning in nanophotonics [5–9], we previously used machine learning to accelerate the photonic design
optimization processes using neural networks [10, 11]. More recently, we developed a deep residual network to repre-
sent the design space of nanopatterned integrated photonic power splitters for inverse design [12]. Our neural network
assisted nanophotonic design approaches make essential use of machine learning methods for powerful correlations
between device topologies and their optical responses. To improve their performance for generalization, here we take
advantage of a more powerful model called CNN (see Fig.1). Although CNN based models have been previously
trained and used in nanophotonic design, a comparative study to show their generalization capability was missing.

Fig. 1: Pattern recognition in nanostructured photonic devices using CNN.

2. Pattern Recognition Using Convolutional Neural networks
The goal of nanostructured power splitters is to organize optical interaction events in a compact footprint, such that the
collective effect of the ensemble of scattering events guides the optical beam to a port within a target transmittance.
We chose a simple three port structure on a standard fully etched silicon on insulator platform with 220 nm silicon
waveguides and 2 µm buried oxide. One input and two output 0.5 µm waveguides are connected using an adiabatic
taper to the 2.6× 2.6 µm2 wide square power splitter design region with a connection width of 1.3 µm. By training
the model with a diverse set of semi-optimized patterns, the neural network can inverse design power splitters that
outperform devices within the training data set [12]. However, we find that the implemented Fully Connected Deep
Neural Networks (FCDNN) suffer from poor generalization for a large problem such as this with 2400 possible com-
binations. Meaning it will be hard for them to predict patterns that are very different from training data. Deep CNNs
use convolutional filters, and thus extract better spatial features from the patterned power splitters. With this intuition,
we use deep CNN network with dropout [13, 14] for training our prediction model.



Fig. 2: a) Example of training data series and, b) randomly generated test data, c) the root mean squared (RMS) Error
of prediction as a function of hamming distance of test patterns to closest train data patterns, d) correlation coefficient
between target and predicted transmission spectra is 0.85 for the CNN with 3 convolutional layers and 2 dense layers
and 0.16 for a 4 layers FCDNN. Inset: train and test data distributions

The architecture of our best performing network involves 3 convolutional layers with ReLU activation and 2 fully
connected networks with Sigmoid activation. Using ReLU activation helps preventing vanishing gradient problem.
We also find that using dropout rate of 0.4 helps to reduce overfitting. Also, local batch normalization before each
convolution layer helps generalization [15].

3. Discussion and Conclusion
Deep Neural Network (DNN) models can be trained on optical response of geometrical and physical parameters of
nanostructured devices. We reutilize the trained model to approximate the response of a nanostructures instantaneously.
Inversely, a DNN model can suggest an approximate nanostructure for a desired response.

Additionally, we demonstrate generalization capability of a CNN based model for forward prediction of optical
response. Our network achieved correlation coefficient R of up to 0.85 across the full range of transmission ratios for
a randomly generated test data set.
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