
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Co-design of Safe and Efficient Networked Control Systems
in Factory Automation with State-dependent Wireless

Fading Channels

Hu, B.; Wang, Y.; Orlik, P.V.; Koike-Akino, T.; Guo, J.

TR2019-021 May 23, 2019

Abstract
In factory automation, heterogeneous manufacturing processes need to be coordinated over
wireless networks to achieve safety and efficiency. Wireless networks, however, are inherently
unreliable due to shadow fading induced by the physical motion of the machinery. To assure
both safety and efficiency, this paper proposes a state-dependent channel model that captures
the interaction between the physical and communication systems. By adopting this channel
model, sufficient conditions on the maximum allowable transmission interval are derived to
ensure stochastic safety for a nonlinear physical system controlled over a state-dependent
wireless fading channel. Under these sufficient conditions, the safety and efficiency co-design
problem is formulated as a constrained cooperative game, whose equilibria represent optimal
control and transmission power policies that minimize a discounted joint-cost in an infinite
horizon. It is shown that the equilibria of the constrained game are solutions to a non-convex
generalized geometric program, which are approximated by solving two convex programs.
The optimality gap is quantified as a function of the size of the approximation region in con-
vex programs, and asymptotically converges to zero by adopting a branch-bound algorithm.
Simulation results of a networked robotic arm and a forklift truck are presented to verify the
proposed co-design method.
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Abstract

In factory automation, heterogeneous manufacturing processes need to be coordinated over wireless networks to achieve safety
and efficiency. Wireless networks, however, are inherently unreliable due to shadow fading induced by the physical motion of the
machinery. To assure both safety and efficiency, this paper proposes a state-dependent channel model that captures the interaction
between the physical and communication systems. By adopting this channel model, sufficient conditions on the maximum allow-
able transmission interval are derived to ensure stochastic safety for a nonlinear physical system controlled over a state-dependent
wireless fading channel. Under these sufficient conditions, the safety and efficiency co-design problem is formulated as a con-
strained cooperative game, whose equilibria represent optimal control and transmission power policies that minimize a discounted
joint-cost in an infinite horizon. It is shown that the equilibria of the constrained game are solutions to a non-convex generalized
geometric program, which are approximated by solving two convex programs. The optimality gap is quantified as a function of the
size of the approximation region in convex programs, and asymptotically converges to zero by adopting a branch-bound algorithm.
Simulation results of a networked robotic arm and a forklift truck are presented to verify the proposed co-design method.
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1. Introduction

1.1. Background and Motivation

Factory Automation Networks (FANs) are Cyber-Physical
Systems (CPS) consisting of numerous heterogeneous manu-
facturing processes that coordinate with each other by exchang-
ing information over wireless networks Zhuang et al. (2007);
Rajhans et al. (2014); De Pellegrini et al. (2006). FANs have
received considerable attention due to the rapid development
of wireless communication technologies, which provides effi-
cient and cost-effective service such as increased mobility, easy
scalability and maintenance for applications like automated as-
sembly systems in manufacturing factories Groover (2007). In
many safety-critical applications, safety is always of primary
concern in FANs. However, building safe and efficient FANs
is challenging in two aspects. First, from a system modeling
standpoint, the heterogeneous nature of FANs requires a hy-
brid framework that can capture system dynamics in different
levels as well as their mutual interactions. Assessing the perfor-
mance and safety of this “hybrid” system as a whole demands
different modeling and analysis tools. Secondly, the wireless
network in FANs is inherently unreliable due to channel fading
Islam et al. (2012); De Pellegrini et al. (2006) or interference
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Tse & Viswanath (2005) caused by internal system states or ex-
ternal environments, such as obstacles or physical motions of
machinery. The fading channel inevitably results in a severe
drop in the network’s quality of service (QoS) and thereby in-
troduces a great deal of stochastic uncertainties in FANs that
may cause serious safety issues. The objective of this paper is
to develop a co-design paradigm for communication and con-
trol systems under which a certain level of safety and efficiency
can be achieved for FANs in the presence of shadow fading.

Assuring safety for FANs often requires joint coordination
of heterogeneous systems which may have different objectives.
Such a coordination is necessary due to the interactions among
the heterogeneous systems. Such interactions exist in many in-
dustrial applications, to name a few, manufacturing systems
with heavy facilities mills and cranes discussed in Agrawal
et al. (2014), sensor network with moving robots Quevedo et al.
(2013) and indoor wireless networks with moving human bod-
ies Kashiwagi et al. (2010). One simple example in FANs is
an assembly process where an autonomous assembly arm and a
forklift truck collaborate to assemble products. On one hand,
the control objective of an autonomous assembly arm is to
track a specified trajectory by exchanging information between
a physical plant and a remote controller via wireless networks.
On the other hand, the objective of the forklift system is often
related to accomplishing some high-level tasks, such as trans-
porting assembled products from one workstation to another.
These two physically separated systems, however, may have
strong cyber-physical couplings. The cyber-physical couplings
come from the fact that the physical motion of forklift vehi-
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cle may lead to serious shadow fading in the wireless network
that is used by the assembly arm, thereby significantly compro-
mising the system stability and performance. Thus, to ensure
system safety, one must explicitly examine such cyber-physical
couplings in communication channels.

The channel model that is used to characterize the shadow
fading in FANs, must be carefully examined. As a type of chan-
nel fading, shadow fading is often characterized in terms of the
channel gain. Traditionally, the channel gains are modeled ei-
ther as independent identical distributed (i.i.d.) random pro-
cesses Tse & Viswanath (2005); Gatsis et al. (2014); Tatikonda
& Mitter (2004); Elia (2005) with assumed distributions such
as Rayleigh, Rician and Weibull or as Markov chains Zhang
et al. (1999); Wang & Moayeri (1995). These channel models
are inadequate to characterize the cyber-physical couplings in
FANs due to the fact that the network state is assumed to be in-
dependent from physical states in either i.i.d. or Markov chain
models. With such independency, control and communication
could be considered separately through the application of a sep-
aration principle Gatsis et al. (2014). The separation-principle,
may be valid for networked system where the network states
are independent of physical dynamics, but is clearly inappropri-
ate for FANs where the channel state is functionally dependent
on the physical states. This dependency of channel states on
physical states motivates the development of a new co-design
paradigm under which the communication and control policies
are coordinated to achieve both system safety and efficiency.

1.2. Related Work
The example of an assembly process as well as the research

work in Agrawal et al. (2014); Quevedo et al. (2013); Kashi-
wagi et al. (2010); Agrawal & Patwari (2009); Leong et al.
(2016) demonstrate the importance of considering the cyber-
physical couplings between communication and control sys-
tems to assure safety and efficiency for FANs. Similar con-
clusions have been made in work Hu & Lemmon (2013, 2015)
where the dependency of channel states on physical states is
used in the design of distributed switching control strategy to
secure safety in vehicular networked systems. This paper ex-
tends the results in Hu & Lemmon (2015) to show that both sys-
tem safety and efficiency can be achieved via a novel co-design
framework. We are unaware of other work which formally an-
alyze both the system safety and efficiency in the presence of
such cyber-physical couplings. There is, however, a great deal
of related work on the co-design of communication and control
systems assuming the channel states are independent of physi-
cal states. These results will be reviewed and discussed.

When considering a joint objective for the communication
and control systems, recent work in Molin & Hirche (2009);
Gatsis et al. (2014); Di Girolamo et al. (2015); Bao et al. (2011)
showed that the certainty equivalence property holds for the op-
timal control policy while the optimal communication policy
was adapted to the channel states and physical states. In partic-
ular, Molin & Hirche (2009) showed that the joint optimization
of scheduling and control can be separated into the subprob-
lems of an optimal regulator, estimator and scheduling. Similar
ideas were applied to a joint design of controller and routing

redundancy over a wireless network Di Girolamo et al. (2015).
The work in Gatsis et al. (2014) considered a co-design prob-
lem for optimal control and transmission power policies for a
stochastic discrete linear system controlled over a fading chan-
nel. Their results showed that the optimal control policy was
a standard LQR controller while the optimal power policy was
adapted to both channel and plant states. This similar structure
was also discovered in a joint design problem for an optimal
encoder and controller over noisy channels Bao et al. (2011).

All of the above studies, however, were developed by as-
suming a state-independent channel model. From a safety
standpoint, this state-independent channel model is often ob-
tained by assuming the worst impact that the physical state can
have on the network. As a result, the selected communication
policy (transmission power, data rate, or scheduling) may be
greater than necessary to assure the same level of performance
that can be obtained by using state-dependent channel model.
In other words, the conservativeness on the selection of state-
independent channel model may prevent the system as a whole
from achieving system efficiency.

1.3. Contribution
Motivated by the cyber-physical couplings in heterogeneous

industrial systems, this paper develops a co-design paradigm
to achieve both system safety and efficiency in the presence
of shadow fading. The heterogeneous industrial systems are
characterized by a nonlinear networked control system and a
Markov decision process, which can represent a variety of real-
istic situations in industrial applications Agrawal et al. (2014);
Quevedo et al. (2013); Kashiwagi et al. (2010); Agrawal & Pat-
wari (2009); Leong et al. (2016). Under this heterogeneous
system framework, the first contribution of this paper is the pro-
posal of a novel state-dependent fading channel model that cap-
tures the impact of physical states on the channel state. Further-
more, this paper shows that the state-dependent channel model
is a Markov modulated Bernoulli process Özekici (1997) that
generalizes the traditional i.i.d. Bernoulli channel model in two
important aspects: (1) the model parameters are not constants
but are stochastic processes due to their dependence on a ran-
domly changing environment; (2) the channel parameters can
be controlled by taking advantage of the cyber-physical cou-
plings between communication and control systems.

Under the state-dependent channel model, the safety issue is
examined in a stochastic setting by investigating the likelihood
of the system states entering a forbidden or unsafe region. Thus,
the second contribution of this paper is the sufficient condition
on the maximum allowable transmission interval (MATI) un-
der which the wireless networked system with state-dependent
fading channels is stochastically safe. We also show that the de-
rived MATI generalizes the well-known results in Nešić & Teel
(2004) where the channel fading impact was not considered. To
the best of our knowledge, the established sufficient conditions
are the first results on MATI that guarantee the stochastic safety
under the state-dependent fading channels.

Under these safety conditions, the third contribution of this
paper is the proposal of a new co-design paradigm to assure
both safety and efficiency for FANs. In particular, we show
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Figure 1: Heterogeneous System Framework: Networked Control System and
Markov Decision Process

that the safety-efficiency co-design can be formulated as a con-
strained two-player cooperative game. The equilibrium points
of the constrained cooperative game represent optimal control
and transmission power policies that minimize a discounted
joint-cost induced by power consumption and control efforts
in infinite horizon. The equilibrium of this constrained coop-
erative game can be obtained by solving a non-convex general-
ized geometric program (GGP) Boyd et al. (2007); Maranas &
Floudas (1997). To address the non-convexity of the GGP, this
paper approximates the non-convex GGP with two relaxed con-
vex GGPs that provide upper and lower bounds on the optimal
solution. These bounds are shown to asymptotically approach
the global optimum by using a branch-bound algorithm.

This paper is organized as follows. Section 2 describes the
system model and problem formulation. Section 3 presents
the sufficient conditions to ensure stochastic safety. Under the
safety conditions, Section 4 proposes a co-design paradigm to
assure both safety and efficiency. Optimal solutions for the co-
design problem are provided in Section 4.1. Main results are
demonstrated via simulations of a mechanical robotic arm and
a forklift truck in Sections 5. Section 6 concludes the paper.

Notations. Throughout the paper the n-dimensional Eu-
clidean vector space is denoted by Rn and the non-negative
reals and integers are denoted as R≥0 and Z≥0, respectively.
The infinity norms of the vector x ∈ Rn and the matrix A are
denoted by |x| and ‖A‖ respectively. The right limit value
of a function f (t) at time t is denoted by f (t+). Given a
time interval [t1, t2) with t1, t2 > 0, the essential supremum
of a function f (t) over the time interval [t1, t2) is denoted by
| f (t)|[t1,t2) = esssupt∈[t1,t2) ‖ f (t)‖ where ‖ · ‖ is the Euclidean
norm. A function f (t) is essentially ultimately bounded if
∃M > 0, | f (t)|L∞

= esssupt≥0 ‖ f (t)‖ ≤ M. A function α(·) :
R≥0→R≥0 is a class K function if it is continuous and strictly
increasing, and α(0) = 0. A function α(t) is a class K∞ func-
tion if it is in class K and radially unbounded. A function
β (·, ·) : R≥0×R≥0 → R≥0 is a class K L function if β (·, t)
is a class K∞ function for each fixed t ∈ R≥0 and β (s, t)→ 0
for each s ∈ R≥0 as t → +∞. The function β (·, ·) is said to be
of class Exp-K L if there exist K1,K2 > 0 such that β (s, t) =
K1 exp(−K2t)s. A function β (·, ·, ·) : R≥0×R≥0×R≥0→ R≥0
is said to be of class K L L (β ∈K L L ), if for each r ≥ 0,
β (·, ·,r) ∈K L and β (·,r, ·) ∈K L .

2. System Model: A Heterogeneous System Framework

Fig. 1 shows a heterogeneous system framework with two
subsystems: a networked control system (G ) that characterizes
a nonlinear physical system being controlled over a wireless
channel; a Markov Decision Process (MDP) (M ) that mod-
els stochastic high level dynamics of a moving object in indus-
trial systems. The cyber-physical coupling within this frame-
work arises from that the physical states (e.g., locations) of the
moving object modeled by MDP’s states may lead to shadow
fading on the wireless channel. Such a state-dependent prop-
erty of wireless communication in industrial systems clearly
invalidates the use of traditional co-design frameworks, such as
Molin & Hirche (2009); Gatsis et al. (2014); Zhang & Hristu-
Varsakelis (2006), where the channel states are assumed to be
decoupled from the physical states. The heterogeneous system
framework in Fig. 1 is thus motivated by the co-design chal-
lenge under state-dependent fading channels.

The G system are modeled as follows,

G :=


ẋp = fp(t,xp, û,w)
y = gp(t,xp), Physical Plant
ẋc = fc(t,xc, ŷ)
u = gc(t,xc), Remote Controller.

where xp ∈ Rnx and y ∈ Rny are the physical states and mea-
surements, respectively. xc ∈ Rnc and u ∈ Rnu are the internal
state and output for the remote controller, respectively. The
external disturbance w ∈ Rnw is assumed to be essentially ulti-
mately bounded, i.e., ∃Mw > 0, |w|L∞

≤Mw. fp(·, ·, ·, ·) :R≥0×
Rnx ×Rnu ×Rnw → Rnx , gp(·, ·) : R≥0×Rnx → Rny , fc(·, ·, ·) :
R≥0×Rnc×Rnu →Rnc and gc(·, ·) : R≥0×Rnx →Rnu are Lip-
schitz functions for the physical plant and remote controller re-
spectively. Without loss of generality, we assume the origin
is the unique equilibrium for system G , i.e. fp(0,0,0,0) =
0nx , fc(0,0,0) = 0nc ,gp(0,0) = 0ny ,gc(0,0) = 0nu .

Let {tk} denote an increasing sequence of time instants where
tk < tk+1 for all k ∈ Z≥0. Let Ωp = {pi}M

i=1 be a transmis-
sion power set including M power levels where pi ∈ R≥0 is the
power level. As shown in Figure 1, the controller is remotely
located and thus both the measurement y and controller output u
are sampled and transmitted over an unreliable communication
channel with a selected power level pk ∈ Ωp at time instant tk.
The wireless network is subject to fading, and randomly drops
the sampled information at each time instant. Let {γ(k)} be a
binary random process taking value from {0,1}. Its value at
the kth consecutive sampling instant indicates whether or not a
packet dropout has occurred. In particular,

γ(k) =

{
1 , packet successfully decoded without error
0 , packet is dropped.

Let ŷ(tk) and û(tk) denote the estimates of the corresponding
variables at time instant tk. Note that we assume the time used
for communication and computing control action is negligible
compared to the sampling time interval and the network con-
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dition is unchanged during this small time interval. The es-
timation error induced by the communication during the sam-
pling time interval [tk, tk+1) is defined as ey(t) = y(t)− ŷ(tk) and
eu(t) = u(t)− û(tk). Let e(t) = [ey(t);eu(t)]T denote the aggre-
gated estimation error at time t. After the information is suc-
cessfully received, this aggregated estimation error will be reset
to zero. Let t+k denote the real time immediately after the sam-
pling instant, tk. The estimation error e(t+k ) will be reset to zero
immediately after each successful transmission. So we may for-
mally express e(t+k ) as e(t+k ) = (1− γ(k))e(tk). Let x := [xp;xc]
denote the aggregated state for the closed loop system G , and
then one has the following equivalent system representation in
terms of x and e,

Ĝ :=


ẋ = f (t,x,e,w)
ė = g(t,x,e,w),∀t ∈ (tk, tk+1)

e(t+k ) = (1− γ(k))e(tk), k ∈ N+.

(1)

where

f (t,x,e,w) :=
[

fp(t,xp,gc(t,xc)− eu(t),w)
fc(t,xc,gp(t,xp)− ey(t))

]
g(t,x,e,w) :=

[
∂gp(xp,t)

∂xp
fp(t,xp,gc(t,xc)− eu(t),w)+

∂gp(xp,t)
∂ t

∂gc(xc,t)
∂xc

fc(t,xc,gp(t,xp)− eu(t))+
∂gc(xc,t)

∂ t

]
.

Note that we further assume that the functions gp(·, ·) and
gc(·, ·) are continuously differentiable and thus the function
g(·, ·, ·, ·) in (1) is well defined. Since the (set) stability of the
system Ĝ implies the (set) stability of the system G , we will
focus on the system Ĝ in the remaining of this paper.

The M system is modeled by an MDP process. An MDP is
defined by a five tuple M = {S,s0,A,P,c}, where S = {si}N

i=1 is
the state space for the MDP, s0⊂ S is the set of initial states, A=
{ai}Ma

i=1 is the action set. P : S×A×S→ [0,1] is the transition
probability , i.e. P(si,a,s j) = Pr{s j|a,si}. c : S×A→ R≥0 is
the reward function.

The MDP process models discrete-event decision making
processes managing high-level control objectives such as trans-
porting products from one location to another with minimum
time or energy. Its state space S corresponds to a finite number
of partitioned regions that the vehicle system, such as forklift
trucks or cranes Agrawal et al. (2014) or robots Quevedo et al.
(2013), can operate by taking actions from an action set A. The
transition probability matrix P is used to model the stochastic
uncertainties caused by sensor or actuation noises. The costs
in the MDP model characterizes the high level control objec-
tives for the vehicle system. For instance, if the objective is to
transport the products to a target region, then small costs will
be assigned in the minimization optimization problem, to the
situation when the vehicle is transitted to the target region.

2.1. State Dependent Dropout Channel Model

As shown in Fig. 1, the wireless channel used by the net-
worked control system G is functionally dependent on the state
of the MDP system. This relationship corresponds to the situ-
ation that vehicle’s physical positions directly lead to shadow

fading, thereby generating a great deal of stochastic uncertain-
ties in system G . Equation (1) shows that the stochastic un-
certainty in system Ĝ is governed by a binary random process
{γ(k)}, which characterizes the stochastic variations in channel
conditions.

The state-dependency in the shadow fading channel is cap-
tured by a novel State-Dependent Dropout Channel (SDDC)
model that is formally defined as follows.

Definition 1. Given a binary random process {γ(k)}∞
k=0, an

MDP system M = {S,s0,A,Pm,c} and a transmission power
set Ωp = {pi}M

i=1, the wireless channel is SDDC if ∀s ∈ S, p ∈
Ωp

Pr{γ(k) = 1|s(k) = s, p(k) = p}= 1−θ(s, p) (2)

where s(k) and p(k) represent the state of MDP system and
the transmission power level at time instant tk, respectively
and θ(s, p) ∈ (0,1) is the outage probability Tse & Viswanath
(2005) that monotonically decreases with respect to the trans-
mission power level p.

Remark 1. The SDDC model in (2) relates the channel
state (packet dropout probability) to the MDP states and trans-
mission power levels. The definition of the SDDC is closely
related to the outage probability, which is a widely used perfor-
mance metric for fading channels Tse & Viswanath (2005). It
characterizes the likelihood of the Signal-to-Noise Ratio (SNR)
being below a specified threshold γ0, i.e. Pr{SNR ≤ γ0}. The
difference between the SDDC model and traditional outage
probability lies in the state-dependent feature of (2) where the
probability is defined for each each MDP state (partitioned re-
gion). The probability defined in (2) can be obtained by measur-
ing the SNR for each MDP state, see Kashiwagi et al. (2010);
Agrawal et al. (2014) and reference therein for details about the
statistical methods. In practice, the transmitter can estimate the
probability by either directly using the visual sensor to observe
the positions of the controlled moving object, or using the esti-
mation techniques discussed in Agrawal et al. (2014); Agrawal
& Patwari (2009). See Example 2 for more details about how
to construct the SDDC from the outage probability.

Example 2 (SDDC model with Raleigh fading). Channel
fading is often the result of the superimposition of signal atten-
uation in both large (shadowing) and small scale levels Tse &
Viswanath (2005). Let hk denote the small scale fading gain
induced by multi-path propagation at time instant tk. Suppose
{hk}∞

k=0 is an i.i.d process that satisfies a Raleigh distribution
with a scale parameter 1, i.e. hk ∼ Raleigh(1),∀k ∈ Z≥0.
Let ψ(·) : S → [0,1] denote a shadow level function that
characterizes the level of shadowing effect on the channel gain
for each MDP state, i.e. 0 ≤ ψ(s) ≤ 1,∀s ∈ S. Thus, the state
dependent channel gain is hk(s) := ψ(s)hk, and for a given
transmission power level p and noise power N0, the SNR is
phk(s)2/N0. With the assumption that the small scale fading
gain is conditionally independent on shadowing state s ∈ S, for
a given SNR threshold γ0, one has

Pr{γ(k) = 1|s(k) = s, p(k) = p}
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=Pr{
p(k)h2

kψ(s(k))2

N0
≥ γ0

∣∣∣s(k) = s, p(k) = p}

=
∫

∞

γ0N0
p

ψ(s)e−ψ(s)xdx = e−
N0γ0ψ(s)

p .

Then, we have the explicit function form θ(s, p) = 1−e−
N0γ0ψ(s)

p

for SDDC model.

The SDDC in (2) characterizes a cyber-physical coupling be-
tween the networked control system G and the MDP system
M . In the presence of such coupling, the first objective of
this paper is to find conditions under which system G achieves
stochastic safety that is formally defined as belows.

Definition 3 (Stochastic Safety). Consider the networked
control system Ĝ (1) and the SDDC model (2). Let
Ωs = {x ∈ Rnx+nc ||x| ≤ r} with r ≥ 0 denote a safe set
for Ĝ system, and x0 = x(0) denote the initial state of Ĝ ,

E1 The Ĝ system with w ≡ 0 is asymptotically safe in expec-
tation with respect to Ωs, if there exists a class K L func-
tion β (·, ·) and a set Ω′s = {x ∈ Rnx+nc ||x| ≤ r′(r)} such
that ∀x0 ∈Ω′s

E
[
|x(t)|

]
≤ β (|x0|, t)≤ r, ∀t ∈ R≥0 (3)

and limt→+∞E
[
|x(t)|

]
= 0.

E2 The Ĝ system with |w(t)|L∞
≤ Mw is asymptotically

bounded in expectation with respect to Ωs, if ∀x(0) ∈ Ωs,
there exists a class K L function β (·, ·) and a class K
function κ(·) such that

E
[
|x(t)|

]
≤ β (|x0|, t)+κ(Mw), ∀t ∈ R≥0 (4)

and limt→+∞E
[
|x(t)|

]
= κ(Mw).

P1 The Ĝ system with w ≡ 0 is almost surely asymptotically
safe with respect to Ωs, if ∀ε ∈ (0,1],τ > 0, there exists
a class K L L function ζ (·, ·, ·) and a set Ω′s = {x ∈
Rnx+nc ||x| ≤ r′(ε,r)} such that ∀x0 ∈Ω′s

Pr
{

sup
t≥τ

|x(t)| ≥ r
}
≤ ζ (|x0|,τ,r)≤ ε (5)

and Pr
{

limτ→∞ supt≥τ |x(t)| ≥ r
}
= 0.

These safety notions are closely related to the concepts of
stochastic stability in Kushner (1967); Khasminskii (2011). In
particular, E1 and E2 characterize the system behavior on av-
erage (in the first moment) while P1 specifies possible paths of
the system. These definitions capture safety requirements on
both the system’s transient and steady behavior.

Remark 2. For systems without external disturbance, the def-
inition E1 imposes safety for the transient behavior by requir-
ing that the expected value of the infinity norm of the system
trajectories must remain within the safety region if the initial
states start from a pre-defined set whose size is a function of

the safety set. In addition, the system trajectories must asymp-
totically converge to the origin as time goes to infinity. The
expected safety notion defined in terms of infinity norm E

[
|x|
]

as shown in E1 implies the notion of safety in variance, i.e.,
E
[
‖x(t)‖2

]
≤ β (|x0|, t) ≤ r, due to the well known condition

‖x‖2 ≤
√

nx +nc|x|. The almost sure asymptotic safety defini-
tion P1 is a stronger safety notion than the definition E1 in the
sense that it imposes safety requirement on almost all sample
paths rather than their expected value. Regarding the transient
trajectories, the definition P1 implies that the probability of al-
most all sample paths leaving the safety region at any time in-
stant t ∈ [τ,∞) is strictly decreasing as either the time τ or the
size of safety region r increases. Such an unsafe probability
is always below a pre-selected ε ∈ (0,1],∀t ∈ [τ,∞) that can
be considered as a safety specification discussed in Prajna et al.
(2007), if the initial states start within a set whose size is a func-
tion of the safety set r and safety specification ε . Moreover, the
unsafe probability reaches zero as time τ goes to infinity.

Remark 3. For systems with non-vanishing but ultimately
bounded disturbance, the definition E2 requires that the first
moment of the system trajectories is asymptotically bounded
with its bound depending on the magnitude of external distur-
bance. By applying Markov inequality, the definition E2 im-
plies that the probability of sample paths leaving the safe region
is asymptotically bounded and the probability bound is a func-
tion of the size of the external disturbance and safety region,
i.e., limt→∞ Pr

{
|x(t)| ≥ r

}
≤ β (Mw,r).

Under the safety conditions for system Ĝ , the second ob-
jective of this paper is to seek optimal control and communica-
tion policies to achieve system efficiency for both system Ĝ and
M . This paper focuses on seeking optimal stationary policies
for MDP system and transmission power. In particular, a (ran-
domized) stationary control policy for the MDP system M is a
function πm

∞ : S→Dist(A) where the function Dist(A) is a prob-
ability distribution over a finite set of actions A. In other words,
∀s ∈ S, the stationary policy is defined as a set of probabili-
ties with πm

∞ =
{

Pr{a|s}a∈A(s)
}

and ∑a∈A(s) Pr{a|s} = 1. Sim-
ilarly, a (randomized) stationary policy for transmission power
is a function π p

∞ : S→Dist(Ωp) where π p
∞ =

{
Pr{p|s}s∈S,p∈Ωp

}
and ∑p∈Ωp Pr{p|s}= 1.

With the control πm and communication π p policies, the sys-
tem efficiency resorts to a constrained infinite horizon optimiza-
tion problem as follows,

min
π p,πm

Jα(s0,π
m,π p) = (1−α)

∞

∑
k=0

α
kE{λcp(pk)+ c(sk,ak)}

s.t. Safety conditions assuring (3) or (4) or (5)
(6)

where cp(·) : Ωp→ R≥0 is the power cost and c(·, ·) is the cost
defined in the MDP system. α ∈ (0,1) is the discounted factor
that provides a weight between short term rewards and rewards
that might be obtained in a more distance future. Parameter
λ > 0 is used to trade-off communication and control costs. So-
lutions to the constrained infinite horizon optimization problem
in (6) are optimal co-design policy for transmission power and
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control to achieve both system efficiency and safety. As shown
in Section 4, the main challenge to solve the above optimization
problem lies in the non-convex safety constraints.

3. Sufficient Conditions for Stochastic Safety

This section presents sufficient conditions to ensure stochas-
tic safety defined in Definition 3 for the G system. The follow-
ing two assumptions are needed for the main results.

Assumption 4. The networked control system ẋ = f (t,x,e,w)
is input to state stable (ISS) w.r.t. e and w, i.e. there exist
a class K L function β (·, ·), a class K function γ2(·) and a
positive real γ1 ∈R≥0 such that |x(t− t0)| ≤ β (|x(t0)|, t− t0)+
γ1|e|[t0,t)+ γ2(|w|[t0,t)) and β (·, t) is a concave function for any
fixed t ∈ R≥0.

Assumption 5. The networked control system ẋ = f (t,x,e,w)
is exponential input to state stable (Exp-ISS) w.r.t. e and w, if
the system is ISS and the function β (s, t) is a class Exp-K L
function and γ2(s) = γ2s is a linear function with γ2 > 0.

Assumption 6. There exists a Lyapunov function W (·) and
w,w,L1,L2,L3 > 0 for the estimation error dynamics ė =
g(t,x,e,w) in system (1) such that

w|e| ≤W (e)≤ w|e|, (7)〈
∂W (e)

∂e
,g(t,x,e,w)

〉
≤ L1W (e)+L2|x|+L3|w|. (8)

Assumption 6 basically requires that the estimation error e is
exponentially bounded and the couplings of x,w in the error
dynamics are linear. The following proposition shows that for a
given transmission time sequence {tk}∞

k=0, the estimation error
process {e(t+k )} forms a stochastic jump process and its discrete
dynamic is governed by the outage probability of the fading
channels θ(s, p) which depends on the MDP’s state s ∈ S and
the transmission power level p ∈Ωp.

Proposition 7. Consider a random dropout process {γ(k)} as-
sociated with the channel’s SDDC model in (2) and let {tk} de-
note the transmission time sequence. Let W (e) be a Lyapunov
function for the error dynamic system in (1), then one has

E{W (e(t+k ))
∣∣∣s(k) = s, p(k) = p}= θ(s, p)W (e(tk)). (9)

where the conditional expectation operator E(·|·) is taken with
respect to the random process γ(k).

PROOF. The proof is easily completed by combining
W (e(t+k )) = (1− γ(k))W (e(tk)) and the SDDC model (2). �

Under a state dependent shadow fading channel, the follow-
ing theorem presents a sufficient condition on the Maximum
Allowable Transmission Interval (MATI) under which the sys-
tem Ĝ achieves almost sure asymptotic safety. In particular,
we show that the MATI is a function of the control (πm

∞ ) and
transmission power (π p

∞) policies.

Theorem 8. Let Tk = tk+1 − tk denote the transmission time
interval, Pm denote the transition matrix defined in (11) and
p ∈ Ωp denote the transmission power level. Suppose the ISS
assumption in Assumption 4 and Assumption 6 hold, for a given
stationary control policy πm

∞ and a given stationary transmis-
sion power policy π p

∞, the Ĝ system with w = 0 is asymptoti-
cally safe in expectation (asymptotically stable in expectation)
with respect to the origin, if Tk ∈ (0,τ∗] where

τ
∗ =

1
L1

ln
L2γ1 +L1w

L2γ1 +wL1‖Pm(πm
∞ ,π

p
∞)diag(θ(s, p)‖

> 0 (10)

is the MATI. The system parameters L1, and L2 come from (7)
and (8) respectively and

diag(θ(s, p)) =


θ(s1, p1) · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · θ(si, p j) · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · θ(sN , pM)



Pm(π
m
∞ ,π

p
∞) =


Pr(s1, p1|s1, p1) · · · Pr(s1, p1|sN , pM)
Pr(s1, p2|s1, p1) · · · Pr(s2, p1|sN , pM)

...
...

...
Pr(sN , pM|s1, p1) · · · Pr(sN , pM|sN , pM)


(11)

with Pr{si, pi|s j, p j}= ∑a∈A(s j) Pr{si|a,s j}Pr{a|s j}Pr{pi|si}.

PROOF. Proof is based on the small gain theorem in Isidori
(1995) and Markovian jump system theory in Costa et al.
(2006). The stochastic hybrid system (1) can be viewed as two
interconnected subsystems (e and x) modulated with a stochas-
tic jump process ({e(tk)}). Let Ik := [tk, tk+1) denote the kth

transmission time interval and Tk := τk+1− τk,∀k ∈ N+ denote
the transmission time interval for Ik. Given the error dynamics
over Ik and Assumption 6, one can use comparison principle
to bound the error trajectory as W (e(t)) ≤ eL1(t−tk)W (e(t+k ))+∫ t

tk
eL1(t−s)L2|x|ds. Then, one has

W (e(tk+1))

≤ eL1(tk+1−tk)W (e(t+k ))+
∫ tk+1

tk
eL1(tk+1−s)L2|x|ds

≤ eL1TkW (e(t+k ))+L2|x|[tk,tk+1)

∫ tk+1

tk
eL1(tk+1−s)ds

= eL1TkW (e(t+k ))+
L2

L1
(eL1Tk −1)|x|[tk,tk+1) (12)

Since |x|[tk,tk+1) = suptk≤t<tk+1
|x| ≥ |x(τ)|,∀τ ∈ Ik, the second

inequality holds. Note that the inequality (12) holds for any
given initial value e(t+k ). Moreover, {e(t+k )} is a stochastic
jump process that is governed by stochastic variations on the
fading channel. Since the fading channel state in (2) depends on
the probability measure of MDP state s and power state p, let
1A denote the indicator function that takes value 1 when sample
value falls in set A and takes value 0 otherwise, then define the

6



operator Wk+1(s, p) def
= E{W (e(tk+1))1sk+1=s,pk+1=p} as the ex-

pectation of the W (e(tk+1)) over the set {sk+1 = s, pk+1 = p}.
Since W (e)≥ 0,∀e∈Rn, one can take this expectation operator
on both sides of (12) without changing the sign,

Wk+1(s, p)

≤ eL1TkE{W (e(t+k ))1s,p}+
L2

L1
(eL1Tk −1)E{|x|[tk,tk+1)1s,p}

= eL1Tk ∑
s′∈S,p′∈Ωp

E{W (e(t+k ))1s′,p′}Pr{s, p|s′, p′}

+
L2

L1
(eL1Tk −1)|x|[tk,tk+1)E{1s,p} (13)

= eL1Tk ∑
s′∈S,p′∈Ωp

Wk(s′, p′)θ(s′, p′)Pr{s, p|s′, p′}

+
L2

L1
(eL1Tk −1)|x|[tk,tk+1)E{1s,p} (14)

The equality (13) holds due to the Markovian property of the
MDP and power processes. The second Equality (14) holds
as a result of Proposition 7 and E{W (e(t+k ))1sk=s′,pk=p′} =
E{W (e(t+k ))|sk = s, pk = p′}Pr{sk = s′, pk = p′}.

Let Wk := [Wk(s1, p1),Wk(s1, p2), . . . ,Wk(s|S|,|Ωp|)]
T , then

Wk+1 ≤eL1Tk Pmdiag(θ(s, p))Wk

+
L2

L1
(eL1Tk −1)|x|[tk,tk+1)[E{1s,p}] (15)

where diag(θ(s, p)),Pm(π
m
∞ ,π

p
∞) are defined in (11) and

[E{1s,p}] := [E{1s1,p1}· · ·E{1si,p j}· · ·E{1s|S|,p|Ωp |
}]T . Since

both sides of (15) are positive, taking the ∞-norm on both sides
of (15) leads to

|Wk+1|
≤ eL1Tk ‖Pmdiag(θ(s, p))‖︸ ︷︷ ︸

P∞

|Wk|

+
L2

L1
(eL1Tk −1)| [E{|x|[tk,tk+1)1s,p}]︸ ︷︷ ︸

X[k,k+1)

|

≤ L2

L1
(eL1T ∗ −1)

(
|X[k,k+1)|+ eL1T ∗P∞|X[k−1,k)|+ · · ·

+
(
eL1T ∗P∞

)k|X[0,1)|
)
+
(

eL1T ∗P∞

)k+1
|W0|

≤ L2

L1
(eL1T ∗ −1)

∞

∑
i=0

(
eL1T ∗P∞

)i
|X[0,k+1)|+

(
eL1T ∗P∞

)k+1
|W0|

=
L2

L1

eL1T ∗ −1
1− eL1T ∗P∞

|X[0,k+1)|+
(

eL1T ∗P∞

)k+1
|W0| (16)

where T ∗ = max0≤i≤k Tk. Clearly, (16) shows that the W sys-
tem is ISS with respect to X[0,k+1] with linear gain L2

L1
(eL1T ∗ −

1) 1
1−eL1T∗P∞

if eL1T ∗P∞ < 1.

Since w|e| ≤W (e) ≤ w|e|, it is straightforward to conclude
that the error dynamic system is also ISS in expectation as fol-

lows,

|Ek+1| ≤
L2

L1w
(eL1T ∗ −1)

1
1− eL1T ∗P∞

|X[0,k+1)|

+
w
(

eL1T ∗P∞

)k+1

w
|E0| (17)

where Ek+1 := [Ek+1(s1, p1), . . . ,Ek+1(s|S|, p|Ωp|)] with
Ek+1(si, p j) = E{|e(tk+1)|1si,p j}.

Similarly, let Xt(s, p) := E{|x(t)|1s,p} denote the expecta-
tion of |x(t)| over the set s, p. By Assumption 4 and γ1(s) ≤
γ1s,∀s > 0, one has

Xt(s, p)≤ E{β (|x(t0)|, t− t0)1s,p}+ γ1E{|e|[t0,t)1s,p}
≤ β (E{|x(t0)|1s,p}, t− t0)+ γ1E{|e|[t0,t)1s,p}
= β (X0(s, p), t− t0)+ γ1E[t0,t)(s, p)

Similar to the derivation of (17), one has

|Xt | ≤ β (|X0|, t− t0)+ γ1|E[t0,t)| (18)

Consider the ISS characterizations of subsystem X in (18)
and subsystem E in (17), from the well-established small
gain theorem Jiang et al. (1994), the interconnected system
X and E is asymptotically stable if the small gain condition
L2

L1w (e
L1T ∗ − 1) 1

1−eL1T∗‖Pmdiag(θ(s,p))‖
γ1 < 1 holds. The small-

gain condition leads to the sufficient condition in (10). Since
E{|x(t)|} ≤ |Xt |,∀t ≥ 0 and the subsystem X is asymptoti-
cally stable, there exists a class K L function β (s, t) such
that E{|x(t)|} ≤ β (|x(0)|, t). Then, we select r′ > 0 to sat-
isfy β (r′,0) = r and if the initial states |x0| ≤ r′, we know that
E{|x(t)|} ≤ β (|x(0)|, t)≤ β (r′,0) = r. The proof is complete.
�

Remark 4. The MATI in (10) generalizes the result in Nešić &
Teel (2004). In particular, the MATI in Nešić & Teel (2004) is
recovered if the shadow fading is absent, i.e., θ(s, p) = 0,∀s ∈
S, p ∈Ωp.

Theorem 9. Let the hypothesis in Theorem 8 and the Exp-ISS
Assumption 4 hold . System G is almost surely asymptotically
safe (P1 in Definition 3) with respect to the origin.

PROOF. Under the Exp-ISS assumption in Assumption 4, by
following the same argument used in proving Theorem 8, one
can show that the networked control system G is exponentially
stable in expectation with respect to origin, i.e., there exists
a class Exp-K L function β (s, t) = K1 exp(−K2t)s such that
∀x(0) ∈ Ωs, E[|x(t)|] ≤ K1 exp(−K2t)|x(0)|,∀t ∈ R≥0.
Let τ ′ > τ ≥ 0 denote any time instants such that
τ ≤ t < τ ′ holds, then for any given ε > 0 and the
safe set Ωs = {x ∈ Rnx+nc ||x| ≤ r} with r ≥ 0, consider
the following probability bound Pr{supτ≤t<τ ′ |x(t)| ≥

r} ≤ Pr
{∫

τ ′
τ
|x(t)|dt ≥ r

}
(a)
≤ E

{∫
τ ′
τ
|x(t)|dt

}
/(ε + r)

(b)
≤∫

τ ′
τ
E{|x(t)|}dt/r ≤

∫
τ ′
τ

K1 exp(−K2t)|x(0)|dt/r ≤
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K1|x(0)|
K2ε ′ [exp(−K2τ) − exp(−K2τ ′)]. The inequality (a)

holds due to the Markov inequality; and the inequality (b)
holds by exchanging the expectation and integration due to
the measurability and boundedness of |x(t)| over time interval
[τ,τ ′). Let τ ′→+∞, then one has

Pr{sup
τ<t
|x(t)| ≥ r} ≤ K1|x(0)|

K2r
exp(−K2τ)≤ K1|x(0)|

K2r
.

Let ε ′ := K1|x(0)|
K2r , and then there exists a function δ (ε ′,r) =

ε ′K2r
K1

such that Pr{supτ≤t |x(t)| ≥ r} ≤ ε ′,∀|x(0)| ≤ δ (ε ′,r).
Taking the integral of the probability Pr

{
supτ<t |x(t)| ≥ r

}
with

time instant τ from 0 to ∞, one has∫
∞

0
Pr
{

sup
τ<t
|x(t)| ≥ r

}
dτ

≤
∫

∞

0

K1|x(0)|
K2r

exp(−K2τ)dτ =
K1|x(0)|

K2
2 r

< ∞.

Then, by the Borel Cantelli lemma, one knows that
Pr
{

limτ→∞ supτ<t |x(t)| ≥ r
}
= 0. The proof is complete. �

Theorem 10. Suppose that the MATI condition in (10) holds
and consider the system in (1) with |w|L∞

≤ Mw.. Then
the system Ĝ is asymptotically bounded in expectation (E2 in
Definition 3) with respect to a bounded safe set Ωs = {x ∈
Rnx+nc ||x| ≤ r}, i.e., ∀x(0)∈Ωs, there exists a class K L func-
tion β (·, ·) and a class K function κ(·) such that E

[
|x(t)|

]
≤

β (|x0|, t)+κ(Mw),∀t ∈ R≥0 and limt→+∞E
[
|x(t)|

]
= κ(Mw).

PROOF. Following the argument and notation in the proof of
Theorem 8, similar to inequalities (17) and (18) one has the
interconnected systems with |w|L∞

≤Mw defined as follows

|Ek+1| ≤
w
(

eL1T ∗P∞

)k+1

w
|E0|+

L2(eL1T ∗ −1)
L1w(1− eL1T ∗P∞)

|X[0,k+1)|

+
L3(eL1T ∗ −1)

L1w(1− eL1T ∗P∞)
|[E{|w|[tk,tk+1)1s,p}]|

|Xt | ≤ β (|X0|, t− t0)+ γ1|E[t0,t)|+ |[E{γ2|w|[tk,tk+1)1s,p}]|

Since the small gain condition holds for any transmission time
interval T ∗ ≤ τ∗ where τ∗ is defined in (10), one can conclude
that the composite system state Ck := [Ek,Xk] is ISS with re-
spect to w, i.e., there exists a class K L function β (·, ·) and a
class K function κ(·) such that |Ck| ≤ β (|C0|,kT ∗)+κ(Mw).
Given a safe set Ωs := {x ∈ Rn||x| ≤ r}, then for any ε > 0, the
stochastic safety in probability can be characterized as

Pr{|x(t)| ≥ r+ ε} ≤ E(|x(t)|)
r+ ε

≤
|S||Ωp||Ck|

r+ ε

≤ |S||Ωp|
β (|C0|,kT ∗)+κ(Mw)

r+ ε

The first Inequality holds due to the Markov’s inequal-
ity. The second inequality holds because E(|x(t)|) =

∑s∈S,p∈Ωp Xt(s, p) ≤ |S||Ωp||Xt | and |Xt | ≤ |Ct |. One has

limt→∞ Pr{|x(t)| ≥ r+ ε} ≤ |S||Ωp|κ(Mw)
r+ε

. �

4. Safety and Efficiency: A Two-player Constrained Coop-
erative Game

The system efficiency in this paper is defined as an opti-
mization problem where optimal transmission power and con-
trol policies are sought to minimize a joint communication and
control cost in an infinite horizon. To assure both system ef-
ficiency and safety, the control (πm) and communication (π p)
policies must be carefully coordinated due to their tight cou-
plings as suggested by the safety condition in (10). This col-
laboration between communication and control systems can be
naturally formulated as a two-player constrained cooperative
game where the players’ strategy spaces are constrained and
coupled. The equilibrium of the game represents the optimal
transmission power and control policies to achieve both system
safety and efficiency.

Problem 11 (Two-player Constrained Cooperative Game).
Let cp(·) : Ωp → R≥0 denote the power cost and
c(·, ·) : S × A → R≥0 denote the control cost for the MDP
system, the safety and efficiency problem is to find the optimal
control πm∗ and transmission power π p∗ policies to the
following two-player constrained cooperative game,

min
π p,πm

Jα(s0,π
m,π p)

s.t. ‖Pm(π
m,π p)diag(θ(s, p))‖ ≤ ξ (T ).

(19)

where α ∈ (0,1) and T is the transmission time interval and
ξ (T ) ∈ (0,1) is a monotonically decreasing function with re-
spect to T .

Remark 5. The inequality (19) is a safety constraint reformu-
lated by the sufficient condition (10). In order to see how
this safety constraint is derived from (10), let (π p,πm) de-
note the feasible policies such that T ≤ τ∗(π p,πm). Thus
T ≤ 1

L1
ln L2γ1+L1

L2γ1+L1‖Pm(π p,πm)diag(θ(s,p))‖ . Rearrangement of the in-

equality gives ‖Pm(πp,πm)diag(θ(s, p))‖ ≤ 1
L1

[
e−L1T (L2γ1 +

L1)−L2γ1
]
, ξ (T ). Since T ≤ τ∗, one always has ξ (T ) > 0.

Thus, for any given control πm and power π p policies that sat-
isfy the above inequality, the sufficient condition in (10) assures
system safety.

Under the stationary policy space, we show that Problem 11
is equivalent to the following constrained nonlinear optimiza-
tion problem.

Problem 12. Constrained Nonlinear Optimization Prob-
lem: Suppose that the state S and action A spaces in the MDP
system M are finite sets, and the transmission power set Ωp is
finite. Let up

∞(p|s) = Pr{p|s} and δ (s,a) where p ∈ Ωp,s ∈ S
and a ∈ A, denote the decision variables to the following non-
linear constrained optimization problem.

min
up

∞(p|s),δ (s,a)
∑

(s,a)∈S×A(s)

(
λ ∑

p∈Ωp

cp(p)up
∞(p|s)+ c(s,a)

)
δ (s,a)

(20a)

8



subject to

∑
s∈S

∑a∈A(s) Pr{s′|s,a}δ (s,a)
∑a∈A(s) δ (s,a) ∑

p∈Ωp

up
∞(p|s′)θ(s, p)≤ ξ (T ),

(20b)

∑
a∈A(s)

δ (s,a) = D0(s)(1−α)+α ∑
s′∈S

∑
a′∈A(s′)

δ (s′,a′)Pr{s|s′,a′},

(20c)

∑
s

∑
a

δ (s,a) = 1, ∑
p∈Ωp

up
∞(p|s) = 1,δ (s,a)≥ 0, up

∞(p|s)≥ 0.

(20d)

The following Lemma shows that Problems 12 and 11 are
equivalent in the sense that they have the same optimal solu-
tions and objectives.

Lemma 13. Let δ ∗ and up∗
∞ denote the optimal solutions to

Problem 12, then the policies up∗
∞ = π p∗

∞ and πm∗
∞ (a|s) =

Pr{a|s}= δ ∗(s,a)
∑a∈A(s) δ ∗(s,a) are the optimal solutions to Problem 11.

PROOF. The proof can be obtained by examining the equiva-
lence between Problem 12 and Problem 11 in terms of objec-
tive function, decision variables and feasible set imposed by
the constraints. We have already shown that the objective func-
tion in Problem 11 can be rewritten as a function of the new
decision variables {up(s,a)} and {δ (s,a)} in Problem 12. Ac-
cording to the definition of δ (s,a), one has Pr{a|s}= Pr{a,s}

Pr{s} =
δ (s,a)

∑a∈A(s) δ (s,a) . Thus, the decision variable δ (s,a) uniquely de-
fines the control strategy πm. The constraints in (20d) are in-
troduced to enforce the probability law (i.e. non-negativity and
total probability being 1). The constraint in (20c) is a reformu-
lation of the Markovian dynamics for the MDP in terms of new
decision variables δ (s,a) and up(s,a) (see Altman (1999) for
more details). Therefore, one has established the equivalence
and the proof is complete. �

Remark 6. Problem 12 is a polynomial optimization problem
where the objective function and safety constraints in (20b) are
polynomial. It involves the non-convex safety constraints (20b),
thanks to the couplings between communication and control
policies through state-dependent fading wireless channels.

4.1. Relaxed Generalized Geometrical Programming

Problem 12 falls into one type of non-convex opti-
mization problem, called Generalized Geometric Program
(GGP) Maranas & Floudas (1997) where the objective func-
tion and constraints are the difference of two posynomials.
A posynomial is a function such that Gi(x1,x2, . . . ,xn) =

∑
L
j=1 ai jx

bi j1
1 x

bi j2
2 . . .x

bi jn
n where al > 0,∀l and bi j ∈ R.

Let X = [δ (s1,a1),up
∞(p1|s1), . . . ,δ (sN ,aM),up

∞(p`|sN)]
T de-

note the decision vector and ΩX ⊂ RNM`×1
+ denote the feasible

region for X . Problem 12 can be formulated as a GGP as fol-

lows,

minimize
X

G0(X) = G+
0 (X)

subject to Gi(X) = G+
i (X)−G−i (X)≤ 0, i = 1, . . . ,N

Glinear(X)≤ 0, X ∈ΩX
(21)

where G+
i ,G

−
i , i = 1,2, . . . ,N are posynomials and Glinear are

linear functions. To see how safety constraints in (20b) can be
written as the difference of two posynomials, multiplying both
sides of (20b) by ∏s∈S ∑a∈A(s) δ (s,a) leads to

∑
a∈A(s)

Pr{s′|a,s}δ (s,a) ∑
p∈Ωp

up
∞(p|s′)θ(s, p) ∏

s̃ 6=s,s̃∈S
∑

a∈A(s)
δ (s̃,a)︸ ︷︷ ︸

G+
i (X)

−ξ (T )∏
s∈S

∑
a∈A(s)

δ (s,a)︸ ︷︷ ︸
G−i (X)

≤ 0.

The above GGP can be further reformulated by introducing an
exponential transformation, X = exp(Z),

minimize
Z

G̃0(Z) = G̃+
0 − G̃−0

subject to G̃i(Z) = G̃+
i (Z)− G̃−i (Z)≤ 0, i = 1, . . . ,M

Glinear(Z)≤ 0, Z ∈ΩZ .
(22)

where ΩZ = log(ΩX )⊂RNM`×1, G−i =∑ j∈L−i
ai j exp∑

n
l=1 bi jlzl

and G+
i = ∑ j∈L+i

ai j exp∑
n
l=1 bi jlzl .

Since exp(Z) is a convex function in terms of Z, G̃+
i , G̃

−
i , i =

0,1, . . . ,N and Glinear are convex functions as well. However,
the function G̃+

i (Z)− G̃−i (Z) in the safety constraint is gen-
erally not convex Maranas & Floudas (1997). To address the
non-convexity issues, this paper approximates the second terms
G̃−i in the non-convex safety constraints using linear functions.
These two functions can be viewed as upper and lower bounds
on the exponential function. The following two subsections are
devoted to demonstrate how to construct the upper and lower
linear functions for a general multivariate exponential function
G̃−i (Z) for a given domain.

4.1.1. Relaxed GGP with Linear Upper Bound
For a given bounded domain ΩZ = {Z|Z ∈ [ZL,ZH ]} with

ZL = [zL
1 , . . . ,z

L
n ] and ZH = [zH

1 , . . . ,z
H
n ], one can construct a lin-

ear function such that,

G̃−i (Z)≤ AiZ +Bi

Ai = ∑
j∈L−i

ai jAi j[bi j1, . . . ,bi jn], Bi = ∑
j∈L−i

ai jBi j (23)

Ai j =
exp(Y H

i j )− exp(Y L
i j )

Y H
i j −Y L

i j
, Bi j =

Y H
i j exp(Y L

i j )−Y L
i j exp(Y H

i j )

Y H
i j −Y L

i j

Y L
i j =

n

∑
l=1

min(bi jlzL
l ,bi jlzH

l ), Y H
i j =

n

∑
l=1

max(bi jlzL
l ,bi jlzH

l )

(24)
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By replacing G̃−i (Z) with AiZ+Bi,∀i = 0,1, . . . ,M in the trans-
formed GGP (22), one has the convex optimization problem as
follows,

minimize
Z

G̃U
0 (Z) = G̃+

0 (Z)

subject to G̃U
i (Z) = G̃+

i (Z)− (AiZ +Bi)≤ 0, i = 1, . . . ,N
Glinear(Z)≤ 0, Z ∈ΩZ

(25)
Let δi j = Y H

i j −Y L
i j denote the interval width associated with

term j in G̃−i and δi =max j∈L−i
δi j denote the maximum interval

width over all terms in G̃−i . Let ∆i(Z) = AiZ +Bi−G−i (Z) de-
note the gap between G̃−i and AiZ+Bi and ∆∗i =maxZ∈ΩZ ∆i(Z)
denote the maximum gap. The following lemma characterizes
the explicit relationship between the maximum gap ∆∗i and the
size of the region of approximation δi,

Lemma 14. Maranas & Floudas (1997) Consider the trans-
formed posynomial functions G̃−i (Z) and its upper approxima-
tion AiZ+Bi with the region of approximation ΩZ , then, for all
Z ∈ΩZ , the maximum gap ∆∗i ,∀i = 1, . . . ,N defined over ΩZ is
a function of δi as follows,

∆
∗
i ≤ ∑

j∈L−i

eY L
i j

(
1−Θ(δi j)+Θ(δi j) log(Θ(δi j))

)

≤ |L−i |e
Y L

i

(
1−Θ(δi)+Θi log(Θ(δi)

)
where eY L

i = max j∈L−i
eY L

i j and Θ(δ ) = eδ−1
δ

. Furthermore, one

has ∆∗i ∼ O(δ 2
i ).

PROOF. The proof is similar to the one in Maranas & Floudas
(1997) and is therefore omitted in this paper. Please see
Maranas & Floudas (1997) or Hu et al. (2017) for details. �

4.1.2. Relaxed GGP with Linear Lower Bound
Similar to the case of upper bound,a lower bound for the

transformed monomial function G̃−i j(Z) can also be determined
by G̃−i (Z) ≥ AiZ +BL

i where BL
i = ∑ j∈L−i

ai jAi j(1− log(Ai j)).

By replacing G̃−i (Z) with AiZ+BL
i ,∀i= 0,1, . . . ,M in the trans-

formed GGP (22), one has the following convex optimization
with linear lower bounds,

minimize
Z

G̃L
0(Z) = G̃+

0 (Z)− (A0Z +BL
0)

subject to G̃L
i (Z) = G̃+

i (Z)− (AiZ +BL
i )≤ 0, i = 1, . . . ,M

Glinear(Z)≤ 0, Z ∈ΩZ
(26)

The following lemma shows that the maximum gap of for the
lower bound case is the same as the upper bound case.

Lemma 15. Consider the GGP problem (22) and the relaxed
GGP (26) with lower bound linear function AiZ + BL

i , i =
0,1, . . . ,M. Let ∆L∗

i denote the maximum gap defined over the
domain ΩZ , then ∆L∗

i = ∆∗i and ∆L∗
i = O(δ 2

i ) as δ → 0.

PROOF. The proof is similar to the upper bound case and is
omitted here. �

The following lemma shows that the optimal solutions to
the two convex optimizations in (25), (26) are lower and up-
per bounds to the original non-convex problem in (22).

Lemma 16. Let ZH∗ ,Z∗ and ZL∗ denote the optimal solution
to the optimization problems in (25), (22) and (26) respec-
tively, the optimal objective functions then satisfy G̃H

0 (Z
H∗) ≤

G̃0(Z∗) ≤ G̃L
0(Z

L∗) and the solution ZL∗ is a suboptimal so-
lution to the non-convex optimization problem in (22). Let
∆0 := G̃0(ZL∗)−G̃0(Z∗) denote the gap between the suboptimal
and optimal solutions, this gap then has upper upper bound as
∆0 ≤ G̃L

0(Z
L∗)− G̃H

0 (Z
H∗).

PROOF. Let C H
v , Cv and C L

v denote the feasible sets that are
generated by the constraints in optimization problems (25), (22)
and (26) respectively. Since C L

v ⊂ Cv ⊂ C H
v and G̃H

0 (Z) ≤
G̃0(Z) ≤ G̃L

0(Z) hold for any Z ∈ ΩZ , then one has G̃0(ZL∗) ≤
G̃L

0(Z
L∗). By the definition of Z∗ and C L

v ⊂ Cv, one further has
G̃0(Z∗)≤ G̃0(ZL∗)≤ G̃L

0(Z
L∗). The same argument can also be

applied to prove G̃H
0 (Z

H∗)≤ G̃0(Z∗). The proof is complete. �

4.2. Sub-optimality and Distance to Global Optimality
Obtaining an exact global optimum for a non-convex opti-

mization problem is generally NP-hard Vandenberghe & Boyd
(1996), which means that “brute force” type of searching algo-
rithms are necessary to find global solutions. Hence, it is rea-
sonable to expect suboptimal solutions but with certain perfor-
mance guarantee. This paper adopts a Branch-Bound method
under which the lower and upper bounds of the non-convex
GGP Problem in (22) asymptotically approaches the optimal
solutions. The performance refers to the explicit distance char-
acterization between optimal solutions and suboptimal solu-
tions generated by the branch-bound method. Specifically, we
show that the optimality gap can be predicted by measuring the
maximum size of the super-rectangular where the sub-optimal
solutions locate. This prediction gives rise to an upper bound
on the maximum number of stages needed in the Branch-Bound
algorithm to achieve the desired optimality gap.

Theorem 17. Consider the non-convex GGP problem in (22),
relaxed convex problems in (25) and (26) and the Branch-
Bound algorithm, let Z∗, ZH∗ and ZL∗ denote the optimal solu-
tions for the optimization problems (22), (25) and (26) respec-
tively, let δ := max1≤i≤m, j∈L−i(Y

H
i j −Y L

i j ) denote the maximum
size of the super-rectangular region, then the suboptimal solu-
tions ZH∗ and ZL∗ asymptotically converge to optimal solution
Z∗ as the maximum size δ → 0. Moreover, if the constraint
qualification ∃hi ∈Rn,∇G̃i(Z∗)hi < 0,∀i = 1,2, . . . ,M holds at
Z∗, then, one has

|ZH∗ −Z∗|= O(δ ) as δ → 0 (27)

|Z∗−ZL∗ |= O(δ ) as δ → 0 (28)

Furthermore, let DB denote the depth of a full binary tree gen-
erated by the BB algorithm, then the maximum DB to achieve a
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(a) Two Link Planar Elbow Arm

s1 s2

1− u1

u1

1− u2

u2

(b) Forklift Truck: Two-state MDP

Figure 2: Simulation example of robotic manipulator and forklift truck

desired optimality gap δ ∗ is DB ∼ log2(
⌈

δ 0

δ ∗

⌉n
+1) where δ 0 is

the maximum size of the initial super-rectangular region.

PROOF. The proof is omitted. Interested readers are referred to
Hu et al. (2017) for more details.

5. Simulation Results

This section uses the example of a two-link planar elbow arm
and a forklift truck to demonstrate the effectiveness of our co-
design framework in assuring safety and efficiency for factory
automation systems. The system dynamic of a two-link planar
elbow arm is modeled by a nonlinear ODE 1 G(q)+M(q)q̈+
V (q, q̇) = τ where q = [θ1;θ2] are the angles for the upper and
lower links of the planar elbow arm as shown in Figure 2a and
q̇, q̈ are the corresponding angular velocities and accelerations.
τ = [τ1;τ2] ∈ R2 is the system input with τi, i = 1,2 represent-
ing the external torque forces generated by either motors or hy-
draulic actuators. The angular states q, q̇ are measured by lo-
cal sensors and are transmitted through a wireless communica-
tion channel to a remote controller that determines the values of
forces τi, i = 1,2. In this simulation, the control objective of the
robotic arm is to track a predefined desired trajectory defined
as two sinusoidal signal: qd = [g1 sin(2π fdt);g2 sin(2π fdt)]
with desired amplitude g1 = g2 = .1 and frequency fd = .5s−1.
The control input F = [τ1;τ2] is computed by the following
feedback linearization method in Lewis et al. (2003), F =
M(q̂)(q̈d −K[q̂− qd ; ˆ̇q− q̇d ]) +V (q̂, ˆ̇q+G(q̂)) where q̂, ˆ̇q are
the estimates of the angular information depending on the real
time channel conditions and K is the controller matrix gain K =
[5,0,5,0;0,5,0,5]. The other parameters in the simulation are
the length ai and mass weight mi, i = 1,2 of the upper and lower
links, which are set to be m1 = 1,a1 = 2,m2 = 0.1,a2 = 10.

The wireless communication channel used by the robotic arm
is subject to shadow fading which is directly related to the phys-
ical position of the forklift truck. In the simulation, the au-
tonomous forklift system is modeled as a two state MDP as

1Pleaser refer to Lewis et al. (2003) or Hu et al. (2017) for details about the
functions G(q),M(q) and V (q, q̇) for the two link planar elbow arm.
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(a) Max. and Min. value of tracking error: ε = q−qd

(b) Sufficient Ts and necessary Tn bounds on MATI

Figure 3: Almost surely convergence of tracking error on angular states (Left
Figure 3a); Comparison of sufficient and necessary MATI bounds under power
and control strategies Pr{pH |si, i = 1,2}= 1 and u1 = 0.2,0.4,0.6,0.8,1 (Right
Figure 3b).

shown in Figure 2b with s1 representing the physical region
that leads to a good channel condition and s2 denoting the re-
gion that causes a shadow fading. The transitions between
these two states are controlled by two actions ’stay’ and ’go’
and ui, i = 1,2 are control strategies characterizing the prob-
abilities of staying in state si given the current state si, i.e.
ui = Pr{“stay”|si}, i = 1,2. With the two-state MDP model,
the transmitter in the robotic arm can select either high power
pH level or low power pL level (i.e., Ωp = {pH , pL}), to ad-
just the outage probability θ(s, p),s ∈ {s1,s2}, p ∈ {pH , pL} as
shown in the channel model (2). The outage probabilities under
different power levels and MDP states are set to be θ(s1, pL) =
0.4,θ(s1, pH) = 0.1,θ(s2, pL) = 0.9 and θ(s2, pH) = 0.4.

The first simulation result is to show almost sure safety for
the two-link planar elbow arm system under the MATI in (10)
as well as to investigate the tightness of the MATI. A Monte
Carlo simulation method is used to generate 1000 sample paths
with each path being evolved over the same time interval from
0 to 8 seconds.

The transmission time interval T = 0.05 s is selected to be
smaller than the MATI bound τ∗ under the control strategy u1 =
0.6,u2 = 0.4 and the power strategy Pr{pH |si, i = 1,2} = 1.
Figure 3a shows the maximum value marked by the blue line,
and the minimum value marked by the blue line of the track-
ing errors (ei, ėi, i = 1,2) over the 1000 sample paths. One can
see from Figure 3a that the maximum and minimum values of
the tracking errors asymptotically converge to zero as time in-
creases. This is precisely the behavior that one would expect
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if the system is almost surely asymptotically stable. These re-
sults, therefore, seem to confirm our sufficient condition in (10)
for almost sure safety.

Figure 3b shows the comparison of the sufficient
MATI bounds (red stars) obtained by (10) and necessary
MATI bounds (blue squares) generated by the exhaus-
tive search method 2 under different control strategies
u1 = 0.2,0.4,0.6,0.8,1 and u2 = 1− u1. As shown in the
plot, the theoretical sufficient bounds are approximately 5
times conservative than the heuristic necessary bounds. This
performance gap is reasonably close provided that the robotic
arm networked system is highly nonlinear. In fact, similar
conservativeness (around 6− 8 times) were also reported for
deterministic networked systems in Nešić & Teel (2004).
Our results can apply to a more general stochastic networked
system but with similar gaps.

The second simulation results are to verify the effectiveness
and advantages of the proposed co-design paradigm to achieve
both safety and efficiency by comparing it against the separa-
tion design framework proposed in Gatsis et al. (2014). The
co-design optimization problem for the example of forklift and
robotic arm is formulated as follows,

Minimize
{xi}4i=1,{yi}4i=1

4

∑
i=1

cixi +2λ

2

∑
j=1

(y2 j−1cp(pH)

+ y2 jcp(pL))(x2 j−1 + x2 j) (29a)

subject to


(1−α)x1 + x2−αx4 = (1−α)δ0

x1 + x2 + x3 + x4 = 1,
y2 j−1 + y2 j = 1, j = 1,2
yi ≥ 0, xi ≥ 0, i = 1,2,3,4

(29b)


x1y1

x1+x2
θ(s1)+

x4y3
x3+x4

θ(s2)≤ c(T )
x1y2

x1+x2
θ(s1)+

x4y4
x3+x4

θ(s2)≤ c(T )
x2y1

x1+x2
θ(s1)+

x3y3
x3+x4

θ(s2)≤ c(T )
x2y2

x1+x2
θ(s1)+

x3y4
x3+x4

θ(s2)≤ c(T )

(29c)

where {xi} and {yi} represent the decision variables re-
lated to the control and transmit power policies defined
in Problem 12 x1 := δ (s1,“Stay”),y1 := Pr{pH |s1},x2 :=
δ (s1,“Go”),y2 := Pr{pL|s1},x3 := δ (s2,“Stay”),y3 :=
Pr{pH |s2},x4 := δ (s2,“Go”),y4 := Pr{pL|s2}. The inequalities
(29c) are the safety constraints and θ(si)= θ(si, pH)+θ(si, pL)
is the dropout probability at state si. As discussed in Sec-
tion 4, the parameter c(T ) is a function of the transmission
time interval T and system parameters in the arm sys-
tem (See Remark 5). Once T is selected, c(T ) is a fixed
value. ci is the system cost induced by the state in xi,
i.e., c1 = c(s1,“Stay”) = 1.5,c2 = c(s1,“Go”) = .5,c3 =
c(s2,“Stay”) = 1 and c2 = c(s2,“Go”) = 1. The power costs
are cp(pL) = 0.5 and cp(pH) = 2. The other parameters in the
simulation are: δ0 = Pr{s(0) = s1}= 0.5, α = 0.8, and λ = 1.

2The exhaustive search method starts with the sufficient MATI τ∗ bound in
(10), and increase the value of τ∗ until the the maximum and minimum value
of the sample path fail to converge to zero.

By using the GGP formulation and the branch-bound algo-
rithm discussed in Section 4.1, Figure 4 shows that the lower
bounds (blue dashed line) obtained by solving the relaxed con-
vex GGP problem asymptotically approaches the optimal point
(red dashed line) as the number of the iteration increases. This
result confirms the arguments made in Theorem 17 which state
that the global optimal solution is asymptotically achieved by
the branch-bound algorithm.

Figure 5 shows the performance comparison between the
proposed co-design framework and the separation design
method under different transmission time intervals T (Figure
5a) and different fading levels (Figure 5b). In this separation de-
sign framework, the control and communication polices are de-
signed separately to optimize their own individual interests. In
particular, the optimal control policies u∗i , i = 1,2 for the fork-
lift truck are obtained by solving a linear program that is gen-
erated by eliminating the decision variables yi, i = 1,2,3,4 and
safety constraint (29c) in the optimization problem (29) and the
optimal solutions are x∗1 = 0,x∗2 = 0.1,x∗3 = 0.9,x∗4 = 0. Thus,
the optimal control policies are u∗2 = 1,u∗1 = 0 with the optimal
cost 0.55. On the other hand, the optimal power policies for the
robotic arm system are obtained by solving a linear program-
ming problem as below that assumes the worst case impact of
the forklift truck system,

Minimize
{yi}4i=1

(0.2y1 +1.8y3)cp(pH)+(0.2y2 +1.8y4)cp(pL)

subject to



y1 + y2 = 1
y3 + y4 = 1
y1θ(s1)+ y3θ(s2)≤ c(T )
y2θ(s1)+ y4θ(s2)≤ c(T )
yi ≥ 0, i = 1,2,3,4

(30)

Note that the safe region generated by the constraints (30) in
the separation design problem is two times smaller than that
generated by the co-design framework (29c). Indeed, the se-
lected transmission time interval T in the co-design framework
must satisfy 4c(T ) > θ(s1)+ θ(s2) to assure that the safe re-
gion is nonempty while the condition for the safe region to be
nonempty in separation design is 2c(T )> θ(s1)+θ(s2). From
the optimization’s standpoint, although the co-design frame-
work will for sure lead to better system performance than the
separation design method due to its larger safe region, we are
interested in investigating how the performance gap evolves as
a function of T and the outage probability θ(s2) under the co-
design and separation design framework. The sensitivity anal-
ysis for these two frameworks is critical to ensuring a robust
system design.

Figure 5a shows the overall optimal performance (power
costs + system costs in MDP) achieved by the co-
design (marked by red dashed line) and separation de-
sign (marked by blue dashed line) methods under the transmis-
sion time intervals T ranged from 0.001 sec to 0.006 sec. As
expected, the optimal costs generated by the co-design method
over the entire time interval are smaller than that under the
separation method. Moreover, the performance gap between
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Figure 5: The comparison of the optimal performance achieved by co-design
and separation design frameworks under different transmission time intervals T
from 0.001 sec to 0.006 sec (Figure 5a) and shadow fading levels θ(s2, pH) =
0.1 : 0.1 : 0.5 (Figure 5b)

these two methods increases as the T increases from 0.001 sec
to 0.006 sec. These results imply that the optimal perfor-
mance achieved by the co-design method is less sensitive to
the changes of T than that achieved by the separation design
method. It is worth noting that the constrained optimization
problem in (30) for the separation design method will be infea-
sible if T is larger than 0.006 sec.

Figure 5b shows the optimal performance comparison under
different fading levels. In particular, the shadow fading level is
categorized by different outage probability at the shadow state
s2. The value of the outage probability θ(s2, pH) at state s2 is
selected from 0.1 to 0.5 to simulate different levels of shadow
fading. As shown in Figure 5b, the optimal costs achieved
by the co-design framework (marked by red dashed line) are
smaller than the those obtained by the separation design method
(marked by blue dashed line) under all fading levels. Further-
more, the performance gap between these two methods is en-
larged as the outage probability θ(s2) in the bad channel region
s2 increases. In particular, the increase in optimal costs un-

der the co-design framework flattens out even when the fading
levels increases dramatically from 0.2 to 0.5. This simulation
result suggests that the co-design method is more robust against
the shadow fading than the separation method, and is resilient
to significant communication degrations. The resilience of the
co-design framework is particularly important and useful in fac-
tory automation systems where serious shadow fading is often
present in wireless links.

6. Conclusion

This paper examines the safety and efficiency of FANs in
the presence of a shadow fading channel that varies as a func-
tion of the physical states. Sufficient conditions on MATI
are presented to assure almost sure asymptotic stability with-
out external disturbance and stochastic stability in probability
with non-vanishing external disturbance. These safety condi-
tions are shown to be dependent on the transmission power and
the control policies. This observation motivates us to develop
a co-design paradigm to ensure system efficiency under the
safety constraint. The problem of safety-efficiency co-design
is then addressed by solving a two-player constrained coopera-
tive game and the optimal solutions are then obtained by solving
two relaxed convex GGP. The simulation results of a networked
robotic arm and a forklift truck are used to illustrate our find-
ings.

Our current paper focuses on the safety guarantee for the
networked control system (G system) by co-designing efficient
power policies and motion planning policies. It is, however, be-
yond the scope of this paper, if the objective of the co-design
problem also includes ensuring system performance more than
safety, e.g., optimal tracking control for the networked robotic
arms. It is an important and interesting topic that will be pur-
sued in our future work.
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