
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Range Accuracy Analysis for FMCW Systems with Source
Nonlinearity

Wang, Pu; Millar, David S.; Parsons, Kieran; Ma, Rui; Orlik, Philip V.

TR2019-018 April 24, 2019

Abstract
In this paper, we provide theoretical analysis on range estimation in frequency modulated
continuous wave (FMCW) systems when the source nonlinearity is present. Existing literature
on the effect of source nonlinearity on the range estimation is either based on a heuristic
approach or limited to specific algorithms. To provide a unified analysis, we introduce the
framework of misspecified Cramér-Rao bound (MCRB) and derive analytical lower bounds
on the range estimation. Our analysis reveals that the range estimation accuracy is a function
of the nonlinearity function, system parameters (e.g., bandwidth, sampling frequency) and
noise variance. It is also noted that our result converges to the conventional accuracy analysis
for range estimation when the nonlinearity becomes negligible. Finally, numerical results are
provided to verify the analytical bounds.
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Range Accuracy Analysis for FMCW Systems
with Source Nonlinearity

Pu Wang, David Millar, Kieran Parsons, Rui Ma, Phillip V. Orlik

Abstract— In this paper, we provide theoretical analysis on range
estimation in frequency modulated continuous wave (FMCW) systems
when the source nonlinearity is present. Existing literature on the effect
of source nonlinearity on the range estimation is either based on a
heuristic approach or limited to specific algorithms. To provide a unified
analysis, we introduce the framework of misspecified Cramér-Rao bound
(MCRB) and derive analytical lower bounds on the range estimation.
Our analysis reveals that the range estimation accuracy is a function of
the nonlinearity function, system parameters (e.g., bandwidth, sampling
frequency) and noise variance. It is also noted that our result converges
to the conventional accuracy analysis for range estimation when the
nonlinearity becomes negligible. Finally, numerical results are provided
to verify the analytical bounds.

Index Terms— Range estimation, source nonlinearity, frequency mod-
ulated continuous wave, Cramér-Rao bound.

I. INTRODUCTION

Linearly swept or frequency modulated continuous wave (FMCW)
sources in the radio and optical frequency ranges have been used
to estimate the distance of reflectors with high resolution, low
hardware cost, and lightweight signal processing. FMCW radar,
optical frequency-domain reflectometry (OFDR) and swept-source
optical coherence tomography (SS-OCT) are typical applications of
linear sweep sources.

An FMCW system transmits linearly frequency-modulated contin-
uous waves, whose frequency pattern follows a sawtooth or triangular
pattern with respect to time [1]–[3]. Reflected signals from various
objects of interest are mixed with the local oscillator signal, which
is used to generate the transmitted signal, to produce analog beat
signals and output digital beat signals via analog-to-digital converters
(ADCs). Since the peak frequency of beat signal is proportional to
the distance of object, a standard fast Fourier transform (FFT) of the
beat signal can be used to identify peaks and, hence, estimate the
distance.

One of key issues for the FMCW system is that, as shown in Fig. 1,
range resolution and estimation accuracy degrade when the source is
not linearly swept [4]–[9]. The source nonlinearity can be caused by
phase noise at local oscillators, low-cost voltage controlled oscillator
(VCO), imprecise frequency tracking, switching in digital circuits,
and the transient response of the phase-locked loop (PLL) component.
Moreover, the nonlinearity effect on the range estimation is range-
dependent, smaller at short measurement distances and greater at long
measurement distances. For short-distance targets, it is possible to
compensate the nonlinearity in the beat signal directly using the
original nonlinearity at the source. For long-distance targets, on
the other hand, the nonlinearity effect aggravates along with target
distance, leading to a primary disturbance source.

The nonlinearity can be compensated with hardware and software
solutions. Hardware solutions include the use of a predistorted VCO
control voltage to have a linear FM output and complex synthesizer
with phase-locked loop. However, the former approach fails when
the external conditions, e.g., temperature, are changing, while the
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(a) linearly swept source
with sinusoidal source
nonlinearity in the time-
frequency domain.

(b) Range Estimation without (top) and
with (bottom) sinusoidal source nonlinear-
ity.

Fig. 1. The impact of a sinusoidal source nonlinearity on FMCW-based
range estimation in the optical frequency range.

latter requires costly devices. The use of direct digital synthesis
(DDS) offers effective solutions, but the transmitted bandwidth is still
limited when compared to the one obtained by directly sweeping the
VCO [10]. Different local oscillators can be used to transmit large
bandwidths at the cost of increased system complexity.

On the other hand, software solutions mostly use a reference point
to estimate the source nonlinearity function [1], [3], [9], [11]–[14].
With the estimated nonlinearity function, the nonlinearity effect is
compensated with respect to the beat signal to restore the correct
phase information. These computational methods include resampling
of the data in order to have a linear behavior and matched filtering
with a function estimated from the reference response. However,
these approaches are based on local approximations of the source
nonlinearity function, which limits their applicability to short-range
applications. [1] and [2] presented a nonlinearity correction algo-
rithm which removes the nonlinearity effects over the entire range
profile. The method is based on the residual-video-phase (RVP)
correction and operates on the de-ramped data. When the source
nonlinearity is time-varying due to external operating conditions,
e.g., temperature, vibration, and electromagnetic noise, reference-
based approaches have to repeat the step of estimating the source
nonlinearity function and update it in the nonlinearity correction
method [14]. [9] presented a parametric reference-free approach to
jointly estimate range parameters of multiple reflectors and the source
nonlinearity function from the beat signal. Given a parametric (e.g.,
sinusoidal or polynomial) model for the nonlinearity function, the
beat signal can be shown to be the sum of K responses characterized
by K reflectors and a shared set of parametric coefficients for the
nonlinearity function. Therefore, by jointly estimating the two sets of
unknown parameters from the K-component beat signal, the range
information can be recovered. It is noted that this reference-free
approach requires the number of reflectors to be above a threshold
that is determined by the parametric model used for the source
nonlinearity.

In practice, the source nonlinearity is often ignored due to the high
cost of hardware solutions and increased computational complexity
of software solutions. Therefore, there is considerable interest to
understand the performance loss when source nonlinearity is present
[15]–[18]. [15] characterized the nonlinearity effect due to the phase
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noise at local oscillators and its contribution to the intermediate
frequency (IF) spectrum by modeling the phase noise as a stochastic
process. [10] used a simple definition of nonlinearity of a W-band
FMCW sensor as the ratio of change in the frequency slope to the
slope. The resulting range resolution is defined as the root mean
square of the conventional range resolution and the product between
the nonlinearity term and target range. As the nonlinearity term
increases or the range is increased, the range resolution becomes
worse and hence target resolving capability is reduced. [16] focused
on analyzing the effects of systematic nonlinearities on bias and
variance of the Fourier transform-based target range estimates. [17]
extended similar analysis to cooperative radar systems. In [18], the
FMCW nonlinearity was measured and then characterized as the
combination of 1) random deviation due to phase noise and 2)
periodic (sinusoidal) deviations due to switching in digital circuits
or transient response of the PLL component. Given such nonlinearity
characterization, the standard CRB framework was used to analyze
the dependence of target range estimation accuracy on the frequency
ramp nonlinearity, phase noise, and SNR.

In this paper, we provide a unified analysis on FMCW-based
range estimation when the source nonlinearity is present. Compared
with previous studies that are either based on a heuristic approach
or limited to specific algorithms, we introduce the framework of
misspecified Cramér-Rao bound (MCRB) and derive analytical lower
bounds on the FMCW-based range estimation directly as an explicit
function of source nonlinearity, system parameters (e.g., bandwidth,
sampling frequency) and SNR. It is also noted that our result
converges to the conventional accuracy analysis for FMCW-based
range estimation when the nonlinearity becomes negligible. Finally,
numerical results are provided to verify the analytical bounds.

The remainder of this paper is organized as follows. Section II
introduces the FMCW-based range estimation and the effect of
source nonlinearity. The misspecified CRB is derived in details in
Section III. Numerical examples are provided in Section IV to verify
the analytical result, followed by a conclusion in Section V.

II. NONLINEARITY-INDUCED RANGE DISTORTION IN FMCW
SYSTEMS

Consider an FMCW system transmitting a unit-magnitude linearly
frequency modulated signal

st(t) = ej2π(fct+0.5αt2+ε(t)), (1)

where t is the time variable, fc is the carrier frequency, α is the
frequency sweep rate or chirp rate, and ε(t) is the source nonlinearity
phase function. For a perfect FMCW source, we have ε(t) = 0.

For a stationary reflector at a distance of R, the received signal is
a delayed and attenuated copy of the transmitted signal

sr(t) = Aejφ0st(t− τ)

= Aejφ0ej2π(fc(t−τ)+0.5α(t−τ)2+ε(t−τ)), (2)

where Aejφ0 is the complex amplitude reflected from the target and
τ = 2R/c is the time delay. It is then mixed with the transmitted
signal to generate the beat signal.

sb(t) = sr(t)s
∗
t (t)

= Aejφ0ej2π(−fcτ+ατt−0.5ατ2+(ε(t)−ε(t−τ))). (3)

With a perfect FMCW source, ε(t)−ε(t−τ) = 0 in (3) and the beat
signal is a complex sinusoidal signal with fb = ατ (or, equivalently,
angular frequency ωb = 2πατ ). When the source nonlinearity ε(t) is
present, the beat signal in (3) is no longer a single-tone signal due to
the time-dependent term ε(t)−ε(t−τ) 6= 0 in the phase. As a result,

the spectral peak of beat signal can be shifted and spread, resulting in
degradation in the range resolution and estimation accuracy. Fig.1 (a)
shows the time-frequency spectrum of the linearly swept source signal
contaminated by a sinusoidal source nonlinearity due to switching in
digital circuits or transient response of the PLL component. Its impact
on the range estimation is clearly seen in Fig.1 (b) as the spectrum
peak spreads with multiple spurious peaks.

III. RANGE ACCURACY ANALYSIS IN THE PRESENCE OF FMCW
SOURCE NONLINEARITY

In the following, we characterize performance degradation due to
the presence of FMCW source nonlinearity by the means of the
misspecified CRB [19]–[23]. To be specific, our goal is, for a given
source nonlinearity, to derive the range estimation accuracy as a
function of the source nonlinearity and other parameters such as the
bandwidth, sampling frequency and the SNR.

To be precise, the noisy beat signal xn = sb(n) + v(n) follows a
complex Gaussian probability density function (pdf),

px(xn) = CN (µ̄n, σ̄
2), (4)

where the mean is given by the noise-free beat signal in (3)

µ̄n = sb(n) = sb(t)|t=n∆T

= Aej2π(ατn∆T+φ̄0+(ε(n∆T )−ε(n∆T−τ))

= Aej2π(f̄0n+φ̄0+(ε(n∆T )−ε(n∆T−τ)) (5)

where f̄0 = ατ∆T , φ̄0 = fcτ − 0.5ατ2 + φ0, ε(n) 6= 0, and the
noise variance is σ̄2. Here we use [̄·] to denote the true parameters
in the true signal model.

Due to computational complexity and hardware constraints, the
FMCW system often ignores the presence of the source nonlinearity
ε(t) and simply treats the observed beat signal as if the source
nonlinearity term is zero, i.e., ε(t) = 0, thus yielding a misspecified
signal model, F ,

fx(xn|θ) = CN (µn(ψ), σ2), (6)

where µn = Aej2π(f0n+φ0) is the ideal discrete-time beat signal
with ε(t) = 0. The corresponding parameters in the assumed signal
model are grouped as θ = [ψT , σ2]T with ψ = [f0, φ0, A].

The FMCW-based range estimation is to estimate the signal
parameters ψ (particularly f0 which is directly related to the range)
and the noise variance σ2 according to (6) from observed beat
signal actually generated from (4). The problem of interest here is
to fully characterize the range estimation accuracy given the model
mismatch between (4) and (6). For this purpose, we introduce below
the misspecified CRB for analyzing accuracy of FMCW-based range
estimation in the presence of source nonlinearity.

A. Pseudo-True Parameter

To derive the misspecified CRB, we need to first find a unique
set of pseudo-true parameters for ψ and σ2 in the assumed signal
model of (6) which has the smallest Kullback-Leibler divergence
(KLD) with respect to the true signal model of (4). The pseudo-true
parameter set represents a surrogate parameter set in the assumed
signal model of (6). The distance between the true and pseudo-true
parameters contributes the range estimation error due to the model
mismatch.

Given (4) and (6), the KLD between the two signal models is given
as

D(px‖fx) =

∫
ln

(
px(x)

fx(x|θ)

)
px(x)dx

= N ln
σ2

σ̄2
−N +N

σ̄2

σ2
+
‖µ(ψ)− µ̄‖2

σ2
(7)
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Given the true µ̄ and σ̄2, we can first minimize the KLD over the
nonlinear parameter set ψ, equivalent to minimizing ‖µ(ψ)− µ̄‖2,
i.e.,

ψ0 = [f0, φ0, A0]T = arg min
ψ
‖µ̄− µ(ψ)‖2 (8)

= arg min
ψ

N−1∑
n=0

∣∣∣µ̄n −Aej2π(f0n+φ0)
∣∣∣2

which can be solved by a nonlinear least squared method or a
noiseless phase unwrapping method. With ψ0 and define |µ0|2 =
‖µ̄− µ(ψ0)‖2/N , we can minimize the KLD over σ2 as

σ2
0 = σ̄2 + |µ0|2. (9)

In other words, in (8), the pseudo-true signal parameters ψ0 minimize
the total distance over the two means µ̄n and µn(ψ). In (9), the
pseudo-true nuisance parameter σ2

0 is found to be the sum of the
true noise variance σ̄2 and the squared residual term |µ0|2.

Grouping the pseudo-true parameter set as θ0 = [ψT0 , σ
2
0 ]T ,

we can define the difference vector as r = θ̄ − θ0, where θ̄ =
[f̄0, φ̄0, Ā, σ̄

2]T is the true parameter set in (4).

B. Misspecified CRB

For any unbiased estimator θ̂(x), i.e., Ep{θ̂(x)} = θ0 (unbiased
with respect to the pseudo-true parameters θ0), then the error
covariance matrix of the mismatched estimator is given as

Cp(θ̂(x),θ0) = Ep
{

(θ̂(x)− θ0)(θ̂(x)− θ0)T
}

(10)

where θ0 is the pseudo-true parameter (defined above), is lower
bounded by the misspecified CRB [22]

Cp(θ̂(x),θ0) � A−1
θ0

Bθ0A
−1
θ0

= MCRB(θ0) (11)

where Aθ0 and Bθ0 are two generalization of the conventional FIM
in the matched signal model case. Specifically, Aθ0 and Bθ0 are,
respectively, defined as

[Aθ0 ]ij = Ep
{
∂2 ln fx(x|θ)

∂θi∂θj
|θ=θ0

}
, (12)

with elements obtained by taking the expectation of the second partial
derivatives of the assumed log-likelihood function ln fx(x|θ) of (6)
over the true pdf px(x) of (4), and

[Bθ0 ]ij = Ep
{
∂ ln fx(x|θ)

∂θi
|θ=θ0

∂ ln fx(x|θ)

∂θj
|θ=θ0

}
, (13)

with elements obtained by taking the expectation of the cross product
of first partial derivatives of the assumed log-likelihood function
ln fx(x|θ) over the true pdf px(x). In the matched signal model
case, we have Aθ0 = −Bθ0 .

1) Log-Likelihood Function and Its Derivatives: From (6), the
assumed log-likelihood function is given as

ln fx(x|θ) = −N lnσ2 − ‖x− µ(ψ)‖2

σ2
. (14)

which leads to µn = Aej2π(f0n+φ0)

∂ ln fx(x|θ)

∂f0
= 2σ−2<

{
xH

∂µ

∂f0

}
=

4π

σ2
<
{
jxH(µ� n)

}
(15)

∂ ln fx(x|θ)

∂φ0
= 2σ−2<

{
xH

∂µ

∂φ0

}
=

4π

σ2
<
{
jxHµ

}
(16)

∂ ln fx(x|θ)

∂A
= 2σ−2<

{
xH

∂µ

∂A

}
− 2σ−2NA

=
2

σ2A
<
{
xHµ

}
− 2σ−2NA (17)

∂ ln fx(x|θ)

∂σ2
= −Nσ−2 + σ−4‖x− µ(ψ)‖2 (18)

2) The Generalized FIM Aθ0 and Bθ0 : The matrix Aθ0 is
obtained by taking the expectation of the second partial derivatives of
the assumed log-likelihood function ln fx(x|θ) of (6) over the true
pdf px(x) of (4). Plugging (14) into (12) yields

Af0,f0 = −8π2

σ2
0

<
{
µ̄H(µ� n� n)

}
= −8π2

σ2
0

∑
n

n2ζ<(n)

Aφ0,φ0 = −8π2

σ2
0

<
{
µ̄Hµ

}
= −8π2

σ2
0

∑
n

ζ<(n)

AA,A = −2Nσ−2
0 , Aσ2,σ2 = −Nσ−4

0

Af0,φ0 = −8π2

σ2
0

<
{
µ̄H(µ� n)

}
= −8π2

σ2
0

∑
n

nζ<(n)

Af0,A =
4π

σ2
0A
<
{
jµ̄H(µ� n)

}
= − 4π

σ2
0A

∑
n

nζ=(n)

Af0,σ2 = −4π

σ4
0

<
{
jµ̄H(µ� n)

}
=

4π

σ4
0

∑
n

nζ=(n)

Aφ0,A =
4π

σ2
0A
<
{
jµ̄Hµ

}
= − 4π

σ2
0A

∑
n

ζ=(n)

Aφ0,σ2 = −4π

σ4
0

<
{
jxHµ

}
=

4π

σ4
0

∑
n

ζ=(n)

AA,σ2 = − 2

A0σ4
0

∑
n

η<(n) + 2σ−4
0 NA0,

where ζ<(n) = <{µ̄∗(n)µ0(n)} and ζ=(n) = ={µ̄∗(n)µ0(n)} are
the real and imaginary parts of the n-th component of µ̄∗ � µ0.

Next, the other generalization of the FIM is the matrix Bθ0 of
(13) whose elements are obtained by taking the expectation of the
cross product of first partial derivatives of the assumed log-likelihood
function ln fx(x|θ) over the true pdf px(x). Plugging (14) into (13)
yields

Bf0,f0 =
8π2σ̄2A2

0

σ4
0

∑
n

n2 +
16π4

σ4
0

(∑
n

nζ=(n)

)2

Bφ0,φ0 =
8π2σ̄2A2

0N

σ4
0

+
16π2

σ4
0

(∑
n

ζ=(n)

)2

BA,A =
4

σ4
0A

2
0

(
NA2

0 −
∑
n

ζ<(n)

)2

+
2Nσ̄2

σ4
0

Bσ2,σ2 =
Nσ̄2(2σ2

0 − σ̄2)

σ8
0

Bf0,φ0 =
8π2σ̄2A2

0

σ4
0

∑
n

n+
16π2

σ4
0

(∑
n

nζ=(n)

)(∑
n

ζ=(n)

)

Bf0,A =
8π

σ4
0A0

(∑
n

nζ=(n)

)(
NA2

0 −
∑
n

ζ<(n)

)

Bf0,σ2 =− 4πσ̄2

σ6
0

(∑
n

nζ=(n)

)

Bφ0,A =
8π

σ4
0A0

(∑
n

ζ=(n)

)(
NA2

0 −
∑
n

ζ<(n)

)

Bφ0,σ2 =− 4πσ̄2

σ6
0

(∑
n

ζ=(n)

)

BA,σ2 =− 2σ̄2

σ6
0A0

(
NA2

0 −
∑
n

ζ<(n)

)
.

3) Convergence to the conventional FIM: If there is no model
mismatch and the assumed signal model is the true signal model,
i.e., µ̄(n) = µ0(n) and σ̄2 = σ2

0 , and notice that ζ<(n) = A2 and
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(a) An FMCW spectra (b) Frequency deviation as a func-
tion of bandwidth

Fig. 2. The time-frequency pattern of the FMCW source (a) and frequency
deviation as a function of bandwidth (b).

(a) Range spectrum without source
nonlinearity

(b) Range spectrum with source non-
linearity

Fig. 3. The effect of source nonlinearity of a 79-GHz FMCW system.

ζ=(n) = 0, the above misspecified FIMs Aθ0 and Bθ0 reduce to
the conventional ones

−Aθ0 = Bθ0 = I =



8π2A2
0

∑
n
n2

σ2
0

8π2A2
0

∑
n
n

σ2
0

0 0

8π2A2
0

∑
n
n

σ2
0

8π2A2
0N

σ2
0

0 0

0 0 2N
σ2
0

0

0 0 0 N
σ4
0

 .
(19)

On the other hand, we have −Aθ0 6= Bθ0 6= I in the case of
mismatched model.

C. A Lower Bound on Mean Squared Error of Range Estimation

Given the difference vector r = θ̄−θ0 and the misspecified CRB
of (11), a lower bound on the MSE for the estimate of the true
parameter vector θ̄ under the source nonlinearity is given as

Mp(θ̂(x), θ̄)
4
= Ep

{
(θ̂(x)− θ̄)(θ̂(x)− θ̄)T

}
= Cp(θ̂(x), θ̄) + rrT

� A−1
θ0

Bθ0A
−1
θ0

+ rrT (20)

It is seen that the MSE of the parameter estimates is bounded by the
misspecified CRB and the outer product of the difference vector. For
the range estimate, the lower bound is given as

Mp(R̂(x), R̄) �
( c

2α∆T

)2 [
A−1
θ0

Bθ0A
−1
θ0

]
1,1

+
( c

2α∆T

)2

(f0 − f̄0)2 (21)

where [·]1,1 denotes the first diagonal element of the matrix.

IV. NUMERICAL RESULTS

In the following, we consider an automotive FMCW radar at the
79-GHz frequency band. The system parameters are given as: the

Fig. 4. Misspecified CRB on estimation of pseudo-true range parameter.

Fig. 5. Lower bounds on estimation of pseudo-true and true range parameters.

center frequency fc = 79 GHz, the bandwidth B = 4 GHz, the
chirp duration T = 65 µs, the sampling frequency fs = 20 MHz,
and the target is located 10m away from the FMCW transceiver.
Fig.2 (a) shows the spectra of ideal (without source nonlinearity) and
effectively transmitted (with source nonlinearity) FMCW sources and
Fig.2 (b) shows the frequency deviation as a function of sweeping
bandwidth. It is seen that the effectively transmitted FMCW wave-
form has a slightly higher frequency (up to 0.15%) than the ideal
frequency at the beginning and lower frequency (up to −2.5%) at
the end. The effect of this source nonlinearity on the range spectrum
is shown in Fig. 3. In Fig. 3 (a), the spectrum peak is well focused
on the true target distance of 10 m, while the peak in Fig. 3 (b) is
distorted and slightly shifted to R0 = 9.99955m along with multiple
sidelobes.

Fig. 4 shows the misspecified CRB of (11) using the generalized
FIM Aθ0 and Bθ0 and compares it with mean-squared errors (MSEs)
obtained from Monte-Carlo simulations. It is found that the maximum
likelihood range estimator is unbiased with respect to the pseudo-
true range parameter R0 = 9.99955m. For a wide range of SNRs,
the MSEs (denoted as blue dots) with respect to the pseudo-true
range parameter match well with the analytical misspecified CRB
(denoted as blue dash line). By taking into account the difference
between the pseudo-true and true range parameters, we can compute
the lower bound of (21) for the MSEs of range estimates with
respect to the true range at 10m. This lower bound (denoted as blue
dash line) on the true range estimation is compared with the MSEs
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(denoted as blue dots) with respect to the true range parameter in
Fig. 5. It is shown that, at high SNRs, the MSEs are dominated by
the deterministic deviation between the pseudo-true and true range
parameters due to the source nonlinearity, while the noise-induced
estimation variance becomes more significant when the SNR is lower.
In Fig. 5, the misspecified MSE and lower bound are also compared
with the standard CRB (denoted as black solid line) and MSEs
(denoted as black diamond) when a perfect FMCW source is used.
The performance gap between the blue and black curves characterizes
the range accuracy degradation due to the source nonlinearity.

V. CONCLUSION

In this paper, we provided a theoretical analysis on the effect of
FMCW source nonlinearity on range estimation in the presence of
source nonlinearity. The theoretical analysis was built on the misspec-
ified CRB framework which first identifies a surrogate (pseudo-true)
range parameter in the misspecified signal model and then provides
a lower bound on the pseudo-true range parameter estimation. To
achieve this goal, we derived two generalized Fisher information
matrices which couple the true and misspecified signal models. With
the misspecified CRB, we provide a lower bound on the true range
estimation as a function of source nonlinearity function, system
parameters (bandwidth, sampling frequency, etc.) and SNR.
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