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Abstract
This paper studies parameter estimation of a coupled mixture of polynomial phase signal
(PPS) and sinusoidal frequency modulated (FM) signal, a newly introduced model motivated
by industrial applications. Particularly, we analytically evaluate the estimation performance
(or performance loss) via the misspecified Cramer-Rao bound (CRB) when system design-
ers choose existing efficient estimation algorithms designed for an independent (decoupled)
mixture model due to hardware limits. Our analysis provides an analytical tool to conve-
niently evaluate performance loss if the implemented system ignores the coupling effect. The
achievability of the misspecified CRB is verified by numerical examples.
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ABSTRACT

This paper studies parameter estimation of a coupled mixture of
polynomial phase signal (PPS) and sinusoidal frequency modulated
(FM) signal, a newly introduced model motivated by industrial appli-
cations. Particularly, we analytically evaluate the estimation perfor-
mance (or performance loss) via the misspecified Cramér-Rao bound
(CRB) when system designers choose existing efficient estimation
algorithms designed for an independent (decoupled) mixture model
due to hardware limits. Our analysis provides an analytical tool to
conveniently evaluate performance loss if the implemented system
ignores the coupling effect. The achievability of the misspecified
CRB is verified by numerical examples.

Index Terms— Parameter estimation, polynomial phase signal,
frequency modulation, Cramér-Rao bounds.

1. INTRODUCTION

The independent mixture of polynomial phase signal (PPS) and si-
nusoidal frequency modulated (FM) signal, also referred to the hy-
brid sinusoidal FM-PPS signal model [1], has been found in numer-
ical applications such as electromagnetic sensing, acoustics and op-
tics [1–8]. Particularly, the independent mixture signal assumes the
following signal model

y(n) = x(n) + v(n), n = 0, 1, · · · , N − 1, (1)

= Ae
j2π

[
P∑
p=0

apn
p

p!
+b sin(2πf0n+φ0)

]
+ v(n)

whereA is the unknown amplitude, b > 0 is the sinusoidal FM mod-
ulation index, f0 is the sinusoidal FM frequency, φ0 is the initial
phase, {ap}Pp=0 are the PPS phase parameters, P is the polynomial
order, v(n) is the white Gaussian noise with an unknown variance
σ2, N is the number of samples. We refer to this model as the in-
dependent mixture model simply due to the independence between
f0 and {ap}Pp=0. There are several methods for parameter estima-
tion of the independent mixture signal such as the exact ML estima-
tion method which yields to a multi-dimensional nonlinear optimiza-
tion solution, the phase unwrapping least square (PULS) method, the
HAF method [1], and a recently introduced local high-order phase
function (LHPF) [7]. For the independent mixture model, the CRBs
for any unbiased estimator were established in [1].

On the other hand, the coupled mixture model of the PPS and
sinusoidal FM signal was recently introduced in [9, 10] for contact-
less electromagnetic positioning systems in industrial applications.

(a) The independent mixture (b) The coupled mixture

Fig. 1. The independent and coupled mixture models.

Specifically, the coupling is introduced to express the sinusoidal FM
frequency as a function of the PPS parameters, i.e.,

x(n) = Ae
j2π

[
P∑
p=0

apn
p

p!
+b sin(2πc0

∑P
p=1 apn

p/p!+φ0)

]
, (2)

where the fundamental sinusoidal FM frequency f0 is now coupled

with the PPS phase parameters a
4
= [a1, · · · , aP ]T as f0(n;a) =

c0
∑P
p=1 apn

p−1/p! where c0 is a scaling factor. Fig. 1 shows the
(unwrapped) phase functions for the independent and coupled mix-
ture models. For the independent mixture model, the PPS compo-
nent is indicated by the red line with a smooth up-going trend, while
the ripples around the blue line indicate the sinusoidal FM compo-
nent. It is clear to see that the ripple frequency stays constant, which
is unlike the case of the coupled mixture where the ripple frequency
increases as the PPS phase is larger. The corresponding CRBs for
the coupled mixture model, referred to as the coupled CRB, were
derived in [9]. It reveals that lower bounds for estimating the PPS
parameters {ap} can be obtained as the coupled sinusoidal FM fre-
quency provides additional information for the PPS parameters.

However, in practice, fully accounting for the coupling between
the PPS and sinusoidal FM components often leads to computa-
tionally more expensive algorithms. For instance, [10] introduced
a phase unwrapping approach followed by nonlinear least square
which involves a high-dimensional search, while [11,12] proposed a
multi-stage short-time Fourier transform (STFT) approach followed
by bias correction. Due to hardware limits (computational power and
memory), practical applications may prefer to directly adopt existing
algorithms for the independent mixture model that are computation-
ally lighter, and simply ignore the coupling effect. In this case, it
is our interest to understand the performance loss when one applies
existing estimation algorithms for the independent mixture model to



the coupled mixture signal. To this end, we derive the misspecified
CRB on parameter estimates of the coupled mixture model when
the independent mixture model is used as the assumed signal model.
Our analysis reveals that, when the coupled sinusoidal FM compo-
nent is weak, the performance loss for the PPS phase parameters is
almost negligible, while other parameters such as the noise variance
suffer from larger losses. Numerical examples verify the achievabil-
ity of the misspecified CRB.

2. MISSPECIFIED CRB FOR COUPLED MIXTURE
MODEL

In the following, we characterize performance tradeoff due to model
misspecification. For this purpose, we adopt the misspecified CRB
introduced in [13–16] for using the independent mixture model to
replace the true coupled mixture model.

To be precise, signal observations are generated from a Gaussian
probability density function (pdf) following the true coupled signal
model of (2),

px(xn) = CN (µ̄n, σ̄
2), (3)

where the mean is given as

µ̄n = Āe
j2π

[
P∑
p=0

āpn
p

p!
+b̄ sin(2π

P∑
p=1

āpn
p

p!
+φ̄0)

]
, (4)

and the variance is σ̄2. Here we use [̄·] to denote the true parameters
in the true signal model.

Due to imperfect knowledge on the true signal model, or for
the sake of a simpler implementation, the user assumes the signal
observations are generated under a misspecified signal model, i.e.,
the independent mixture signal model of (1), F ,

fx(xn|θ) = CN (µn(ψ), θ), (5)

where θ = [ψT , σ2]T with ψ = [a0, a1, · · · , aP , b, f0, φ0, A], and
µn(ψ) = A exp{j2π[

∑P
p=0

apn
p

p!
+ b sin(2πf0n + φ0)]}. As a

result, for the user, the problem of interest is to estimate the signal
parameters ψ and the noise variance σ2 according to (5).

2.1. Pseudo-True Parameter

To derive the misspecified CRB, we need to first find a unique set of
pseudo-true parameters forψ and σ2 in the assumed signal model of
(5) which has the smallest Kullback-Leibler divergence (KLD) with
respect to the true signal model of (3). Given (3) and (5), the KLD
between the two signal models is given as

D(px‖fx) =

∫
ln

(
px(x)

fx(x|θ)

)
px(x)dx

= N ln
σ2

σ̄2
−N +N

σ̄2

σ2
+
‖µ(ψ)− µ̄‖2

σ2
(6)

Given the true µ̄ and σ̄2, we can first minimize the KLD over the
nonlinear parameter set ψ, equivalent to minimizing ‖µ(ψ)− µ̄‖2,
i.e.,

ψ0 = arg min
ψ
‖µ̄− µ(ψ)‖2 (7)

= arg min
ψ

N−1∑
n=0

∣∣∣∣∣∣µ̄n −Ae
j2π

[
P∑
p=0

apn
p

p!
+b sin(2πf0n+φ0)

]∣∣∣∣∣∣
2

which can be solved by a nonlinear least squared method or a noise-
less phase unwrapping method. With ψ0 and define |µ0|2 = ‖µ̄ −
µ(ψ0)‖2/N , we can minimize the KLD over σ2 as

σ2
0 = σ̄2 + |µ0|2. (8)

In other words, in (7), the pseudo-true signal parameters ψ0 mini-
mize the total distance over the two means µ̄n and µn(ψ). In (8),
the pseudo-true nuisance parameter σ2

0 is found to be the sum of the
true noise variance σ̄2 and the squared residual term |µ0|2. Overall,
the pseudo-true parameter set is given as θ0 = [ψT0 , σ

2
0 ]T .

2.2. The Matrix Aθ0

Like the conventional CRB, we need to compute FIM-like matri-
ces. For the misspecified CRB, the first generalization of the FIM
is the so-called matrix Aθ0 whose elements are obtained by taking
the expectation of the second partial derivatives of the assumed log-
likelihood function ln fx(x|θ) of (5) over the true pdf px(x) of (3),
i.e.,

[Aθ0 ]ij = Ep
{
∂2 ln fx(x|θ)

∂θi∂θj
|θ=θ0

}
, (9)

where Ep{·} indicates the expectation operator with respect to the
true pdf px(x). From (5), the assumed log-likelihood function is
given as

ln fx(x|θ) = −N lnσ2 − ‖x− µ(ψ)‖2

σ2
. (10)

Plugging (10) into (9) yields

Aap,aq = − 8π2

p!q!σ2
0

∑
n

np+qη<(n)

Ab,b = −8π2

σ2
0

∑
n

s2(n)η<(n)

Af0,f0 = −16π3b0
σ2

0

∑
n

n2 [2πb0c2(n)η<(n)− s(n)η=(n)
]

Aφ0,φ0 = −4πb0
σ2

0

∑
n

[
2πb0c

2(n)η<(n)− s(n)η=(n)
]

AA,A = −2Nσ−2
0 , Aσ2,σ2 = −Nσ−4

0

Aap,b = − 8π2

p!σ2
0

∑
n

nps(n)η<(n)

Aap,f0 = −16π3b0
p!σ2

0

∑
n

np+1c(n)η<(n)

Aap,φ0 = −8π2b0
p!σ2

0

∑
n

npc(n)η<(n)

Aap,A = − 4π

p!A0σ2
0

∑
n

npη=(n)

Aap,σ2 =
4π

p!σ4
0

∑
n

npη=(n)

Ab,f0 = −8π2

σ2
0

∑
n

n [πb0s(n)η<(n) + c(n)η=(n)]

Ab,φ0 = −4π

σ2
0

∑
n

[πb0s(n)η<(n) + c(n)η=(n)]



Ab,A = − 4π

A0σ2
0

∑
n

s(n)η=(n)

Ab,σ2 =
4π

σ4
0

∑
n

s(n)η=(n)

Af0,φ0 = −8π2b0
σ2

0

∑
n

n
[
2πb0c

2(n)η<(n)− s(n)η=(n)
]

Af0,A = −8π2b0
A0σ2

0

∑
n

nc(n)η=(n)

Af0,σ2 =
8π2b0
σ4

0

∑
n

nc(n)η=(n)

Aφ0,A = − 4πb0
A0σ2

0

∑
n

c(n)η=(n)

Aφ0,σ2 =
4πb0
σ4

0

∑
n

c(n)η=(n)

AA,σ2 = − 2

A0σ4
0

∑
n

η<(n) + 2σ−4
0 NA0,

where s(n) = sin(2πf0n+φ0), c(n) = cos(2πf0n+φ0), η<(n) =
<{µ̄∗(n)µ0(n)} and η=(n) = ={µ̄∗(n)µ0(n)}.

Remark: Convergence to the Independent FIM: If the assumed
signal model is the true signal model, i.e., µ̄(n) = µ0(n) and σ̄2 =
σ2

0 , and notice that η<(n) = A2 and η=(n) = 0, the above misspec-
ified FIM matrix Aθ0 reduces to the FIM of [1] for the independent
mixture model up to a sign change, i.e., Iθ = −Aθ0 . For instance,

Iap,aq = −Aap,aq =
8π2A2

p!q!σ2

∑
n

np+q

Iap,b = −Aap,b =
8π2A2

p!σ2

∑
n

np sin(2πf0n+ φ0)

converge to Eqs. (66) and (70) of [1].

2.3. The Matrix Bθ0

The second generalization of the FIM is the so-called matrix Bθ0

whose elements are obtained by taking the expectation of the cross
product of first partial derivatives of the assumed log-likelihood
function ln fx(x|θ) over the true pdf px(x), i.e.,

[Bθ0 ]ij = Ep
{
∂ ln fx(x|θ)

∂θi
|θ=θ0

∂ ln fx(x|θ)

∂θj
|θ=θ0

}
, (11)

where Ep{·} indicates the expectation operator with respect to the
true pdf px(x). If there is no model mismatch, we have −Aθ0 =
Bθ0 which reduces to the conventional FIM. In the case of misspec-
ified model, we have −Aθ0 6= Bθ0 . Plugging (10) into (11) yields

Bap,aq =
16π2

p!q!σ4
0

(∑
n
n
p
ζ=(n)

)(∑
n
n
q
ζ=(n)

)
+

8π2σ̄2A2
0

p!q!σ4
0

∑
n
n
p+q

Bap,aq =
8π2

p!q!σ4
0

[
2
∑
n
n
p
η=(n)

∑
n
n
q
η=(n) + σ̄

2
A

2
0

∑
n
n
p+q

]

Bb,b =
16π2

σ4
0

[∑
n
s(n)η=(n)

]2
+

8π2σ̄2A2
0

σ4
0

∑
n
s
2
(n)

Bf0,f0
=

64π4b20

σ4
0

[∑
n
nc(n)η=(n)

]2
+

32π4b20σ̄
2A2

0

σ4
0

∑
n
n

2
c
2
(n)

Bφ0,φ0
=

16π2b20

σ4
0

[∑
n
c(n)η=(n)

]2
+

8π2b20σ̄
2A2

0

σ4
0

∑
n
c
2
(n)

BA,A =
4

σ4
0A

2
0

[∑
n
η<(n)

]2
+

2Nσ̄2 + 4N2A2
0

σ4
0

−
8N

σ4
0

∑
n
η<(n)

B
σ2,σ2 =

N2

σ4
0

−
2N

σ6
0

(Nσ̄
2

+ ‖µ̄ − µ0‖
2
)

+
1

σ8
0

[
(N + N

2
)σ̄

4
+ 2(N + 1)σ̄

2‖µ̄ − µ0‖
2

+ ‖µ̄ − µ0‖
4
]

Bap,b
=

16π2

p!σ4
0

[∑
n
n
p
η=(n)

] [∑
n
s(n)η=(n)

]
+

8π2σ̄2A2
0

p!σ4
0

∑
n
n
p
s(n)

Bap,f0
=

32π3

p!σ4
0

[∑
n
n
p
η=(n)

] [∑
n
nc(n)η=(n)

]
+

16π3σ̄2A2
0

p!σ4
0

∑
n
n
p+1

c(n)

Bap,φ0
=

16π2b

p!σ4
0

[∑
n
n
p
η=(n)

] [∑
n
c(n)η=(n)

]
+

8π2bσ̄2A2
0

p!σ4
0

∑
n
n
p
c(n)

Bap,A
= −

8π

p!σ4
0A0

[∑
n
n
p
η=(n)

] [∑
n
η<(n)

]
+

8πNA0

p!σ4
0

[∑
n
n
p
η=(n)

]

B
ap,σ2 =

4π
[
N(σ2

0 − σ̄
2) − (‖µ̄ − µ0‖

2 + σ̄2)
]

p!σ6
0

[∑
n
n
p
η=(n)

]

Bb,f0
=

32π3b0

σ4
0

[∑
n
s(n)η=(n)

] [∑
n
nc(n)η=(n)

]
+

8π3b0σ̄
2A2

0

σ4
0

∑
n
ns(n)

Bb,φ0
=

16π2b0

σ4
0

[∑
n
s(n)η=(n)

] [∑
n
c(n)η=(n)

]
+

4π2b0σ̄
2A2

0

σ4
0

∑
n
s(n)

Bb,A = −
8π

σ4
0A0

[∑
n
s(n)η=(n)

] [∑
n
η<(n)

]
+

8πNA0

σ4
0

∑
n
s(n)η=(n)

B
b,σ2 =

4π
[
N(σ2

0 − σ̄
2) − (‖µ̄ − µ0‖

2 + σ̄2)
]

σ6
0

[∑
n
s(n)η=(n)

]

Bf0,φ0
=

32π3b20

σ4
0

[∑
n
nc(n)η=(n)

] [∑
n
c(n)η=(n)

]
+

16π3b20σ̄
2A2

0

σ4
0

∑
n
nc

2
(n)

Bf0,A
= −

16π2b0

σ4
0A0

[∑
n
nc(n)η=(n)

] [∑
n
η<(n)

]
+

16π2b0NA0

σ4
0

[∑
n
nc(n)η=(n)

]

B
f0,σ

2 =
8π2b0

[
N(σ2

0 − σ̄
2) − (‖µ̄ − µ0‖

2 + σ̄2)
]

σ6
0

[∑
n
nc(n)η=(n)

]

Bφ0,A
= −

8πb0

σ4
0A0

[∑
n
c(n)η=(n)

] [∑
n
η<(n)

]
+

8πb0NA0

σ4
0

[∑
n
c(n)η=(n)

]

B
φ0,σ

2 =
4πb0

[
N(σ2

0 − σ̄
2) − (‖µ̄ − µ0‖

2 + σ̄2)
]

σ6
0

[∑
n
c(n)η=(n)

]

B
A,σ2 =

2N(σ̄2 − σ2
0)<

{
µ̄Hµ0

}
+ 2σ̄2

(
<
{
µ̄Hµ0

}
− NA2

0

)
+ 2N2A2

0

(
σ2

0 − σ̄
2
)

σ6
0A0

+
2(<

{
µ̄Hµ0

}
− NA2

0)‖µ̄ − µ0‖
2

σ6
0A0

.

Remark: Convergence to the Independent FIM: Like in the pre-
vious case, we can show that the matrix Bθ0 converges exactly to the
conventional FIM in [1] when the signal observations are generated
from the independent mixture model,

Iθ = Bθ0 . (12)

2.4. Misspecified CRB

With the derivations of both FIM-like matrices Aθ0 and Bθ0 , we
are ready to derive the misspecified CRB. For any MS-unbiased es-
timator θ̂(x), i.e., Ep{θ̂(x)} = θ0 (the expectation of the estimator
w.r.t. the true pdf px(x) converges to the psuedo-true parameter θ0

defined in Section 2.1), then the error covariance matrix of the mis-
matched estimator is given as

Cp(θ̂(x),θ0) = Ep
{

(θ̂(x)− θ0)(θ̂(x)− θ0)H
}

(13)

where θ0 is the pseudo-true parameter, is lower bounded by the mis-
specified CRB [16]

Cp(θ̂(x),θ0) � 1

N
A−1
θ0

Bθ0A
−1
θ0

= MCRB(θ0) (14)



Fig. 2. Achievability of the derived misspecified CRB with obser-
vations generated according to a coupled mixture model by using
a phase unwrapping method on the assumed independent mixture
model.

Fig. 3. Comparison of the coupled and misspecified CRBs as a func-
tion of c0 and the sinusoidal FM index b.

3. NUMERICAL EXAMPLES

In the following, the observed samples are generated according to
the coupled mixture model of (2) and we compare the derived mis-
specified CRB with

• the conventional phase unwrapping [6] for the independent
mixture model to show the achievability of the misspecified
CRB;

• the coupled CRB derived in [9];

• the coupled phase unwrapping method [10] for the coupled
mixture model to show the achievability of the coupled CRB.

3.1. A Coupled Mixture of A Single-Tone Signal (P = 1) and A
Sinusoidal FM Signal

We first consider a case of (2) with the PPS order P = 1 (hence a
single-tone signal) and true parameters Ā = 1, ā0 = 0, ā1 = 0.1,
b̄ = 0.1, φ̄0 = 0, c0 = 2, and N = 512. In this case, we have
the pseudo-true parameter f0 = c0ā1 and other pseudo-true param-
eters are the same as their corresponding true parameters. Fig. 2
shows that, for all parameters including f0 in the assumed inde-
pendent model, the measured mean-squared errors (MSEs) of the
conventional phase unwrapping achieve exactly their corresponding
misspecified CRBs.

Next, we quantify the performance loss due to the model mis-
match by comparing the coupled CRBs [9] with the misspecified
ones. Fig. 3 shows CRB comparisons as a function of c0 when b
is fixed or b when c0 is fixed. It shows that the performance loss

Fig. 4. Measured MSEs and corresponding CRBs for the coupled
mixture of a chirp signal and a weak sinusoidal FM signal.

of using the misspecified estimator increases as c0 increases from
c0 = 0.5 to c0 = 2 or b increases from b = 0.1 to b = 0.3. In
other words, the estimator using the correct coupled mixture model
can be more accurate with lower estimation variance when c0 or b is
large. This is intuitive as c0 and b is large, the additional information
extracting from the sinusoidal FM component for the estimation of
a1 increases and hence the coupled CRB is lower.

3.2. A Coupled Mixture of A Chirp Signal (P = 2) and A Weak
Sinusoidal FM Signal (b = 0.05)

We then consider a coupled mixture signal of a second-order PPS
component (P = 2, also referred to chirp signals) and a sinusoidal
FM component with true parameters Ā = 1, ā0 = 0.1, ā1 = 0.15,
ā2 = 1.3889 · 10−4, b = 0.05, φ1 = 0, c0 = 0.1, and N = 512.
In this case, we cannot find a single psuedo-true parameter f0 con-
verging to the true sinusoidal FM frequency c0(a1 + 0.5a2n) which
is a time-varying function. In this case, the pseudotrue parameters
{f0, A, a0, a1, a2, b, φ1} are obtained from (7) while the pseudo-
true parameter σ2 is obtained from (8) by adding the squared resid-
ual to the true noise variance. Fig. 4 shows the measured MSE for
the coupled and misspecified signal models and their corresponding
CRBs for the signal parameters {a2, a1, b} and the noise variance
σ2. It is shown that, for the simulated scenario, the performance
loss due to the assumption of the independent signal model is neg-
ligible for estimating signal parameters, while the estimate of noise
variance suffers from larger performance degradation.

4. CONCLUSIONS

This paper derives the misspecified CRB for a class of coupled mix-
ture model between the PPS and sinusoidal FM components and pro-
vides an analytical tool for system designers to numerically evaluate
performance loss if the implemented system ignores the coupling ef-
fect. With numerical validations, we have shown the achievability of
the misspecified CRB at relatively high SNRs. The performance gap
between the coupled and misspecified CRBs was shown to increase
as the sinusoidal FM index b or the constant c0 increases.
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