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Abstract
In this paper we develop an optimization-based solution to the problem of distributed radar
imaging using antennas with asynchronous clocks. In particular, we consider a distributed
radar imaging MIMO system observing a sparse scene under an unknown, but bounded, delay
between the transmitter and receiver clocks. Most existing approaches pose the problem as
the recovery of a phase shift, leading to non-convex formulations. Instead, inspired by recent
work in blind deconvolution, we exploit the realization that synchronization errors in the
received data can be modeled as a convolution with an unknown 1-sparse delay signal to be
estimated in addition to the image. Thus, we formulate a convex optimization problem that
simultaneously recovers all the pair-wise drifts between transmit/receive pairs, as well as the
sparse scene being imaged. We verify the validity and performance of our proposed model
and recovery method through numerical simulations on synthetic data.
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ABSTRACT

In this paper we develop an optimization-based solution to the prob-
lem of distributed radar imaging using antennas with asynchronous
clocks. In particular, we consider a distributed radar imaging MIMO
system observing a sparse scene under an unknown, but bounded,
delay between the transmitter and receiver clocks. Most existing ap-
proaches pose the problem as the recovery of a phase shift, leading to
non-convex formulations. Instead, inspired by recent work in blind
deconvolution, we exploit the realization that synchronization errors
in the received data can be modeled as a convolution with an un-
known 1-sparse delay signal to be estimated in addition to the image.
Thus, we formulate a convex optimization problem that simultane-
ously recovers all the pair-wise drifts between transmit/receive pairs,
as well as the sparse scene being imaged. We verify the validity and
performance of our proposed model and recovery method through
numerical simulations on synthetic data.

Index Terms— radar autofocus, blind deconvolution, time syn-
chronization, convex programming

1. INTRODUCTION

Distributed radar arrays are essential for high resolution radar imag-
ing as they allow for a large overall aperture by combining infor-
mation from several spatially distributed radar antennas with small
individual apertures. Furthermore, these arrays also enable a flexi-
ble mobile platform that is tolerant to sensor failures and admits low
maintenance costs [1–4]. However, geographical distribution of an
array introduces data coherence problems due to ambiguities in the
position of the antennas and difficulties in precisely synchronizing
the antenna clocks.

Typically, both of these issues are often modeled as phase errors
in the received data [5–10]. Indeed, a time delay introduced due to
clock drift is equivalent to a phase shift that is linear in frequency.
Similarly, a position error introduces time shifts in the reflections
depending on the geometry of the targets in the image, which can
also be modeled as combinations of phase shifts linear in frequency.
More detailed discussion of this model can be found in [11] and ref-
erences within. Most of the literature attempts to estimate and cor-
rect the phase errors in the data, in order to apply coherent imaging
techniques on the corrected data.

A common issue with those techniques is that the estimation
of the phase error is not straightforward due to the non-linearity of
the resulting formulation [12–14] and the additional complication of
phase wrapping. Furthermore, typical phase models in the literature,
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such as subspace restrictions, often under-perform because they fail
to capture the true nature of the error.

Instead, our approach explicitly models the time uncertainty as
an unknown time delay in the recorded data, i.e., a convolution with
a delay operator. Thus, we can accurately model time delays due to
clock drifts, as opposed to arbitrary phase errors. Our formulation
results in a convex optimization problem, the solution to which si-
multaneously provides both the radar image and the pairwise clock
drifts between transmitter/receiver pairs. Our solution provides the
resolution benefits of coherent imaging, even if the measurements
are not coherent.

The work in this paper is in many ways similar to our earlier
work in [11], in which we explicitly model position ambiguities on
the distributed antennas but assume perfect synchronization. Our
line of work in this area is inspired by earlier works in sparse blind
deconvolution [12–15], that use lifting or alternating minimization
to solve the resulting bilinear problem. Both our prior work and
this paper demonstrate that proper use of sparsity can provide ac-
curate models of the errors encountered in distributed array prob-
lems. However, there is a key difference. The bi-linear formulation
in [11] results in a non-convex problem that is solved with an al-
ternating minimization. Although the problem can in principle be
lifted to a higher space and convexified, the resulting optimization
becomes prohibitively expensive. In contrast, the nature of timing er-
rors that we explore in this paper, enables a tractable convex formula-
tion without resorting to lifting. Thus, we can provide a FISTA [16]
based procedure to recover the radar scene. Of course, a combination
of the two approaches, which corrects both for position and synchro-
nization errors is possible, but we defer it to a future publication.

We should note that another option in handling these phase er-
rors, at the cost of decreased performance, is to assume they can-
not be recovered and develop algorithms that are robust to arbitrary
phase errors. These approaches are collectively known as incoher-
ent imaging [3,17,18] and typically suffer from lower resolution and
worse reconstruction performance. This is not an approach we con-
sider in this paper, because of its poor reconstruction accuracy.

The next section of this paper describes the problems and its
formulation. Section 3 provides a solution model for our formulation
and our FISTA-based algorithm to obtain the solution. Simulation-
based numerical results that validate our approach are presented in
Section 4. Section 5 discusses our results and concludes.

2. PROBLEM FORMULATION

In this section we present a convex formulation of the radar autofo-
cus problem suffering from asynchronous clocks.



2.1. System Model

We consider a two-dimensional radar scene of size N = Nx × Ny
containing K static targets, where Nx and Ny represent the hori-
zontal and vertical dimensions, respectively. We also consider a set
of antennas, some of which may act as transmitters only, some as
receivers only, and some as both. We assume that transmitters trans-
mit one at a time, i.e., the received reflection in any receiver at any
point in time is only due to one transmitter transmitting. For any sin-
gle transmission, multiple receivers receive the reflections from the
scene. We use m = 1, . . . ,M to index all possible combinations of
active transmitter/receiver pairs during the system operation.

To observe the scene, a transmitting antenna emits a pulse p(t)
with frequency spectrum P (ω), where ω is the angular frequency
corresponding to the actual frequency f ∈ B and the bandwidth of
the transmitted pulse is |B| = F . The pulse propagates through the
scene before it is reflected back to a receiving antenna that measures
the signal

rm(t) =

K∑
k=1

xkp(t) ∗ akm(t), (1)

where xk denotes the reflectivity of target k, akm denotes the im-
pulse response of the channel that describes the propagation of the
reflected pulse from the transmitter to the target k and back to the
receiver, for the transmitter/receiver pair m, and ∗ denotes the con-
volution operation. Typically for radar in free space, akm comprises
of a delay and attenuation depending on the round-trip distance of
the pulse to the target and back to the receiver.

The signal model in equation (1) assumes that the clocks con-
trolling the transmitting and receiving antennas are synchronized. If
the transmitter/receiver pairs are not synchronized, then the received
signal will be delayed according to the relative advance of the re-
ceiver clock compared to the transmitter clock (or advanced, if the
receiver clock is delayed). Using εm to denote the relative time ad-
vance of the receiver, the received signal in the receiver’s clock is
equal to

ym(t) =
∑K
k=1 xkp(t− εm) ∗ akm(t),

= rm(t) ∗ δ(t− εm),
(2)

where δ(t − εm) is the impulse response representing the relative
delay of the data in the receiver’s clock, due to the clock mismatch.
Equivalently, we can advance both sides of (2) by εm, to obtain

ym(t) ∗ δ(t+ εm) = rm(t) =

K∑
k=1

xkp(t) ∗ akm(t). (3)

In frequency, this is equivalent to

Ym(ω)ejωεm = R(ω) =

K∑
k=1

P (ω)Akm(ω)xk. (4)

2.2. Model Discretization

To discretize in space, we use x to denote the reflectivity of all points
in the scene, under a pre-determined, sufficiently fine grid. Assum-
ing no synchronization errors, the frequency-domain received data
for each transmitter/receiver pair can be represented as

rm = Amx, (5)

where the matrix Am incorporates, in frequency, the transmitted
pulse P (w) and the channel response Akm(ω).

Using Z(ω) = ejωεm to denote the advance z(t) = δ(t + εm)
in the frequency domain, the data in the receiver’s clock satisfy

DymFzm = Amx, (6)

where, ym is the frequency-domain received data, zm is the time
domain advance, F is the Fourier transform matrix, and Fzm is the
Fourier transform of zm, i.e., the frequency-domain representation
of the advance, and Dym is a diagonal operator with ym in the di-
agonal.

Assuming that ym does not have any frequency content equal to
zero, (6) can be written as

Fzm = D−1
ym

Amx, (7)

⇒ [D−1
ym

Am − F]

[
x
zm

]
= 0, (8)

where 0 is a zero vector of appropriate dimension, and, since Dym is
diagonal, it’s inverse D−1

ym
is simply the element-wise inverse of the

diagonal. In other words, assuming no noise, the vector [x zm]T

is in the nullspace of [D−1
ym

Am −F]. The equivalent model in the
presence of noise, is

[D−1
ym

Am − F]

[
x
zm

]
= n, (9)

where n represents additive noise in the frequency domain.
Our goal is to recover x and z under the constraints that x is a

sparse scene and z is a delay, i.e., a 1-sparse signal.

3. SYNCHRONIZATION AND SCENE RECOVERY

3.1. Solution Model and Constraints

With measurements from all the transmitter-receiver pairs, the over-
all system of equations takes the following form:

Ã1 −F Θ Θ · · · Θ

Ã2 Θ −F Θ · · · Θ
...

...
...

...
. . .

...
ÃM Θ Θ Θ · · · −F




x
z1
z2
...

zM

 =


n1

n2

...
nM

 (10)

where Ãm = D−1
ym

Am, Θ is an F × F matrix of all zeros, and F
is the number of frequencies used in the discretized system.

The true radar scene and the true time shifts lie in the nullspace
of the matrix in the left-hand side of (10), which, however, might not
be unique. To reduce the ambiguity and to avoid trivial solutions,
such as all zeros, we need to introduce additional constraints on the
feasible set. Since the delay operator zm is a simple time shift, we
constrain it to be non-negative. In addition, by design, zm is a de-
lay and, therefore, 1-sparse for each m. Similarly, x is sparse by
assumption.

We also impose a scale constraint on both unknowns (x and zm).
A soft scale constraint on the scene reflectivity x helps avoid trivial
solutions by ensuring that the sum of the entries in x moves away
from zero. In particular, the scale constraint on x is achieved by
including a regularized least squares penalty that forces the sum of
entries in x to be equal to a nonzero constant c. The value of c may
be estimated by solving an initial inverse problem to recover x while
ignoring the synchronization ambiguity and setting c to be equal to



Algorithm 1: FISTA for distributed radar phase-
synchronization

Input: measurements {ym}Mm=1, measurement matrices
{Am}Mm=1, Lipschitz constant α, and regularization
parameters λx λz γ

Initialization: Initial estimate w0 = u0, t0 = 1
1: while stopping criteria unsatisfied do
2: vj ← wj−1 + αBH(b−Bwj−1)
3: ūj ← T (vj , αλ)
4: uj ← PR+(ūj)

5: tj ← 1+
√

1+4(tj−1)2

2

6: wj ← uj + tj−1−1
tj

(uj − uj−1)
7: end while

Output: Final estimate wj

the sum of entries of the resulting reflectivity image. The scale con-
straints for the time shifts zm, on the other hand, are imposed as a
hard constraint: 1T zm = 1 for each m.

Combining all constraints and priors, we obtain the following
sparse recovery problem:

minimize
x,{zm}Mm=1

λx ‖x‖1 + λz

M∑
m=1

‖zm‖1 +

∥∥∥∥∥∥∥∥∥∥∥∥


Ã1 −F Θ Θ · · · Θ

Ã2 Θ −F Θ · · · Θ
...

...
...

...
. . .

...
ÃM Θ Θ Θ · · · −F
γ1TN 0TP 0TP 0TP · · · 0TP




x
z1
z2
...

zM

−


0
0
...
0
γc



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

subject to: x ≥ 0N , zm ≥ 0P , 1
T zm = 1 , ∀m (11)

where 1 and 0 are vectors of all ones and zeros of appropriate
lengths.

3.2. FISTA-based Recovery Algorithm

Since the problem posed in (11) is a convex sparse recovery problem,
we propose a FISTA inspired algorithm to find the solution. To this
end, let us first define the following variables:

w =


x
z1
z2
...

zM

 , b =


0
0
...
0
γ1

 , λ =


λx1N
λz1P
λz1P

...
λz1P

 , and

B =


Ã1 −F Θ Θ · · · Θ

Ã2 Θ −F Θ · · · Θ
...

...
...

...
. . .

...
ÃM Θ Θ Θ · · · −F
γ1T 0T 0T 0T · · · 0T

 . (12)

With these variables, the algorithm for blind deconvolution is pre-
sented in Alg. 1. Before starting the algorithm, the estimate w0

is initialized with x0 = 0N and all z0m = z0, where z0 is the
time-domain Dirac delta and corresponds to no time ambiguity in
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Fig. 1. The synthetic distributed radar system in our synthetic data.
The colored round dots represent antennas in the four distributed
array. The red square represents the radar scene being imaged.

the measurements. At step 3 of the algorithm, T (·) represents the
element-wise soft-thresholding operator defined as:

T (x, λ) =

{
sign(xi) ·

(
|xi| − λ

)
, if |xi| ≥ λ

0, otherwise. (13)

Furthermore, at step 4, PR+(·) represents the projection of the zm
components of ū onto the non-negative real orthant, followed by
the normalization of all zjm’s to strictly impose the scale constraint
1T zm = 1. We now evaluate the performance of our modified
FISTA approach on synthetic data.

4. NUMERICAL EXPERIMENTS

To evaluate the performance of our proposed method, we run ex-
periments for a synthetic radar scene with three targets as shown
in Fig. 1. The measurements are obtained through four wideband
distributed antenna arrays with 8 antennas on each array. The first
antenna array acts as both transmitter and receiver, whereas the other
three act only as receivers. The system bandwidth is 6GHz, centered
at 6GHz, and the received signals are sampled at the Nyquist rate.
The simulations are performed in the time domain.

The measurements acquired from the first array have no time
mismatch since the same array is used for both transmission and
signal acquisition. For the remaining three arrays a time mismatch
(advance or delay) of Tmax is allowed. The measurements are cor-
rupted with white Gaussian noise having a peak signal-to-noise ratio
(PSNR) of 30dB after matched filtering with the transmitted pulse.
The radar scene recovered through the proposed algorithm is shown
in Fig. 2, along with the ground truth and reconstructions from sparse
recovery with correct and incorrect antenna positions. We run our al-
gorithm with λx and λz equal to 200 for Tmax = 5 time samples.
The advantage of our proposed method is evident from the compar-
ison, and one can see that our method reconstructs the radar scene
correctly up to a global shift ambiguity.

To highlight the effect of noise in the observations on the recov-
ery performance, we also compare our proposed approach against
the sparse recovery algorithm with incorrect positions. We run ex-
periments for varying PSNR levels and for maximum time errors
Tmax of 5 and 20 time samples. We generate five different spa-
tial realizations of “three targets” in the scene each with different
time ambiguities. We then generate receiver operating characteristic
(ROC) curves for both approaches at the varying PSNR levels rang-
ing from 8dB to 30dB. It can be seen from Fig. 3 that our proposed
approach outperforms sparse recovery with incorrect positions at all
noise levels.
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Fig. 2. Figure (a) shows the true reflectivity of the target scene. Fig-
ures (b) and (c) show the reconstructed scenes with unknown and
known time mismatch, respectively. Figure (d) shows the recon-
structed scene obtained through the proposed approach that recovers
the scene as well as the time mismatch.
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Fig. 3. The top row presents the ROC curves for (a) the proposed
algorithm and (b) sparse recovery algorithm with time errors for a
maximum time mismatch of 5 time periods. The bottom row shows
the same ROC curves for a maximum time mismatch 20 time peri-
ods.

5. CONCLUSION

In this paper we demonstrate that appropriate modeling of the clock
asynchrony in distributed radar systems provides the ability to per-
form coherent imaging, despite the significant phase errors in the ac-
quired data. The key realization is that asynchronous clocks manifest

as unknown delays or advances in the recorded data, i.e., as convolu-
tions with unknown 1-sparse impulse responses. Using this convolu-
tional model, it is possible to formulate a linear system with both the
delays and the image of the scene of interest in its nullspace. Fur-
thermore, the 1-sparse structure of the delays and the sparse structure
of the scene allow us to restrict the solution space and recover both
the relative delay between clocks of pairs of sensors, and the sparse
scene. Our numerical simulations verify this intuition and validate
our model.

While our work is similar in spirit to our earlier work on position
uncertainty in such distributed array systems [11], it demonstrates
that small changes in the model—in this particular case timing un-
certainty instead of position uncertainty—can result in significantly
different final formulations, with different properties and different
solution strategies. This is in contrast to most of existing approaches,
which simply model the error as a phase error to be recovered, irre-
spective of whether it is due to timing or position ambiguity. In
such approaches, determining the appropriate phase model for each
case is particularly difficult, leading to models that do not accurately
capture the nature of the errors. Our general optimization-based ap-
proach, instead, is able to accurately capture the nature of the error
and lead to tractable formulations to obtain the solution.
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