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sued. First, a brief history of MPC applications to automotive systems and features that make
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sub-domains, key first principle models and opportunities that these provide for the applica-
tion of MPC are described. Next, we detail the key steps and guidelines of the MPC design
process which is tailored to automotive systems. Finally, we discuss numerical algorithms for
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Automotive Applications of

Model Predictive Control

Stefano Di Cairano and Ilya V. Kolmanovsky

Model Predictive Control (MPC) has been investigated for a significant number of potential applications

to automotive systems. The treatment of these applications has also stimulated several developments in

MPC theory, design methods and algorithms, in recent years. This chapter provides an overview of

automotive applications for which MPC has been considered and approaches to MPC development,

deployment and implementation that have been pursued. First, a brief history of MPC applications to

automotive systems and features that make MPC appealing for such applications are discussed. Then,

for the main automotive control sub-domains, key first principle models and opportunities that these

provide for the application of MPC are described. Next, we detail the key steps and guidelines of the

MPC design process which is tailored to automotive systems. Finally, we discuss numerical algorithms

for implementing MPC, and their suitability for automotive applications.

I. MODEL PREDICTIVE CONTROL IN AUTOMOTIVE APPLICATIONS

There are very few devices that are as pervasive in our world as cars. Reports show that close to

90 million cars and light commercial vehicles were sold worldwide in 2016. Recent innovations in

car mechanics, electronics and software have been fast paced to respond to growing stringency of fuel

economy, emissions and safety regulations, as well as to market-driven pressures to provide customers

with improved performance, drivability and novel features. Advanced control methods that are capable of

optimizing the vehicle operation, and can reduce the time-to-market for increasingly complex automotive

systems are clearly needed.
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It thus comes as no surprise that, in recent years, a significant interest in model predictive control

(MPC) has been shown in the automotive industry. The research on applications of MPC to automotive

systems has been steadily growing both in industry and academia to address some of the challenges of

this application domain. Yet MPC is a significant step up from the classical control methods, such as

PID, and its implementation in industrial practice presents challenges on its own.

The purpose of this chapter is to provide a short tutorial on the development of MPC-based solutions

for automotive systems. Towards this end, we first briefly review the history of MPC applications to

automotive systems, and we highlight the benefits that MPC can provide as well as the challenges faced

by MPC in this domain. Then, given that MPC is a model-based control approach, for the main automotive

control areas, such as powertrain control, chassis control and energy management, we describe the key

first principle models that can be used for MPC design, and the control objectives which need to be

achieved. Next, we detail common steps of MPC design for automotive systems. Finally, we consider the

computational aspects that are important for real-time implementation and deployment of MPC solutions

on automotive computing platforms.

While this chapter represents a tutorial overview of MPC design for automotive systems based on the

author’s first-hand experience, due to scope and length limitations it not able to serve as a comprehensive

survey of the entire body of literature on automotive applications of MPC. A brief survey is available

in [46].

A. A Brief History

Some of the first investigations of MPC for automotive systems can be traced back to the mid ′90s,

with [44] where MPC was applied to idle speed control being a notable case. In those years, the numerical

algorithms for MPC were too computationally demanding for the “then-current” vehicle micro-controllers,

and hence such studies were usually only simulation-based.

Two new developments in the early 2000s gave a significant boost to the investigation of MPC-based

automotive control and have led to the rapid growth of related applications and literature. Firstly, the

scientific community interest in hybrid dynamical systems led to the development of hybrid MPC [8],

which allowed to control processes with switching dynamics. This opened up opportunities for MPC

applications to control of transmissions [2], [7], [40], [76], to traction control [13], and to control of

semiactive suspensions [36]. Systems with mode-dependent objectives, such as direct injection, stratified

charge engines [37], or requiring piecewise linearizations, such as camless engine actuators [21], HCCI

engines [10], [66], or vehicle stability control functions [27] could now be handled. Secondly, the
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application of parametric programming techniques resulted in the development of explicit MPC [9]

that synthesizes the control law, and hence avoids the need to run an optimization algorithm online

in the micro-controller. This led to the possibility of experimentally testing several controllers in real,

production-like, vehicles including, about 12 years after the initial development, a refined MPC-based idle

speed control [28], and an MPC-based diesel engine airpath control [62], [73]. From then, the applications

of MPC have picked up both in powertrain control [23] and chassis (or vehicle dynamics) control [5],

[27], with some industry research centers being at the forefront in developing these applications, see,

e.g., [46], [59], [77].

Starting from the mid-2000s, MPC-based control has been considered for hybrid and electric vehicles,

including fuel-cell vehicles. Some of the early contributions include [6], [56], [75]. The development of

MPC strategies for different hybrid electric powertrain configurations has then been considered in more

depth, e.g., for ERAD [68], series [25] and powersplit [12] configurations. Due to the complexity of the

hybrid powertrains and the attempt to use MPC to directly optimize fuel consumption, these controllers

were often rather difficult to implement in the vehicles. An interesting case is [25], where instead of

optimizing directly the fuel consumption, MPC was used as an energy buffer manager to operate the

engine smoothly and with slow transients, leading to a design simple enough to be implementable in

a prototype production vehicle, yet still achieving significant benefits in terms of fuel economy. The

resulting controller in [25] was actually implemented experimentally in such road-capable vehicle, which

allowed to assess its performance in production-like computing hardware.

Currently, advanced MPC methods are being investigated both for improving existing features, and for

future applications in autonomous, and connected vehicles. Some examples are Lyapunov-based MPC for

network control in automotive systems [15], stochastic MPC for cooperative cruise control [72], robust

and stochastic MPC for autonomous driving [16], [24], [51], and several applications exploiting V2V

and V2I communications [57], [61]. Such an expansion has been also supported by the development of

low complexity optimization algorithms that now allow for solving quadratic programs in automotive

micro-controllers without the need to generate the explicit solutions, that have combinatorial complexity

in terms of memory and computations. Still several challenges in terms of computation, estimation, and

deployment remain, that will require significant investigations in the next several years, to increase the

range of feasible applications. How ongoing advances in the areas of cloud computing, connectivity, large

data sets, and machine learning can help tackle these challenges is also to be fully discovered.
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B. Opportunities and Challenges

Due to regulations, competition, and customer demands, automotive control applications are driven by

the need for robustness, high performance, and cost reduction all at the same time. The investigation

of MPC for several automotive control problems has been mainly pursued due to MPC features that

are helpful and effective in addressing such requirements and in achieving optimized operation. The key

strengths of MPC are summarized in Table I and discussed next.

Strengths Challenges

Simple multivariable design High computational load

Constraint enforcement Process models sometimes unavailable

Inherent robustness Nonlinearities during transients

Performance optimization Dependence on state estimate quality

Handling of time delays Non-conventional design and tuning process

Exploiting preview information

TABLE I

STRENGTHS AND CHALLENGES FOR MPC IN AUTOMOTIVE APPLICATIONS.

A solid starting point for MPC development is that while the processes and dynamics taking place in

the vehicle are interdependent and may be fairly complex, they are well studied and understood, and, for

most, detailed models are available. This enables the application of model-based control methods, such

as MPC.

Due to the aforementioned requirements, often driven by emissions, fuel consumption, and safety regu-

lations, the number and complexity of actuators for influencing the vehicle operation is increasing. Some

interesting examples are turbochargers, variable cam timing, electric motors, variable steering, differential

braking, regenerative braking. As more actuators become available, methods that can coordinate them

to achieve multiple objectives, i.e., control multivariable, multiobjective systems, may achieve superior

performance then control designs that are decoupled into several single-variable loops. MPC naturally

handles multivariable systems without additional design complexity, thus simplifying the development of

multivariable controllers. This has been demonstrated, for instance, for spark-ignition (SI) engine speed
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control [23], [29], [44], vehicle-stability control by coordinated steering and braking [27], [31], and airpath

control in turbocharged diesel engines [62], [73]. Furthermore, while it may still be difficult to obtain

globally robust MPC designs, it is well known that often MPC provides inherent local robustness, as it

can be designed to locally recover the LQR behavior, including its gain and phase margin guarantees.

Another advantage is that the tight requirements imposed by operating conditions, regulations, and

interactions with other vehicle systems can often be easily formulated in terms of constraints on pro-

cess variables. By enforcing constraints by design, rather than by time-consuming tuning of gains and

cumbersome protection logics, MPC can reduce the development and calibration time by a significant

amount [14], [23], [27], [36], [73].

The problem of ensuring high performance can often be approached through the optimization of an

objective function. The ability to perform such an optimization is another key feature of MPC. In fact,

this was at the root of the interest of several researchers in hybrid and electric vehicles [12], [25], [68],

[79]. Even if it may be difficult to directly formulate the automotive performance measures as a cost

function for MPC, it is usually possible to determine indirect objectives [25], [29] that, when optimized,

imply quasi-optimal (or at least very desirable) behavior with respect to the actual performance measured.

Besides these macro-features, MPC has additional capabilities that are useful in controlling automotive

processes. For instance, the capability of including time delay models, possibly of different length

in different control channels, is very beneficial, as several engine processes are subject to transport

delays and actuator delays. Also, new technologies and regulations in communication and connectivity,

outside and inside the car, allows for obtaining preview information that MPC can exploit to achieve

superior performance [30], [72]. This is even more relevant in the context of autonomous and connected

vehicles [19], due to the available long term information, for instance from mid to long range path

planners, and from shared information among vehicles.

However, there are also several challenges to the large scale deployment of MPC in automotive

applications [17], which are also summarized in Table I and discussed next.

First, MPC has larger computational load and memory footprint than classical control methods, while

automotive micro-controllers are fairly limited in terms of computing power. Since the vehicle must

operate in challenging environments, e.g., temperatures ranging from −40oC to +50oC, the achievable

processor and memory access frequencies are limited. The need to reduce the cost, and the development

and validation time often prevents to introduce new processors sized for the need of a specific controller.

Rather, the controller must fit in a given processor.

Second, not all the automotive processes have well-developed models. Combustion and battery charg-
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ing/discharging are examples of processes that are still difficult to model precisely, and suitable models

for them still remain an area under study. While some of the gaps can be closed using partially data-driven

models, one has to be careful in applying MPC in this setting.

Even for the processes that are better understood, the dynamics are intrinsically nonlinear. This third

challenge is more relevant in automotive than in other fields, e.g., in aerospace, because, due to external

effects, e.g., the driver, the traffic, the road, many automotive processes are continuously subject to fast

transients during which the nonlinearities cannot be easily removed by linearization around a steady state.

A further complicating factor is that several variables in automotive processes are not measured, and the

sensors for estimating them may be heavily quantized and noisy. A fourth challenge for MPC, which needs

the state value for initializing the prediction model, is the need of state estimators, whose performance

will significantly affect the overall performance of the control system. The estimator performance will

depend on the sensors that in automotive applications are reduced in number and have limited capabilities,

once again due to cost and harsh environment.

Fifth and final challenge, is the difference in the development process of MPC and classical controllers,

e.g., PID. While the latter are mostly calibrated by gain tuning, MPC requires prediction model devel-

opment and augmentation, definition of horizon and cost, and tuning of the weights of the cost function

terms. As these are often not taught in basic control design courses, calibration engineers in charge of

deploying and maintaining the controllers in the vehicle may find difficulties with the development of

MPC. Hopefully, this handbook is a step towards solving this problem.

C. Chapter Overview

The rest of this chapter is structured based on the above discussion of strengths and challenges, with

the aim of providing a guide for MPC development in automotive applications.

Due to the model-based nature of MPC, and the need for the MPC developer to acquire an understanding

of the process models used for design, we first describe (Section II) the key models to be used for

MPC developments in the areas of powertrain (Section II-A), vehicle dynamics (Section II-B) and energy

management (Section II-C). Our description of such models provides a starting point for the development

of MPC solutions for these applications and enhances the understanding of the opportunities for using

MPC in these applications. Then, we provide general guidelines for controller development (Section III).

Finally, we discuss the computational challenges and the key features of the algorithms used for MPC

deployment in automotive applications (Section IV).
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Throttle
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Intake manifold
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Fuel rail and injectors

Crankshaft

Fig. 1. Schematics of a naturally aspirated spark ignition engine, with focus on the air path.

II. MPC FOR POWERTRAIN CONTROL, VEHICLE DYNAMICS AND ENERGY MANAGEMENT

In this section we consider key automotive control areas in which the application of MPC has been

considered and can have an impact. For each area we first describe the key models for model-based

control development, and then, in light of these models, we briefly highlight what impact MPC may

have.

A. Powertrain Control

Powertrain dynamics involve the generation of engine torque and transfer of such torque to the wheels

to generate traction forces.

The engine model describes the effects of the operating conditions and engine actuators on the pressures,

flows and temperatures in different parts of the engine, and on the torque that the engine produces. The

engine actuators range from the standard throttle, fuel injectors, and spark timing, to more advanced

ones, such as variable geometry turbines (VGT), exhaust gas recirculation (EGR) valves, and variable

cam timing (VCT) phasers, among others.

The engine model itself is in general composed of two parts, the airpath model, which describes the

flow and mixing or the different gases in the engine, and the torque production model, which describes

the torque generated from the combustion of the gas mixture.
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Fig. 2. Schematics of a turbocharged compression ignition engine, with focus on the air path. In comparison with the SI engine

in Figure 1, notice the absence of throttle and spark plugs, and the interconnected dynamics of exhaust and intake manifold,

through EGR valve and turbine-compressor.

For naturally aspirated spark ignition (SI), i.e., conventional gasoline, engines (see the schematic in

Figure 1) the airpath model is relatively simple and represents the cycle averaged dynamics of the

pressure in the intake manifold, under an isothermal assumption, and the flow from the throttle to the

intake manifold and from the intake manifold into the engine cylinders,

ṗim =
RTim

Vim

(Wth −Wcyl), (1a)

Wcyl = ηvol

Vd pim

RTim

N

120
≈ γ2

γ1
pimN + γ0, (1b)

Wth =
Ath(ϑ )√

RTamb

pambφ

(

pim

pamb

)

, (1c)

where W , p, T , V , denote mass flow, pressure, temperature, and volume, respectively, φ is a nonlinear

function which represents the throttle flow dependence on the pressure ratio across the throttle [42,

App.C], the subscripts im, th, amb, cyl refer to the intake manifold, the throttle, the ambient, and the

cylinders, respectively, N is the engine speed, usually in revolutions per minute (RPM), Vd is the engine

displacement volume, ηvol is the volumetric efficiency, R is the gas constant, Ath is the throttle effective

flow area, which is a function of throttle angle, ϑ , and γi, i ∈ Z0+ denote engine-dependent constants,

which are obtained from engine calibration data.
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For modern compression ignition (CI), i.e., diesel, engines, (see the schematic in Figure 2), the airpath

model is substantially more complex, especially because these engines are usually turbocharged and

exploit EGR, which renders the isothermal assumption inaccurate. Furthermore, the EGR valve and

the turbocharger effectively couple the intake manifold with the exhaust manifold, which then must be

included in the model. As a result, the diesel engine models include pressures, densities (ρ) and burned

gas fraction (F) in both the intake, and exhaust (em) manifolds,

ṗim =
cpR

cvVim

(WcomTcom −WcylTim +WegrTem), (2a)

ρ̇im =
1

Vim

(Wcom −Wcyl +Wegr), (2b)

Ḟim =
(Fem −Fim)Wegr −FimWcom

ρimVim

, (2c)

ṗem =
cpR

cvVem

(WcylTcyl −WturTem −WegrTem − Q̇em/cp), (2d)

ρ̇em =
1

Vem

(Wcyl −Wtur −Wegr), (2e)

Ḟem =
(Fem −Fim)Wegr

ρemVem
, (2f)

where cp, cv are the gas specific heat at constant pressure and constant temperature, respectively, Q̇ is

the heat flow, and the subscripts egr, com, tur refer, respectively, to the exhaust gas being recirculated,

the compressor, and the turbine.

Equations in (2a) must be coupled with the equations describing the flows. While the cylinder flow

equation is the same as in (1b) for the SI engine model, and the EGR flow is controlled by a valve resulting

in an equation similar to (1c), the remaining flows are determined by the turbocharger equations,

Wcom =
pamb√
Tamb

φcom(Ntc/
√

Tamb, pim/pamb), (3a)

Wtur =
pem√
Tem

φtur(χvgt, pep/pem), (3b)

Ṅtc =
γ3

Jtc

ηturWtur(Tem −Tep)−ηcomWcom(Tim−Tamb)

Ntc

, (3c)

where ep refers to the exhaust pipe, χvgt is the variable geometry turbine actuator, Ntc and Jtc are the

speed and inertia of the turbocharger, φcom and φtur, ηcom and ηtur, are the flow parameter and efficiency

of turbine and compressor.

It is worth noting that in recent years downsized gasoline engines that are turbocharged have become

more common. Their airpath model is a hybrid between the SI and CI models, since they have SI
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combustion, and throttle, but also a turbocharger, although, in general, with a smaller fixed geometry

turbine, and possibly a wastegate valve instead of the EGR valve [70].

The second part of the engine model is the torque production model, which describes the net torque

output generated by the engine. This model has the form,

Me = Mind(t − td)−Mfr(N)−Mpmp(pim, pem,N), (4)

where Mind, Mfr, Mpmp are the indicated, friction, and pumping torques, respectively. The indicated torque

is the produced torque and its expression depends on the engine type. For SI engines,

Mind ≈ κspk(t − tds)γ4

Wcyl

N
, (5a)

κspk ≈
(

cos(α −αMBT)
)γ5 , (5b)

where α and αMBT are the ignition angle and the maximum brake torque ignition angle, and κspk is the

torque ratio achieved by spark ignition timing. Since CI engines do not use spark timing as an actuator,

and the air-to-fuel ratio in these engines may vary over a broad range, the indicated torque equation is

usually obtained from engine calibration data, e.g., as

Mind = findCI(Wf ,N,Fim,δ ) (6)

where Wf is the fuel flow, and δ corresponds to the fuel injection parameters (e.g., start of injection).

The final component in the engine models represents the transfer of the torque from the engine to the

wheels. In general, the engine speed (in RPM) is related to the engine torque Me, inertia of the crankshaft

and flywheel Je, and load torque ML by

Ṅ =
1

Je

30

π
(Me −ML). (7)

The load torque model varies largely depending on whether the vehicle has an automatic transmission,

which includes a torque converter, or a manual transmission with dry clutches. Depending on the

compliance of the shafts and actuation of the clutches, the steady state component of the torque load is

ML =
rw

gr

Ftrac+Mlos +Maux,

where Mlos, Maux are the torque losses in the driveline and because of the auxiliary loads, rw is the wheel

radius and gr is the total gear ratio between wheels and engine shaft, usually composed of final drive

ratio, transmission gear ratio, and, if present, torque converter ratio.
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1) MPC opportunities in powertrain control: Powertrain control has likely been the first, and probably

the largest, application area of MPC in automotive systems. In conventional SI engines, when the driver

is pressing on the gas pedal, the vehicle is in the torque control mode and there are basically no degrees

of freedom. Thus, the main opportunities for MPC application are in the so-called closed-pedal operation,

i.e., when the gas pedal is released, and the vehicle is in a speed control mode.

An example is idle speed control [29] where the spark timing and the throttle are actuated to keep

a target speed despite external disturbances. The engine speed must be kept from becoming too small,

otherwise the engine may stall, and the throttle and spark timing are subject to physical and operational

constraints, for instance due to knocking or misfiring. Thus, the optimal control problem can be formulated

as

min
α ,ϑ

TN

∑
t=0

(N(t)− rN(t))
2+wϑ ∆ϑ (t)2+wα(α(t)−αr(t))

2 (8a)

s.t. α(t)≤ α(t)≤ α(t), ϑ(t)≤ ϑ (t)≤ ϑ(t), N(t)≥ N(t) (8b)

where wϑ , wα are positive tuning weights, and rN , αr are references that are constant or slowly varying

based on engine temperature.

During the deceleration control, the engine speed is controlled to follow a reference trajectory that

causes the vehicle to decelerate smoothly and energy-efficiently, and still allows for the engine to rapidly

resume torque production, if acceleration is needed, see Figure 3. In this case the problem is similar

to (8), except that the reference speed trajectory is time varying and a first order model for it is often

available and may be used for preview.

Both idle speed control and deceleration control are multivariable control problems in which actuators

are subject to constraints and the dynamics are affected by delays of different lengths in different control

channels. Based on guidelines in Table I, both idle speed control and deceleration control are clearly

good application areas for MPC. On the other hand, the dynamics are clearly nonlinear in both of these

problems. Since idling takes place near a setpoint, a linearized model for idling is fairly accurate. On the

other hand, the deceleration control operates in a constant transient, and hence it is often convenient to

develop a low-level controller that linearizes the dynamics. In such a control architecture, MPC can exploit

constraints to ensure that the interaction with the low level controller is effective. For deceleration control,

a low level controller is tasked with delivering the demanded torque, thus transforming the pressure-based
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model into a torque-based model, where the torque response is modeled as a first order plus delay

Ṅ(t) =
1

Je

(κ̂spkMair(t)+uspk(t − tds)−ML(t)), (9a)

Ṁair(t) =
1

τair

(−Mair(t)+uair(t − td(t)), (9b)

Mair(t)≤ Mair(t)≤ Mair(t), (9c)

∆κMair(t)≤ uspk(t − tds)≤ ∆κ Mair(t). (9d)

The multiplicative relation between spark timing and torque is converted into an additive one subject

to linear constraints by introducing a virtual control representing the torque modification obtained from

spark actuation. This is possible with MPC due to the capability of handling constraints.
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Fig. 3. Experimental test of MPC-based deceleration control from [23]. Engine speed N, reference r, and tracking error εN ,

torque converted turbine speed NT , gear and controller enabling signal, vehicle speed vspd, torque from airflow Mair and torque

ratio from spark, κspk are shown.

CI engines are far more complex and have more degrees of freedom than naturally aspirated gasoline

engines, due to EGR, VGT, and multiple fuel injections which must be exploited throughout the entire

operating range to achieve a suitable tradeoff between torque delivery and emissions. In general, in diesel

engines the fuel flow Wf is determined based on the pedal position and current engine speed, and from

that, the setpoints for other variables such as the intake manifold pressure and either mass airflow through

the compressor or EGR rate are determined. Then, a feedback controller is developed that actuates the

VGT, EGR valve, and possibly intake throttle, to track these setpoints. Also in this case we obtain

a multivariable control problem with constraints on actuators and process variables, such as intake and
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exhaust manifold pressures, EGR rate, turbocharger speed, turbine temperature, compressor surge margin,

etc. The MPC solution can be simplified [50] by pursuing a rate-based formulation, constraint remodeling,

intermittent constraint enforcement, and by combining with nonlinear static or dynamic inversion.

B. Control of Vehicle Dynamics

Vehicle dynamics models are derived from the planar rigid body equations of motion. For normal

driving that involves neither high performance driving nor low speed maneuvers, the single track model,

also known as bicycle model, shown in Figure 4, is common. This model is described by

m(v̇x − vyψ̇) = Fx f +Fxr, (10a)

m(v̇y + vxψ̇) = Fy f +Fyr, (10b)

Jzψ̈ = ℓ f Fy f − ℓ jFyr, (10c)

where m is the vehicle mass, ψ is the yaw rate, vx, vy are the components of the velocity vector in the

longitudinal and lateral vehicle direction, Jz is the moment of inertia about the vertical axis, ℓ f , ℓr are

the distances of front and rear axles from the center of mass. In (10), Fi j, i ∈ {x,y}, j ∈ { f ,r} are the

longitudinal and lateral, front and rear tire forces expressed in the vehicle frame [65],

Fx j = fl(α j,δ j,σ j,µ ,Fz j), Fy j = fc(α j,δ j,σ j,µ ,Fz j), Fz j =
ℓ j

ℓ f + ℓr

mg, (11)

where δ j is the steering angle at the tires, α j is the tire slip angle and σ j is the slip ratio, for front and

rear tires j ∈ { f ,r}, and µ is the friction coefficient between tires and road. The slip angles and the slip

ratios relate the vehicle tractive forces with the vehicle velocity and the wheel speeds, thereby coupling

the vehicle response with the powertrain response,

α j = tan−1
(

vy j

vx j

)

, (12a)

vl j = vy j sinδ j + vx j cosδ j, vc j = vy j cosδ j − vx j sinδ j, (12b)

σ j =



















rω j

vx j
−1 if vx j > rω j,

1− rω j

vx j
if vx j < rω j,

(12c)

where vx j, vy j
, j ∈ { f ,r}, are the longitudinal and lateral components of the vehicle velocity vector at

the tires. In, (11), the functions fl , fc define the tire forces that are in general determined by data or

according to a model such as Pacejka’s or Lu’Gre [52].
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Fig. 4. Schematics of the single track model for the lateral vehicle dynamics. The most relevant vectors for describing the

model are also shown.

In the above mentioned normal driving conditions, the longitudinal and lateral dynamics are often

decoupled, yielding a lateral dynamics model where vx is constant, and, with a further linear approximation

of the lateral tire forces as a function of the slip angles, resulting in

mv̇y = −C f +Cr

vx

vy −
(

vx −
C f ℓ f −Crℓr

vx

)

ψ̇ +C f δ , (13a)

Jzψ̈ = −C f ℓ f −Crℓr

vx

vy −
C f ℓ

2
f +Crℓ

2
r

vx

ψ̇ + ℓ fC f δ +Mbr, (13b)

where we used the relation α f = (vy + ℓ f ψ̇)/vx, αr = (vy − ℓrψ̇)/vx, and we have included a moment

Mbr that can be generated by applying non-uniform forces at different wheels, for instance by differential

braking. In (13), C f , Cr are the front and rear lateral tire stiffnesses, which correspond to a linear

approximation of the lateral tire forces as functions of the slip angles, Fy j =C jα j.

Similarly, the longitudinal dynamics are also simplified by neglecting the lateral dynamics, resulting

in

mv̇x = ∑
j∈ f ,r

fl(0,s j,µ ,Fz j)−Fres ≈Cx
f σ f +Cx

r σr −Fres, (14a)

Fres = Faero +Froll+Fgrade ≈
1

2
ρairA f cdv2

x +mgcr cosθrd+mgsinθrd, (14b)

where C f , Cr are the front and rear longitudinal tire stiffnesses, that represent a linear approximation of

the longitudinal tire forces as functions of the slip ratio Fx j =Cx
j σ j. The slip ratio changes based on the

torques exerted on the wheels by the engine and the brakes, thus relating the powertrain and braking

system actuation with the vehicle motion. In (14) we have included the effects of resistance forces due to

airdrag, rolling, and road grade. Here ρair is the density of air, A f is the vehicle frontal area, Cd is the drag
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coefficient, θrd is the road grade, cr is the rolling resistance coefficient, and g is the gravity acceleration.

The longitudinal vehicle dynamics can be linked to the powertrain torque production in several ways. For

low bandwidth applications, such as cruise control, one can approximate Cx
f σ f +Cx

r σr ≈ Ftrac, where the

driveline shafts are assumed to be rigid. The tractive force Ftrac is the response of a first order-plus-delay

system, representing the force at the wheels applied from the powertrain side,

Ḟtrac =− 1

τF

Ftrac+
1

τF

uF(t − tF).

If shaft compliance is considered, the tractive torque Mtrac = Ftrac/rw is caused by the slip between the

wheel half-shafts and the rigid transmission shaft, so that

Mtrac = ks(θe −θwgr)+ds(θ̇e − θ̇wgr), (15)

where ks and ds are the half-shafts stiffness and damping, θe, θw are the engine and wheel shaft angles,

and gr is the total gear ratio between engine and wheels.

The active control of the vertical vehicle dynamics is mainly obtained by active and semi-active

suspensions. The simplest model is the quarter-car model [45], where each suspension is independent

from the others. The standard quarter-car model describes the vertical vehicle dynamics as two masses,

the unsprung mass Mus representing the car wheel, with stiffness kus and damping dus, and the sprung

mass Ms, representing one quarter of the car body, connected by a spring-damper, ks, ds, the passive

component of the suspension, and with a force Fa acting between them. Such force is generated by the

active or semi-active suspension actuator.

The equations of motions for the sprung and unsprung mass are

Msẍs = cs(ẋus − ẋs)+ ks(xus − xs)−Fa, (16a)

Musẍus = ct(ṙ− ẋus)+ ks(r− xus)+ cs(ẋs − ẋus)+ ks(xs − xus)+Fa, (16b)

where xs is the position of the sprung mass, xus is the position of the unsprung mass, Fa is the actuator

force, and r is the local road height with respect to the average.

The objective of the suspension control is to limit tire deflections, hence ensuring that the vehicle

maintains good handling, to limit suspension deflections, hence ensuring that the suspension does not run

against its hard stops causing noise, vibrations and harshness (NVH) and wear, and to limit sprung mass

accelerations, hence resulting in a comfortable ride. The type of actuator, e.g., hydraulic, electromagnetic,

etc., and its overall capabilities, e.g., active or semi-active, may require additional models for the actuator

dynamics, and possibly constraints limiting its action, such as force ranges or passivity constraints.
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1) MPC opportunities in vehicle dynamics: MPC of longitudinal vehicle dynamics has been applied

for adaptive cruise control (ACC), see, e.g., [59]. The objective of adaptive cruise control is to track a

vehicle reference speed r while ensuring a separation distance d from the preceding vehicle, related to

the head-away time Th, and comfortable ride, all of which can be formulated as

min
Ftrac

TN

∑
t=0

(vx(t)− rv(t))
2 +wF∆uF(t)

2 (17a)

s.t. F trac ≤ Ftrac(t)≤ F trac, (17b)

d(t)≥ Thvx(t), (17c)

where wF is a positive tuning weight. For ACC, interesting opportunities are opened when a stochastic

description of the velocity of the traffic ahead is available or can be estimated [11], or, in the context

of V2V and V2I, when there is perfect preview through communication [72]. Also, using an economic

cost can help reduce fuel consumption, with minimal impact on travel time [63]. Additional potential

applications in longitudinal vehicle dynamics still to be investigated in depth are launch control and gear

shifting. More recent applications involve braking control for collision avoidance systems, see, e.g., [57]

possibly by using again V2X to exploit preview information.

The interest on MPC for lateral dynamics spans multiple applications, especially lateral stability control

and lane keeping, up to autonomous driving. A challenging case [27] is the coordination of differential

braking moment and steering to enforce cornering, i.e., yaw rate reference rψ tracking, and vehicle

stability, i.e., avoiding that the slip angles become so large that the vehicle spins out of control. Such a

problem is challenging due to its constrained multivariable nature and to the need to consider nonlinear

tire models. A viable approach is to consider piecewise linear tire models, resulting in the optimal control

problem

min
∆δ ,Mbr

TN

∑
t=0

(ψ̇(t)− rψ(t))
2+wδ ∆δ (t)2 +wbrMbr(t)

2 (18a)

s.t. |Mbr(t)| ≤ Mbr, |δ (t)−δ (t −1)| ≤ ∆δ , |δ (t)| ≤ δ , (18b)

fc j(α j) =



































−d jα j + e j if α j > p j,

C jα j if |α j| ≤ p j,

d jα j − e j if α j <−p j,

(18c)

|α j| ≤ α j, (18d)

where wδ , wbr are positive tuning weights, and then using either a hybrid MPC or a switched MPC,
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where the current linear model is applied for prediction during the entire horizon.

As for the vertical dynamics, MPC offers interesting possibilities for active suspension control when

preview of the road is available [30], [58], for instance obtained from a forward looking camera. MPC

may also be beneficial in semi-active suspension control, since the passivity condition

Fa(ẋs − ẋus)≥ 0, (19)

can be enforced in MPC as a constraint, which ensures that the only commands that are realizable by a

semi-active actuator are actually issued. Constraint (19) is nonlinear, but can be enforced by mixed-logical

constraints

[δv = 1] ↔ [ẋs − ẋus ≥ 0], (20a)

[δF = 1] ↔ [Fa ≥ 0], (20b)

[δv = 1] ↔ [δF = 1], (20c)

where δv, δF are auxiliary integer variables, thus resulting in a hybrid MPC [36].

Finally, for more advanced systems that aim at coordinating all the suspensions in the vehicle [39],

the multivariable nature of MPC can be effective.

C. Energy Management in Hybrid Vehicles

The novel element in hybrid powertrains is the presence of multiple power generation devices, e.g.,

engine, motor, generator, and energy storage devices, e.g., fuel tank, battery, flywheel. The most common

hybrid vehicles are hybrid electric vehicles (HEV) where the internal combustion engine is augmented

with electric motors and generators, and batteries for energy storage. For HEV there are a number of

possible component topologies that determine the configurations of the power coupling, the most common

being series, parallel, powersplit, and electric rear axle drive (ERAD).

The presence of multiple power generation devices requires modeling the power balance. A general

model for the mechanical power balance that ultimately describes the amount of power delivered to the

wheels is

Pveh = Peng−Pgen +Pmot−Plos
mec, (21)

where Pveh is the vehicle power for traction, Peng is the engine power, Pgen is the mechanical power

used to generate electrical energy to be stored in the battery, Pmot is the electrical power used for

traction and Plos
mec are the mechanical power losses. Note that in advanced HEV architectures, such as
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engine
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coupling
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electrical
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Fig. 5. Schematic of a powersplit HEV architecture. The arrows indicate the allowed power flow directions. The series HEV

architecture is obtained by removing the link (1), thus the mechanical couplings are simply mechanical connections. The parallel

HEV architecture is obtained by removing the generator and hence links (2) and (3).

the powersplit architecture in Figure 5, motoring and electric energy generation can be accomplished by

multiple components, since, despite the names that indicate their preferred usage, both the motor and the

generator can convert mechanical energy into electrical energy, and the other way around.

The electrical power balance, that is used to determine the power delivered to/from the battery, is often

modeled as

Pbat = Pmot −Pgen+Plos
gen +Plos

mot, (22)

where Pbat is the power flowing from the battery and Plos
gen, Plos

mot are the losses in electric energy generation

and in the electric motoring, respectively.

Since, as opposed to the fuel tank, the battery power flow is bi-directional and the stored energy is

usually quite limited, the energy stored in the battery should be tracked and it is in fact the main state

of the HEV energy model. The energy stored in the battery is related to the stored charge, which is

normalized with respect to the maximum to obtain the battery state of charge (SoC) SoC = Qbat
Qmax

. The

battery power, voltage, and current are related by

Pbat = (V oc
bat − IbatRbat)Ibat,

where V oc
bat is the open circuit battery voltage, Ibat is the battery current and Rbat is the battery internal
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resistance. This results in the state of charge dynamics

˙SoC =−
V oc

bat −
√

V oc
bat

2 −4RbatPbat

2RbatQmax

.

Considering a power coupling that is kept under voltage control and representing the battery as a large

capacitor, i.e., ignoring internal resistance, we obtain a simpler representation

˙SoC =−ηbat(Pbat,SoC)
Pbat

V cc
batQmax

,

where ηbat is the battery efficiency, that, for feedback control, can be well approximated by one or two

constants [25], the latter case modeling different efficiencies in charging and discharging.

The main novel control problem in HEV powertrains is the management of the energy in order to

minimize the consumed fuel subject to charge sustaining constraints

min

∫ t f

ti

Wf (t)dt (23a)

s.t. SoC(ti) = SoC(t f ), (23b)

where the fuel flow Wf is related to the engine power by a function that depends on the engine operation,

Wf = f f (Peng,N). As opposed to conventional powertrains, in most HEV configurations, even for a given

engine power and wheel speed, there are degrees of freedom in selecting the engine operating point, i.e.,

engine speed and engine torque, that can be leveraged by the energy management strategy.

1) MPC opportunities in hybrid vehicles: Due to the focus on optimizing the energy consumption,

subject to constraints on power flows and battery state of charge, HEV energy management has been a

clear target for MPC application.

The key idea is to construct a finite horizon approximation of the fuel consumption cost function (23a),

augmented with a term penalizing large differences of SoC at the end of the horizon, which can be

interpreted as the augmented Lagrangian form of the charge sustaining constraint (23b). The cost function

can also include additional terms such as SoC reference tracking. Furthermore, constraints on the various

power flows and battery SoC can also be included, resulting in

min
Pbat,...

FN(SoC(TN))+
TN−1

∑
t=0

Wf (t)+wsoc(SoC(t)− rSoC(t))
2 (24a)

s.t. Peng −Pgen+Pmot−Plos
mec = Pdrv, (24b)

SoC ≤ SoC(t)≤ SoC, (24c)

|Pbat| ≤ Pbat. (24d)
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The mechanical power equation (21) is enforced as a constraint in (24) to ensure that the vehicle power

is equal to the driver-requested power Pdrv. The actual number of degrees of freedom in (24) varies with

the HEV architecture. For a powersplit architecture, shown in Figure 5, in its entirety, it is equal to two.

For a parallel architecture, where there is no generator, and for a series architecture, where there is no

pure mechanical connection between engine and wheels, it is equal to one. Exploiting the simplicity of

the latter, an MPC was developed in [25] which was deployed on a prototype production series HEV

that was fully road drivable.

It is interesting to note that the cost function in HEV energy management is of economic type and

in retrospect, HEV energy management was probably the first real-world application of economic MPC,

showing in fact the possibilty of steady state limit cycles or offsets [25]. In recent years multiple advanced

MPC methods have been applied to HEV energy management, including stochastic MPC in [69] where

the driver-requested power is predicted using statistical models, possibly learned from data during vehicle

operation.

D. Other applications

Given that the field of automotive control is large, it is it is impossible to provide a comprehensive

account for all automotive applications of MPC in a single chapter. In this chapter we focused on the

three areas described above, which have been very actively researched over the last few years. However,

there are several other applications that could be noted, including, among others, emission control in SI,

e.g., [71], [74], and CI engines, e.g., [47], [48] engines, transmission control, e.g., [2], [7], [40], [76],

control of gasoline turbocharged engines, e.g., [1], [70], control of homogeneous combustion compression

ignition (HCCI) engines, e.g., [10], [66], and energy management of fuel-cell vehicles, e.g., [3], [4], [75].

III. MPC DESIGN PROCESS IN AUTOMOTIVE APPLICATIONS

This section aims at providing guidelines for a design process for MPC in automotive applications.

While not a standard, it has been applied by the authors in multiple designs that were eventually tested

in vehicles, and it has been proved useful and effective in those applications. We focus on linear MPC,

because, as discussed later, this has been so far the main method used in automotive applications, primarily

due to computational and implementation requirements. However, the design process extends almost

directly to nonlinear MPC.

The MPC design amounts to properly constructing components of the finite horizon optimal control

problem to achieve the desired specifications and control-oriented properties. We consider the finite
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horizon optimal control problem

min
U(t)

x′t+N|tPxt+N|t +
N−1

∑
k=0

z′t+k|tQzt+k|t +u′t+k|tRut+k|t (25a)

xt+k+1|t = Axt+k|t +But+k|t, (25b)

yt+k|t =Cxt+k|t +Dut+k|t, (25c)

zt+k|t = Ext+k|t, (25d)

ut+k|t = κ f xt+k|t , k = Nu, . . . ,N −1, (25e)

xt|t = x(t), (25f)

y ≤ yt+k|t ≤ y, k = Ni, . . .Ncy, (25g)

u ≤ ut+k|t ≤ u, k = 0, . . .Ncu −1, (25h)

HNxt+N|t ≤ KN , (25i)

where the notation t + k|t denotes the k-step prediction from measurements at time t, U(t)= {ut . . .ut+N−1}
in the control input sequence to be optimized, x,u,y,z are the prediction model state, input, constrained

outputs, and performance output vectors, u,u,y,y are lower and upper bounds on input and constrained

output vectors, P,Q,R are weighting matrices, N,Ncu,Ncy,Nu are non-negative integers defining the

horizons, κ f is the terminal controller, and HN ,KN define the terminal set. Next, we discuss the role

of each of these components in achieving the specifications that are common on automotive applications.

A. Prediction Model

Several dynamical processes occurring in automotive applications are well studied and have readily

available physics-based models, some of which have been described in Sections II-A–II-C. In MPC design

it is desirable to start from such physics-based models. However, many of them may be of unnecessarily

high order, may be nonlinear, and may have several parameters to be estimated for different vehicles.

Hence, usually the first step in MPC design is to refine the physics based model by:

• simplifying the model to capture the relevant dynamics based on the specific application and con-

troller requirements, e.g., the sampling period, by linearization, model order reduction, etc;

• estimating the unknown parameters by gray-box system identification methods, e.g., linear/nonlinear

regression, step response analysis, etc.;

• time-discretizing the dynamics to obtain in a discrete-time prediction model.
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Fig. 6. Validation of identification of engine model for idle speed control from nonlinear model data (left) and experimental data

(right) in throttle and spark up-down steps from [29]. Upper plot: data (solid), continuous-time linear model (dash), discrete-time

linear model (dash-dot). Lower plot: continuous-time model error (solid) discrete-time model error (dash-dot).

Even for the relatively simple case of idle speed control, in [29] due to computational requirements,

the powertrain model (1a), (4) is linearized around the nominal idle operating point. The model structure

is known from physics, and it consists of two transfer functions, from throttle and spark to engine

speed, each of second order and subject to delays, and the the latter has an additional stable zero. The

model parameters are identified from the step responses, with the models for the delays removed during

identification, to be added again later, see Figure 6.

The result of the first model construction step is usually a linear, discrete-time constrained model for

the physical process,

xm(t +1) = Amxm(t)+Bmum(t), (26a)

ym(t) = Cmxm(t)+Dmum(t), (26b)

zm(t) = Emxm(t), (26c)

where xm ∈ R
nm is the state vector, um ∈ R

mm is the input vector ym ∈ R
pm is the constrained output

vector, and zm ∈ R
qm is the performance output vector.

The process model (26) usually needs to be augmented with additional states and artificial dynamics

in order to achieve the problem specifications, such as tracking of references, non-zero, and possibly

unknown steady state input values, rejection of certain classes of disturbances, e.g., constant, sinusoidal,

etc. Further modifications may be made to account for additional information available in the system,

such as preview on disturbances or references, or known models for those. Typical augmentations are
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the incremental input formulation

u(t +1) = u(t)+∆u(t),

the inclusion of integral action to track constant references and reject constant unmeasured disturbances,

ι(t +1) = ι(t)+TsCι z(t),

and the inclusion of disturbance models

η(t +1) = Aη(t),

d(t) = Cdη(t),

where the disturbance model state η is measured in the case of measured disturbances, while in the case

of unmeasured disturbance it is estimated from disturbance observers. A case of particular interest is the

inclusion of buffers, which allow to account for time delays and preview on disturbances and references,

ξ (t +1) =











0 I

0 c











ξ (t),

χ(t) =

[

1 0 . . . 0

]

ξ (t),

where c is usually either 1 or 0 depending on whether, after the delay window, the last value in the buffer

is to be held constant or set to 0. Note that an exact linear model of the delay buffer can be formulated

in discrete-time, albeit with the resolution of the sampling period, while in continuous-time one must

resort to Padé approximations, that may introduce fictitious non-minimum phase behaviors and mislead

the control decisions.

Due to its intrinsic feedforward-plus-feedback nature, MPC is often applied for reference tracking.

However, the application of MPC to these problems is not as simple as for linear controllers, because

the constraints usually prevent from simply “shifting the origin” to translate the tracking problem into a

regulation problem. In automotive applications, it is also difficult, in general, to compute the equilibrium

associated with a certain reference value r, due to the uncertainties in the model and the unmeasured

disturbances. If one wants to avoid adding a disturbance observer, it may be effective to apply the velocity

(or rate-based) form of the model, where both the state and input are differentiated, and the tracking

November 17, 2017 DRAFT



24

Specification Model Augmentation

Piecewise constant reference or Incremental input

measured disturbance

Measured non-predictable disturbance Constant disturbance model

Previewed reference/disturbance Preview reference/disturbance buffer

Known time delay Delay buffer

Unmeasured constant disturbance Output/tracking error integral action

Output disturbance and observer

Reference tracking Reference model and tracking error,

velocity form

TABLE II

LIST OF COMMON SPECIFICATIONS AND RELATED AUGMENTATIONS TO THE PROCESS MODEL TO HANDLE THEM.

error em is included as an additional state

∆xm(t +1) = Am∆xm(t)+Bm∆um(t), (27a)

em(t) = em +Em∆xm(t)+∆r(t), (27b)

ym(t) = ym(t −1)+Cm∆xm(t)+Dm∆um(t), (27c)

where ∆r is the change in reference value. For MPC applications one may need to add integrators

to reformulate ym in terms of the state and input changes, ∆xm, ∆um, except for the cases where the

constraints are originally in differential form.

The more common augmentations in relations to specifications usually found in automotive control

applications are summarized in Table II. Applying all the augmentations results in a higher order prediction
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model,

xt+k+1|t = Axt+k|t +But+k|t, x =











xm

xp











∈ R
n, u =











um

up











∈ R
m, (28a)

yt+k|t = Cxt+k|t +Dut+k|t, y =











ym

yp











∈ R
p, (28b)

zt+k|t = Ext+k|t, z =











zm

zp











∈ R
q, (28c)

where x,u,y,z are the prediction model state, input, constrained outputs, and performance output vectors,

xp,up,yp,zp are the augmented state, input, constrained outputs, and performance output vectors.

B. Horizon and Constraints

The constraints are usually enforced on the constrained output vector, and on the input. While enforcing

the constraints directly on the states is certainly possible, it is more convenient to introduce the vector y

specifically for this use, which allows to enforce state, mixed state-inputs, and, possibly even pure input

constraints, through a single vector. Thus, in general the constraints are formulated as

yt+k|t ∈ Ym, ut+k|t ∈ Um, (29)

where and Ym and Um are the admissible sets for constrained output and input vectors, respectively.

Enforcing constraints on the prediction model y and u, which include augmentation, usually allows to

formulate (29) as simple bounds

y ≤ yt+k|t ≤ y, u ≤ ut+k|t ≤ u, (30)

which are easier to specify and to handle in an optimization problem.

In automotive applications, the sampling period Ts is often equal to the period of the control cycle

for the function being developed. However, for the prediction model to be accurate, it is expected that

the sampling period Ts is small enough to allow for 3-10 steps in the settling of the fastest dynamics,

following a reference step change. If this is not the case, upsampling or downsampling may be advised,

where the prediction model sampling period and the control loop period are different, and appropriate

strategies, such as move blocking or interpolation, are applied to bridge such differences.
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The choice of the prediction horizon N is related to the prediction model dynamics. In general, N should

be slightly larger, e.g., 1.5×-3×, than the number of steps for the settling of the slowest (stable) prediction

model dynamics, following a reference step change. This requirement relates to the choice of the sampling

period so that the total amount of prediction steps is expected to be 5-30 times the ratio between the

slowest and the fastest (stable) system dynamics. To be more correct, since the controller usually alters

the response of the open-loop system, the relevant settling time for the choice of the prediction horizon

is that of the closed-loop system, which usually leads to an iterative selection procedure.

For adjusting the computational requirements in solving the MPC problem, other horizons can be

defined. The control horizon Nu determines the number of control steps left as free decision variables

to the controller, where for k ≥ Nu the input is not an optimization variable but rather assigned by a

pre-defined terminal controller,

ut+k|t = κ f xt+k|t , k = Nu, . . . ,N −1. (31)

The constraint horizons, for outputs and inputs, Ncy,Ncu, respectively, determine for how many steps the

constraints are enforced,

y ≤ yt+k|t ≤ y, k = Ni, . . .Ncy, u ≤ ut+k|t ≤ u, k = 0, . . .Ncu −1, (32)

where Ni = {0,1} depending on whether output constraints are enforced or not at the initial step, which

is reasonable only if the input directly affects the constrained outputs. By choosing Nu, one determines

the number of optimization variables, nv = Num and by choosing Ncy,Ncu, one determines the number of

constraints, nc = 2(p(Ncy+Ni)+m(Ncu)). This determines the size of the optimization problem.

C. Cost Function, Terminal Set and Soft Constraints

The cost function encodes the objectives of MPC, and their priority. The control specifications are

formulated as variables that are to be controlled to 0. The variables are either a part of the process

model (26), or are included in the prediction model (28) by the augmentations discussed in Section III-A.

In general the MPC cost function is

Jt = x′t+N|tPxt+N|t +
N−1

∑
k=0

z′t+k|tQzt+k|t +u′t+k|tRut+k|t , (33)

where the performance outputs of the prediction model z= Ex can model objectives such as tracking, e.g.,

by z =Cx−Crxr, where xr is the reference model state, and r =Crxr is the current reference. In (33),

Q ≥ 0, R > 0 are the matrix weights that determine the importance of the different objectives: for a

diagonal weight matrix Q, the larger the ith diagonal component, the faster the ith performance output
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Specification Corresponding weights

Regulation/Tracking error weight on plant output error

Energy weight on plant input

Noise, vibration, weight on plant output acceleration,

and harshness (NVH) and plant input rate of change

Consistency weight on plant output velocity,

and plant input rate of change

Comfort weight on plant output acceleration and jerk,

and model input rate of change

TABLE III

LIST OF “DOMAIN TERMS” SPECIFICATIONS AND WEIGHTS THAT OFTEN AFFECT THEM.

will be regulated to 0. It is important to remember that weights determine relative priorities between

objectives. Hence, increasing the jth performance output weight may slow down the regulation of the ith

performance output.

Very often, the control specifications are given in terms of “domain quantities”, such as comfort, NVH

(noise, vibration, harshness), consistency, i.e., repeatability of the behavior, and it is not immediately

clear how to map them to corresponding weights. While the mappings tend to be application dependent,

some of the common mappings are reported in Table III, where we stress that the outputs and inputs,

and their derivatives, refer to the plant outputs, which may be part of the performance outputs or inputs,

depending on the performed model augmentations.

In (33), P ≥ 0 is the terminal cost, which is normally used to guarantee at least local stability. There are

multiple ways to design P. The most straightforward and more commonly used in automotive applications

is to choose P to be the solution of the Riccati equation, constructed from A, B in the prediction model (28),

and Q, R in the cost function (33),

P = A′PA+Q−A′PB(B′PB+R)−1B′PA.

This method can be used, after some modifications, also for output tracking [26]. Alternative approaches
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are based on choosing P to be the solution of a Lyapunov equation, for systems that are asymptotically

stable, or on choosing P as the closed-loop matrix of the system stabilized by a controller, which, for

linear plants and controllers, can be computed via LMIs. The terminal controller u = κ f x used after the

end of the control horizon is then chosen accordingly, being either the LQR controller, constantly 0, or

the stabilizing controller, respectively.

The use of terminal set constraint HNxt+N|t ≤ KN to guarantee recursive feasibility and stability in the

feasible domain of the MPC optimization problem has seen a fairly limited use in automotive applications,

also due to the many disturbances and modeling errors acting on the prediction model, which may cause

infeasibility of such constraint, due to the need to keep the horizon short because of computational

requirements. In practice, for ensuring that the optimization problem admits a solution, constraint softening

is often applied. A quadratic program (QP) with soft constraints can be formulated as

min
v,s

1

2
v′Hv+ρs2 (34a)

s.t. Hv ≤ K+Ms, (34b)

where s is the slack variable for softening the constraints, M is a vector of 0 and 1 that determines

which constraints are actually softened, and ρ is the soft penalty, where usually ρI ≫ Q. In general, only

output constraints are softened, because input constraints should always be feasible for a well-formulated

problem. More advanced formulations with multiple slack variables giving different priorities to different

constraints are also possible, as well as different weighting functions for the constraint violation, such

as using the absolute value of s.

IV. COMPUTATIONS AND NUMERICAL ALGORITHMS

As mentioned in Section I, a key challenge for implementing MPC in automotive applications is

accommodating its significantly larger computational footprint when compared to standard automotive

controllers, i.e., PID. As MPC is based on solving a finite time optimal control problem, the MPC code

is significantly more complex, and it may involve iterations, checking of termination conditions, and

sub-routines, as opposed to the integral and derivative updates and a “one-shot” computation of the three

terms in the PID feedback law.

The embedded software engineers that are ultimately responsible for controller deployment need to face

this additional complexity, and need to move from a controller that evaluates a function, to a controller

that executes an algorithm. For the technology transfer of MPC from research to production to have

some chances of success, one must, at least initially, reduce such a gap as much as possible by proposing
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Clock Instructions Instr./s RAM ROM

dCPU 1000s MHz CISC 100s GIPS 10s GB 1000s GB

aMCU 100s MHz RISC 1000s MIPS 1000s kB 10s MB

TABLE IV

A COMPARISON OF CURRENT CHARACTERISTIC RANGES FOR DESKTOP PROCESSORS (DCPU) AND AUTOMOTIVE

MICRO-CONTROLLERS (AMCU).

simple MPC implementations, and then gradually move towards more advanced implementations when

confidence in MPC builds up.

Furthermore, cost is a key driver in the automotive development. Automotive engineers often consider

advanced control methods as a pathway to reducing the cost of sensors and actuators, while still achieving

robustness and efficiency through software. If the control algorithms are so complex that they require the

development of new computational platforms, their appeal is significantly reduced. Hence, the control

developers should always strive to fit the controller in the existing computing hardware, rather than

assume that computing hardware that is able to execute it will become available.

The common practice found in many research papers of extrapolating the real-time behavior of MPC

in an automotive micro-controller unit (aMCU) from the one that is seen in a desktop CPU (dCPU) is

potentially very misleading as aMCUs and dCPUs have significantly different capabilities, see Table IV.

First, one needs to consider that powerful aMCUs usually run more than ten feedback loops, and probably

an even larger number of monitoring loops, and hence the actual computation power available for a single

controller is only a fraction of what is available in the entire aMCU. The difference between instruction

sets (RISC vs CISC) and the simpler structure of the aMCU memory architecture results in a significantly

different numbers of instructions per seconds (IPS) for the aMCUs with respect to dCPUs. Most of the

differences are due to the need for the aMCU to work in extreme environments, e.g., ambient temperature

ranges between −40oC and +50oC, and even higher near the engine, in which a dCPU is not required

to operate and may be even prevented from starting. This is also the cause of the major differences in

the size of execution memory, which is normally DRAM in dCPU, but is in general permanent (e.g.,

SRAM, EPROM, or Flash) in aMCU, with higher cost and physical size, and hence lower quantities and

speeds. In fact, for several embedded platforms, memory access may actually be the bottleneck [81].
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Because of this, and since also processor-specific code optimization, by engineers or custom compilers,

may play a very significant role, the evaluation of the computational load of an MPC controller in an

aMCU can only be extrapolated by (in order of precision)

• computing the worst case number of operations per type, the number of instruction per operation

type, and hence the total number of instructions per controller execution,

• executing the controller on the specific platform, computing the cost per iteration, and estimating

the allowed number of iterations per sampling period,

• evaluating the execution time in a dCPU, estimating the ratio of IPS between dCPU and aMCU,

and using that to estimate the execution time in aMCU.

However, according to Table IV, what is often restricting is the memory, both for execution and data.

Hence the memory occupancy of the controller is something to be very mindful of. Indeed, PIDs need

a minimal amount of memory, 3 gains, 2 extra variables for integral and derivative error, and very few

instructions. MPC requires significantly more program and data memory than PID, and hence a careful

choice of the numerical algorithm is often critical to the success of the application. Based on the previous

discussions, algorithms with limited memory usage and relatively simple code may be preferred, at least

initially.

A. Explicit MPC

Explicit MPC has had a significant impact on the implementation of the first MPC solutions in

experimental vehicles. Some examples, tested in fully functional and road-drivable (and in several cases

road-driven) vehicles are in [13], [23], [25], [27], [29], [59], [62], [73], [76], [82].

In explicit MPC, the optimizer of the MPC problem is obtained by evaluating a pre-computed function

of the current prediction model state, possibly including references and other auxiliary states,

umpc(x) =



































F1x+G1 if H1x ≤ K1,

...

Fsx+Gs if Hsx ≤ Ks,

(35)

where s is the total number of regions, see Figure 7 for some examples.

The main advantages of explicit MPC and the reasons it has arguably become, until today, the primary

method of MPC deployment in automotive applications are:
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Fig. 7. Section of the partitions of the explicit multivariable linear MPC for idle speed control from [29] (left) and for the

switched linear MPC steering controller from [27].

• Simple execution code: explicit MPC is a lookup table of affine controllers, selected by evaluating

linear inequalities.

• Basic operations: the controller implementation requires only sums, multiplications, and comparisons.

• Predictability: the worst case number of operations is easily computed.

Additional benefits include the possibility of computing explicit MPC, with few modifications, also

for hybrid and switched systems, which allowed for the application of switched and hybrid MPC to

automotive control problems [13], [27], [59], [62], [73], [76], the possibility of building explicitly the

closed-loop system and hence studying its local and global stability, and the possibility of using only the

regions that are most often visited, while enforcing a backup controller otherwise, thus reducing memory

requirements.

On the other hand the explicit MPC data memory occupancy and worst case number of operations

grows proportionally to the number of active-sets of constraints nas, and hence exponentially with the

number of constraints/variables according to

nas ≤
min{nc,nv}

∑
h=0











nc

h











, (36)

where nv is the number of variables, and nc is the number of constraints, both of which are proportional to

the length of the horizon(s). Because of (36), explicit MPC is limited to applications with relatively short

horizon, few control inputs, and few constraints. Another limitation is that the algorithm to construct,
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the explicit law (35) is too complex to be implemented in the vehicle, and hence explicit MPC cannot

be easily tuned or adjusted after deployment.

B. Online MPC

In problems with many control inputs, long prediction horizons and many constraints, explicit MPC

may be too complex to store for real-time usage, or even to compute. Also, if the prediction model

changes over time, it is very difficult to adjust accordingly the explicit solution, while it is relatively

simple to update the data of the optimal control problem. In these cases, the online solution of the

MPC optimal control problem may be preferable, and hence online MPC has been applied to automotive

problems with the above features.

Among such problems, in [31], a quadratic programming solver and a nonlinear programming solver

were used online for controlling an autonomous vehicles, which enabled using a long horizon to take

maximum advantage of the known reference trajectory. The nonlinear programming solver was based on

sequential quadratic programming, and both the nonlinear program and quadratic programming solvers

used active-set methods. In [32] an online active-set solver was used to solve quadratic programs for

controlling MAP and MAF in a diesel engine using EGR and VGT. The online solver was used due to the

many constraints imposed by the problem, and the need to update the matrices of the model depending

on the current operating point, i.e., using in fact a linear-parameter varying model of the diesel engine.

In [5], due to the need for using a relatively long horizon for vehicle dynamics cornering performance

and stability control at the limit of performance, an interior point solver was used online. While the

solvers have been tested in real vehicles, the computing platforms were dedicated rapid prototyping units

and custom micro-controllers that may be more capable than production aMCU, in particular because

they are dedicated to the controller being developed, while aMCUs run multiple controllers.

Active-set and interior-point methods have fast convergence, but they often use linear algebra libraries

for solving systems of linear equations at each iteration of the optimization. Using these libraries may

require a fairly large amount of memory, for both data and code storage, and for execution, and achieving

portability of these libraries to certain micro-controllers may not be straightforward. Alternatively, first-

order methods often have slower convergence, but have much simpler code and hence require less memory

and are independent of third parties libraries.

First order methods are essentially based on updating the current solution z
(h)
s in the direction indicated

by a function hs of the gradient of the cost function J with a stepsize αs, followed by the projection onto
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the feasible set F

ẑ
(h+1)
s = ẑ

(h)
s −αs(z

(h)
s ) ·hs

(

d

dzs

J(zs)

∣

∣

∣

∣

z
(h)
s

)

, (37a)

z
(h+1)
s = projF

(

ẑ
(h+1)
s

)

, (37b)

where zs may contain additional variables other than those of the original optimization problem, and the

choice of the stepsize αs, of the function hs, and of the additional variables, differentiate the methods.

In recent years, several low complexity first-order methods for MPC have been proposed, based on

Nesterov’s fast gradient algorithm [67], Lagrangian methods [55], nonnegative least squares [22], and

alternating direction method of multipliers (ADMM) [35], [38], [64]. For instance, in [24] the method

in [22] was used for vehicle trajectory tracking.

C. Nonlinear MPC

Most of the previous discussion is focused on linear MPC because, at least until very recently, that was

the only class of MPC that realistically could have been implemented in automotive systems. Nonlinear

MPC is significantly more complex, which is to a large extent due to the algorithm for solving the

nonlinear programming problem. For instance, in [31] the authors after implementing a nonlinear method,

chose to implement a linear time-varying method based on local linearization and quadratic programming,

to reduce the computational load. As another example, the paper [41] concerned with diesel engine air

path control states that “currently it is not possible to implement NMPC in real time due to the limited

computational power available”. However, this is starting to change in more recent years, in part thanks

to the research aimed at tailoring nonlinear solvers to MPC problems.

Some applications of nonlinear MPC to automotive systems [34], [53], [80] are based on the C/GMRES

method reported in [60]. This method appears quite effective if the objective is to solve a nonlinear optimal

control problem with equality constraints, only few inequality constraints, and few changes of the active-

set. This is due to the changes to the active sets possibly causing discontinuities in the dual variables,

and sometimes also in the primal variables, see, e.g., [54], which is in conflict with the smooth update

of the continuation methods. Various inequality constraint enforcement techniques for diesel engines in

the context of the method in [60] are considered and compared in [49].

More recently [1], [33], some applications are being investigated based on the so-called real-time

iteration (RTI) scheme [43], which is based on combining effective integrators for multiple-shooting

methods with sequential quadratic programming, where usually only one step of optimization is actually

performed.
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Expanding the reliability and reducing the computational cost of nonlinear MPC methods will probably

be a key effort in the upcoming years to allow for significant use in automotive applications.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

MPC has been extensively employed for research in automotive control, and is maturing for product

deployment. The main opportunities are in using MPC for optimal multivariable constrained control, for

exploiting preview information, and for handling systems subject to time delays. As a consequence, MPC

has been investigated in several applications in powertrain, lateral and longitudinal vehicle dynamics, and

energy management of HEV. In the upcoming years the number of applications of MPC to autonomous

vehicles [31], [51], [57] is expected to grow, where MPC may need to be integrated with higher level

planning methods [19], [24], decision logics [78], and connected cooperative driving [61], [72], possibly

within some kind of distributed architecture.

While many challenges presented by MPC deployment have been overcome by research on specific

applications, research efforts are still necessary to address them in general ways, and some challenges for

product deployment are still not entirely solved. These include the construction of models, and effective

approximations thereof, the numerical algorithms for linear [22], [38], [64], [67] and nonlinear MPC [43],

[60], the calibration and reconfiguration methods [18], [20], and the design process, to which, hopefully,

this chapter has contributed.
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