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Abstract

Progress in video anomaly detection research is cur-
rently slowed by small datasets that lack a wide variety of
activities as well as flawed evaluation criteria. This paper
aims to help move this research effort forward by introduc-
ing a large and varied new dataset called Street Scene, as
well as two new evaluation criteria that provide a better es-
timate of how an algorithm will perform in practice. In ad-
dition to the new dataset and evaluation criteria, we present
two variations of a novel baseline video anomaly detection
algorithm and show they are much more accurate on Street
Scene than two state-of-the-art algorithms from the litera-
ture.

1. Introduction
Surveillance cameras are ubiquitous, and having humans

monitor them constantly is not possible. In most cases, al-
most all of the video from a surveillance camera is unimpor-
tant and only unusual video segments are of interest. This is
one of the main motivations for developing video anomaly
detection algorithms - to automatically find parts of a video
that are unusual and flag those for human inspection.

The problem of video anomaly detection is difficult to
formulate precisely. One imprecise formulation is as fol-
lows. Given one or more training videos from a static cam-
era containing only normal (non-anomalous) events, detect
anomalous events in testing video from the same static cam-
era. Providing training video of normal activity is necessary
to define what is normal for a particular scene. By anoma-
lous event, we mean a spatially and temporally localized
segment of video that is significantly different from any-
thing occurring in the training video. What exactly is meant
by “significantly different” is difficult to specify and really
depends on the target application. This “difference” could
be caused by several factors, most commonly unusual ap-
pearance or motion of objects in the video. In practice, in
the research community, anomalous events in a particular
dataset are determined by the dataset creator. Thus, the de-

Figure 1. A normal frame from the Street Scene dataset.

sign and labeling of a dataset for video anomaly detection
must be done thoughtfully and carefully.

After working on this problem, we think there are de-
ficiencies in existing datasets for video anomaly detection.
These deficiencies include the simplicity of the scenes for
many datasets, the small number of anomalous events, the
lack of variety in anomalous events, the very low reso-
lution of some datasets, existence of staged anomalies in
some cases, inconsistency in annotation, and the lack of
spatial ground truth (in addition to temporal) in some cases.
Furthermore, the evaluation criteria that have become stan-
dard practice for video anomaly detection have problems.
Namely, the evaluation criteria do not properly evaluate spa-
tial localization and do not properly count false positives.
In short, they do not give a realistic picture of how an algo-
rithm will perform in practice.

The goal of this paper is to shift the focus of video
anomaly detection research to more realistic datasets and
more useful evaluation criteria. To this end, we introduce
a new dataset for video anomaly detection, called Street
Scene, that has more labeled anomalous events and a greater
variety of anomalies than previous datasets. Street Scene
contains video of a two-way urban street including bike
lanes and pedestrian sidewalks (see Figure 1). The video
is higher resolution and captures a scene with more var-
ied activity than previous datasets. We also suggest two

1



new evaluation criteria which we believe give a more accu-
rate picture of how video anomaly detection algorithms will
perform in practice than the existing criteria. Finally, we
describe two variations of a novel algorithm which greatly
outperform two state-of-the-art algorithms on Street Scene.

2. Existing Datasets and Evaluation Criteria
There are a handful of publicly available datasets used to

evaluate video anomaly detection algorithms. We discuss
each of these below and summarize them in table 1.

2.1. UCSD Pedestrian

The most widely used video anomaly detection dataset
is the UCSD pedestrian anomaly dataset [9] which consists
of video from two different static cameras (labeled Ped1
and Ped2), each looking at a pedestrian walkway. The Ped1
videos consist of 34 training videos and 36 testing videos
each of resolution 238 x 158 pixels. Ped2 consists of 16
training and 12 testing videos of resolution 360 x 240 pixels.
Each video contains from 120 to 200 frames. The normal
training videos contain groups of people walking along a
pedestrian walkway. There are 54 labeled anomalous events
(tracks) in Ped1 and 23 in Ped2. The test videos contain 5
different types of anomalies: “bike”, “skater”, “cart”, “walk
across”, and “other”. Anomalous frames are marked for
all testing videos, and a subset of the testing videos have
pixelwise spatial labels for anomalies per frame.

Despite being widely used, this dataset has various defi-
ciencies. One is that it is modest size, both in terms of num-
ber of frames and total anomalies. It only contains 5 differ-
ent types of anomalies. Another is that all of the anomalies
can be detected by only analyzing a single frame at a time.
In other words, none of the anomalies really involve any
actions evolving over time. Finally, spatial annotations are
only provided for some of the testing videos.

2.2. Subway

The Subway dataset [1] contains two long videos of a
subway entrance and exit that mainly capture people en-
tering and leaving through turnstiles. Anomalous activi-
ties include people jumping or squeezing around the turn-
stiles, walking the wrong direction, and a person cleaning
the walls. Because only two long videos are provided, there
are various ambiguities with this dataset such as what frame
rate to extract frames, which frames to use as train/test and
exactly which frames are labeled as anomalous. Also, there
are no spatial ground truth labels. In total, 66 anomalous
events are labeled temporally.

2.3. CUHK Avenue

Another widely used dataset is called CUHK Av-
enue [12]. This dataset consists of short video clips taken

from a single outdoor surveillance camera looking at the
side of a build with a pedestrian walkway in front of it. The
main activity consists of people walking and going into or
out of the building. There are 16 training videos and 21
testing videos each of resolution 640 x 360 pixels. The test-
ing videos contain 47 total anomalous events. Anomalies
are mostly staged and consist of actions such as a person
throwing papers or a backpack into the air, or a child skip-
ping across the walkway. Spatial and temporal anomaly an-
notations are provided. Like UCSD, this dataset also has a
small number and variety of anomalies. In addition since
many of the anomalies are staged, they do not seem natural.

2.4. UMN

The UMN dataset contains 11 short clips of 3 scenes
of people meandering around an outdoor field, an outdoor
courtyard, or an indoor foyer. In each of the clips the
anomaly consists of all of the people suddenly running
away, hinting at a frantic evacuation scenario. The scene
is staged and there is one anomalous event per clip. There
is no clear specification of a split between training and test-
ing frames and anomalies are only labeled temporally.

2.5. ShanghaiTech Campus

A recent paper by Liu et al. [11] introduced a new dataset
for video anomaly detection called ShanghaiTech Campus.
It consists of 13 different training scenes (12 of which are
used for testing) and 317,398 total frames (274,515 for
training and 42,883 for testing). Each color frame has res-
olution 856 x 480 pixels. A typical video shows people
walking along a sidewalk. Anomalies include bikers, skate-
boarders, people running or chasing, and people fighting.
There are 130 anomalous events in total which are labeled
both spatially and temporally.

This dataset is a good addition to the field, but it still has
only a modest number of anomalous events (130) and pa-
pers that have evaluated on it [13, 11] still use the frame-
level and pixel-level criteria introduced in [9] for which
there are problems that we discuss below. Furthermore, pa-
pers that have used this dataset have trained a single model
on all 13 different training scenes. In our view this does
not fit with the formulation of video anomaly detection be-
cause an event that is anomalous in one scene (such as a
person running) may not be anomalous in a second scene
since training videos in the second scene describing nor-
mality may include running people whereas the first does
not. Thus, different models are necessary for each different
scene. This is not a deficiency in the dataset itself, but does
set a precedent on how to use the dataset.

2.6. Evaluation Criteria

Almost every recent paper for video anomaly detection
[15, 16, 22, 7, 19, 17, 4, 14, 23, 21, 24, 6, 5, 20, 12, 18, 10,



Dataset Total Training Avg Frames per Testing Avg Frames per Anomalous
Frames Frames Training Video Frames Testing Video Events

UCSD Ped1 and Ped2∗ 18,560 9,350 187 9,210 192 77
Subway 139 min 25 min N/A 114 min N/A 66

CUHK Avenue 30,652 15,328 958 15,324 730 47
UMN∗∗ 4 min 17 sec N/A N/A N/A N/A 11

ShanghaiTech∗∗∗ 317,398 274,515 832 42,883 401 130
Street Scene 203,257 56,847 1,235 146,410 4,183 203

Table 1. Characteristics of video anomaly detection datasets. ∗aggregates from 2 cameras. ∗∗aggregates from 3 cameras. ∗∗∗aggregates
from 13 cameras.

2, 3] has used one or both of the evaluation criteria specified
in Li et al. [9] which also introduced the UCSD pedestrian
dataset. The first criterion, referred to as the frame-level cri-
terion, counts a frame with any detected anomalous pixels
as a positive frame and all other frames as negative. The
frame-level ground truth annotations are then used to deter-
mine which detected frames are true positives and which are
false positives, thus yielding frame-level true positive and
false positive rates. This criterion uses no spatial localiza-
tion and counts a frame as a correct detection (true positive)
even if the detected anomalous pixels do not overlap with
any ground truth anomalous pixels. Even the authors who
proposed this criterion stated that they did not think it was
the best one to use [9]. We have observed that some meth-
ods that claim state-of-the-art performance on frame-level
criterion perform poor spatial localization in practice.

The other criterion is the pixel-level criterion and tries to
take into account the spatial locations of anomalies. Unfor-
tunately, it does so in a problematic way. The pixel-level
criterion still counts true positive and false positive frames
as opposed to true and false positive anomalous regions. A
frame with ground truth anomalies is counted as a true pos-
itive detection if at least 40% of its ground truth anoma-
lous pixels are detected. Any frame with no ground truth
anomalies is counted as a false positive frame if at least one
pixel is detected as anomalous. This criterion has serious
deficiencies. For example, anytime an algorithm detects a
single pixel of a frame as anomalous, it might as well label
all pixels of that frame as anomalous. This would guarantee
a correct detection if the frame has a ground truth anomaly
and would not further increase the false positive rate if it
does not. That is, it does not reward tightness of localiza-
tion or penalize looseness of it. Furthermore, it does not
give a realistic measure of how many false positive regions
to expect an algorithm to have in practice. This is because
false positive regions are not even counted for frames con-
taining ground truth anomalies, and a frame with no ground
truth anomalies can only have a single false positive even
if an algorithm falsely detects many different false positive
regions in that frame.

Better evaluation criteria are clearly needed.

3. Description of Street Scene
The Street Scene dataset consists of 46 training video se-

quences and 35 testing video sequences taken from a static
USB camera looking down on a scene of a two-lane street
with bike lanes and pedestrian sidewalks. See Figure 1 for a
typical frame from the dataset. Videos were collected from
the camera at various times during two consecutive sum-
mers. All of the videos were taken during the daytime. The
dataset is challenging because of the variety of activity tak-
ing place such as cars driving, turning, stopping and park-
ing; pedestrians walking, jogging and pushing strollers; and
bikers riding in bike lanes. In addition the videos contain
changing shadows, and moving background such as a flag
and trees blowing in the wind.

There are a total of 203,257 color video frames (56,847
for training and 146,410 for testing) each of size 1280 x 720
pixels. The frames were extracted from the original videos
at 15 frames per second.

We wanted the dataset to contain only “natural” anoma-
lies, i.e. not staged by “actors”. Since anomalies are deter-
mined by what is not in the training video, we tried to be
thoughtful about what to include in training. To this end,
the training sequences were chosen to meet the following
criteria:

• If people are present, they are walking, jogging or
pushing a stroller in one direction on a sidewalk; or
they are getting into or out of their car including walk-
ing along the side of their car; or they are stopped in
front of a parking meter.
• If a car is present, it is legally parked; or it is driving

in the appropriate direction in a car lane; or stopped in
a car lane due to traffic; or making a legal turn across
traffic; or leaving/entering a parking spot on the side
of the street.
• If bikers are present, they are riding in the appropriate

direction in a bike lane; or turning from the intersect-
ing road into a bike lane or from a bike lane onto the
intersecting road.

These criteria for normal activity imply that the following
activities, for example, are anomalous and thus do not ap-
pear in the training videos: Pedestrians walking across the



Anomaly Class Instances Anomaly Class Instances
1. Jaywalking 60 10. Car illegally parked 5
2. Biker outside lane 42 11. Person opening trunk 4
3. Loitering 37 12. Person exits car on street 3
4. Dog on sidewalk 11 13. Skateboarder in bike lane 2
5. Car outside lane 9 14. Person sitting on bench 2
6. Worker in bushes 8 15. Metermaid ticketing car 1
7. Biker on sidewalk 7 16. Car turning from parking space 1
8. Pedestrian reverses direction 5 17. Motorcycle drives onto sidewalk 1
9. Car u-turn 5

Table 2. Anomaly classes and number of instances of each in the Street Scene dataset.

road (i.e. jaywalking), pedestrians stopped on the sidewalk
(loitering), pedestrians walking one direction and then turn-
ing around and walking the opposite direction, bikers on
the sidewalk, bikers outside a bike lane (except when turn-
ing into a bike lane from the intersecting street) cars making
u-turns, cars parked illegally, cars outside a car lane (except
when turning or parked, parking or leaving a parking spot).

The 35 testing sequences have a total of 203 anomalous
events consisting of 17 different anomaly types. A complete
list of anomaly types and the number of each in the test set
is given in Table 2.

Ground truth annotations are provided for each testing
video in the form of bounding boxes around each anoma-
lous event in each frame. Each bounding box is also labeled
with a track number, meaning each anomalous event is la-
beled as a track of bounding boxes. Track lengths vary from
tens of frames to 5200 which is the length of the longest
testing sequence. A single frame can have more than one
anomaly labeled.

Labeling anomalies is inherently ambiguous. When ex-
actly does an anomaly such as jaywalking or a car mak-
ing a u-turn begin and end? How far outside the bike lane
does a biker need to be to constitute a “biker outside lane”
anomaly? If two pedestrians are holding hands while walk-
ing, is that normal even though this didn’t occur in any train-
ing sequences? What if this occurred in training on one
sidewalk but not the other? The list could go on.

In short, we tried to use common sense when such issues
come up during labeling. We decided to start labeling jay-
walking on the frame where the person leaves the curb and
goes into the street. A biker needs to be all the way out-
side the bike lane (not touching the lane line) to be counted
as anomalous. Pedestrians holding hands are not different
enough from pedestrians walking side by side to be counted
as anomalous (especially at the low resolution of pedestri-
ans in StreetScene). These inherent ambiguities also inform
our evaluation criteria which are described next.

The Street Scene dataset is available for download on
MERL’s website: www.merl.com.

4. New Evaluation Criteria

As discussed in Section 2.6, the main criteria used by
previous work to evaluate video anomaly detection accu-
racy have significant problems. A good evaluation criterion
should provide a good idea of the fraction of anomalies an
algorithm can detect and the number of false positive re-
gions an algorithm can be expected to mistakenly find per
frame. To this end, we propose two new criteria for evaluat-
ing algorithms on Street Scene which are inspired by evalu-
ation criteria that are commonly used for object detection.

Our new evaluation criteria are informed by the follow-
ing considerations. Similar to object detection criteria, us-
ing the intersection over union (IOU) between a ground
truth anomalous region and a detected anomalous region
for determining whether an anomaly is detected is a good
way to insure rough spatial localization. For video anomaly
detection, the IOU threshold should be low to allow some
imprecision in localization because of issues like impre-
cise labeling (bounding boxes) and the fact that some algo-
rithms detect anomalies that are close to each other as one
large anomalous region which shouldn’t be penalized. Sim-
ilarly, shadows may cause larger anomalous regions than
what are labeled (in Street Scene only anomalous objects
are included in the ground truth anomalous bounding box,
not the object’s shadow). This is another gray area in label-
ing. One could reasonably argue that the shadow of a jay-
walker, for example, should be included in the ground truth
bounding box. We don’t think such larger than expected
anomalous-region detections should be penalized. We use
an IOU threshold of 0.1 in our experiments.

Also, because a single frame can have multiple ground-
truth anomalous regions, correct detections should be
counted at the level of an anomalous region and not at the
level of a frame.

False positives should be counted for each falsely de-
tected anomalous region, i.e. by each detected anomalous
region that does not significantly overlap with a ground
truth anomalous region. This allows more than one false
positive per frame and also false positives in frames with
ground truth annotations, unlike the previous criteria.



In practice, for an anomaly that occurs over many
frames, it is important to detect the anomalous region in
at least some of the frames, but it is usually not important
to detect the region in every frame in the track. This is es-
pecially true considering the ambiguities for when to be-
gin and end an anomalous track mentioned earlier. A good
anomaly detection algortithm should detect every anoma-
lous event (which occurs over many frames) but it can do
this by detecting the anomalous event region in only some
of the frames. Because the Street Scene dataset provides
track numbers for each anomalous region which uniquely
identify the event to which an anomalous region belongs, it
is easy to compute such a criterion.

4.1. Track-Based Detection Criterion

The track-based detection criterion measures the track-
based detection rate (TBDR) versus the number of false
positive regions per frame.

A ground truth track is considered detected if at least a
fraction α of the ground truth regions in the track are de-
tected.

A ground truth region in a frame is considered detected if
the intersection over union (IOU) between the ground truth
region and a detected region is greater than or equal to β.

TBDR =
num. of anomalous tracks detected

total num. of anomalous tracks
. (1)

A detected region in a frame is a false positive if the IOU
between it and every ground truth region in that frame is
less than β.

FPR =
total false positive regions

total frames
(2)

where FPR is the false-positive rate per frame.
Note that a single detected region can cover two or more

different ground truth regions so that each ground truth re-
gion is detected (although this is rare).

In our experiments below, we use α = 0.1 and β = 0.1.

4.2. Region-Based Detection Criterion

The region-based detection criterion measures the
region-based detection rate (RBDR) over all frames in the
test set versus the number of false positive regions per
frame.

As with the track-based detection criterion, a ground
truth region in a frame is considered detected if the inter-
section over union (IOU) between the ground truth region
and a detected region is greater than or equal to β.

RBDR =
num. of anomalous regions detected

total num. of anomalous regions
. (3)

Figure 2. Illustration of a grid of regions partitioning a video frame
and a video patch encompassing 4 frames. This figure show non-
overlapping regions, but in our experiments we use overlapping
regions.

The RBDR is computed over all anomalous regions in all
frames of the test set.

The number of false positives per frame is calculated in
the same way as with the track-based detection criterion.

As with any detection criterion, there is a trade-off be-
tween detection rate (true positive rate) and false positive
rate which can be captured in a ROC curve computed by
changing the threshold on the anomaly score that deter-
mines which regions are detected as anomalous.

When a single number is desired, we suggest summariz-
ing the performance with the average detection rate for false
positive rates from 0 to 1, i.e. the area under the ROC curve
for false positive rates less than or equal to 1.

5. Baseline Algorithms
We describe two variations of a novel algorithm for video

anomaly detection which we evaluate along with two previ-
ously published algorithms on the Street Scene dataset in
Section 6. The new algorithm is very straightforward and
is based on dividing the video into spatio-temporal regions
which we call video patches, storing a set of exemplars to
represent the variety of video patches occuring in each re-
gion, and then using the distance from a testing video patch
to the nearest neighbor exemplar as the anomaly score.

First, each video is divided into a grid of spatio-temporal
regions of sizeH×W×T pixels with spatial step size s and
temporal step size 1 frame. In the experiments in Section 6
we choose H=40 pixels, W=40 pixels, T=4 or 7 frames,
and s = 20 pixels. See Figure 2 for an illustration.

The baseline algorithm has two phases: a training or
model-building phase and a testing or anomaly detection
phase. In the model-building phase, the training (normal)
videos are used to find a set of video patches (represented
by feature vectors described later) for each spatial region
that represent the variety of activity in that spatial region.
We call these representative video patches, exemplars. In



Figure 3. Example blurred FG masks which are concatenated and
vectorized into a feature vector. a and c show two video patches
consisting of 7 frames cropped around a spatial region. b and d
show the corresponding blurred FG masks.

the anomaly detection phase, the testing video is split into
the same regions used during training and for each testing
video patch, the nearest exemplar from its spatial region is
found. The distance to the nearest exemplar serves as the
anomaly score.

The only differences between the two variations are the
feature vector used to represent each video patch and the
distance function used to compare two feature vectors.

The foreground (FG) mask variation uses blurred FG
masks for each frame in a video patch. The FG masks are
computed using a background (BG) model that is updated
as the video is processed. The BG model used in the exper-
iments is a very simple mean color value per pixel. The BG
model is initialized with the mean of the first 200 frames of
the input video and is then updated as follows:

Bt+1 = (19 ∗Bt + It)/20 (4)

where Bt is the current BG model at time t and It is the
input video frame at time t. The constants in the equation
were set empirically.

Given the BG image, Bt, and input frame, It at time t,
the FG mask at time t is computed as

FGt(i, j) =

 1 if |BGC
t (i, j)− ICt (i, j)| > Θ

for all channels in C
0 otherwise

(5)

where C ∈ {R,G,B} for color images and C ∈ {gray}
for gray-scale images. Indices i and j are the row and col-
umn indices to a pixel. The threshold, Θ, was found empir-
ically. In the experiments, Θ = 12 (for color values from 0
to 255).

The FG mask is then blurred using a Gaussian kernel to
make the L2 distance between FG masks more robust. The
FG mask feature vector is formed by concatenating all of
the blurred FG masks from all frames in a video patch and
then vectorizing (see Figure 3).

The flow-based variation uses optical flow fields com-
puted between consecutive frames in place of FG masks.

The flow fields within the region of each video patch frame
are concatenated and then vectorized to yield a feature vec-
tor twice the length of the feature vector from the FG mask
baseline (due to the dx and dy components of the flow field).
In our experiments we use the optical flow algorithm of
Kroeger et al. [8] to compute flow fields.

In the model building phase, a distinct set of exemplars is
selected to represent normal activity in each spatial region.
Our exemplar selection method is straightforward. For a
particular spatial region, the exemplar set is initialized to the
empty set. We slide a spatial-temporal window (with step
size equal to one frame) along the temporal dimension of
each training video to give a series of video patches which
we represent by either a FG-mask based feature vector or a
flow-based feature vector depending on the algorithm varia-
tion as described above. For each video patch, we compare
it to the current set of exemplars. If the distance to the near-
est exemplar is less than a threshold then we discard that
video patch. Otherwise we add it to the set of exemplars.

The distance function used to compare two exemplars
depends on the feature vector. For blurred FG mask feature
vectors, we use L2 distance. For flow-field feature vectors
we use normalized L1 distance:

dist(u,v) =
∑
i

|ui − vi|
|ui|+ |vi|+ ε

(6)

where u and v are two flow-based feature vectors and ε is a
small positive constant used to avoid division by zero.

Given a model of normal video which consists of a dif-
ferent set of exemplars for each spatial region of the video,
the anomaly detection is simply a series of nearest neighbor
lookups. For each spatial region in a sequence of T frames
of a testing video, compute the feature vector representing
the video patch and then find the nearest neighbor in that
region’s exemplar set. The distance to the closest exemplar
is the anomaly score for that video patch.

This yields an anomaly score per overlapping video
patch. These are used to create a per-pixel anomaly score
matrix for each frame. The anomaly score for a video patch
is stored in the middle frame for that set of T frames. The
first T/2− 1 frames and the last T/2 + 1 frames of the test-
ing video are not assigned any anomaly scores from video
patches and thus get all 0’s. A pixel covered by two or more
video patches is assigned the average score from all video
patches that include the pixel.

When computing ROC curves according to either of the
track-based or region-based criteria, for a given threshold,
all pixels with anomaly scores above the threshold are la-
beled anomalous. Then anomalous regions are found by
computing the connected components of anomalous pixels.
These anomalous regions are compared to the ground truth
regions according to one of the above criteria.



Figure 4. ROC curves for track-based criterion for different meth-
ods.

6. Experiments

In addition to the two variations of our baseline video
anomaly detection method, we also tested two previously
published methods that do very well on other publicly avail-
able datasets. The first is the dictionary method of Lu et
al. [12] which fits a sparse combination of dictionary basis
feature vectors to a feature vector representing each spatio-
temporal window of the test video. A dictionary of basis
feature vectors is learned from the normal training videos
for each spatial region independently. This method reported
state-of-the-art results on UCSD, Subway and CUHK Av-
enue datasets. Code was provided by the authors.

The second method is from Hasan et al. [6] which uses
a deep network auto-encoder to learn a model of normal
frames. The anomaly score for each pixel is the reconstruc-
tion error incurred by passing a clip containing this pixel
through the auto-encoder. The assumption is that anoma-
lous regions of a frame will not be reconstucted well by the
auto-encoder. This method is also competitive with other
state-of-the-art results on standard datasets and evaluation
criteria. We used our own implementation of this method.

Figures 4 and 5 show ROC curves for our baseline meth-
ods as well as the dictionary and auto-encoder methods
on Street Scene using the newly proposed track-based and
region-based criteria. The numbers in parentheses for each
method in the figure legends are the areas under the curve
for false positive rates from 0 to 1. Clearly, the dictionary
and auto-encoder methods perform poorly on Street Scene.
Our baseline methods do much better although there is still
much room for improvement.

The dictionary method achieves computational effi-
ciency by limiting the dictionary and by learning sparse sets
of dictionary members that may be combined together from
the training videos. This idea seems to work well on other,

Figure 5. ROC curves for region-based criterion for different meth-
ods.

smaller datasets, but on the larger and more varied Street
Scene it seems to restrict the expressiveness of the model
too much so that many normal testing video patches are not
well reconstructed by the model.

The auto-encoder method gives per-pixel anomaly scores
(not per-region). This results in many isolated anomalous
pixels or small clusters of pixels which in turn results in
an explosion of anomalous regions when connected compo-
nents of anomalous pixels are computed. A set of anoma-
lous regions per frame is needed to compute the track-
based and region-based criteria. To alleviate this problem,
we post-process the pixelwise anomaly scores using a slid-
ing window box filter. This filter checks if the number of
anomalous pixels (given an anomaly score threshold) within
it is above 30% of the total number of pixels in the filter
and if so all pixels within the box filter are labeled “anoma-
lous”. Otherwise all pixels are labeled “normal”. This re-
moves small clusters of anomalous pixels and merges to-
gether larger clusters of anomalous pixels that may not ac-
tually be connected. This greatly improves the ROC curves
for the auto-encoder method. In the results shown a 40x40
box filter is used with a step size of 20. Even with this
post-processing, the auto-encoder results are poor on Street
Scene. This is most likely due to the huge variety of nor-
mal variations that are present in the training videos that the
auto-encoder is not able to model well.

Our baseline algorithms perform reasonably well on
Street Scene. They store a large set of exemplars (typically
between 1000 and 3000 exemplars) in regions where there
is a lot of activity such as the street, sidewalk and bike lane
regions. On other regions such as the building walls or roof
tops, only a single exemplar is stored.

For the two baseline variations using the track-based cri-
teria, the flow-based method does best for low false-positive
rates (arguably the most important part of the ROC curve).



The flow field provides more useful information than FG
masks for most of the anomalies (the main exception being
loitering anomalies which are discussed below). The FG-
based method does better using the region-based criterion.
The number of frames used in a video patch (4 or 7) does
not have a large effect on either variation.

The baseline algorithms do best at detecting anomalous
activities such as jaywalking, illegal u-turn, and bikers or
cars outside their lanes because these anomalies have dis-
tinctive motions compared to the typical motions in the re-
gions where they occur.

The loitering anomalies (and other largely static anoma-
lies such as illegally parked cars) are the most difficult for
the baseline methods because they do not contain any mo-
tion except at the beginning in which a walking person tran-
sitions to loitering. For the flow-based method, the loiter-
ing anomalies are completely invisible. For the FG-based
method, the beginning of the loitering anomaly is visible
since the BG model takes a few frames to absorb the mo-
tionless person. This is the main reason why the flow-based
method is worse than the FG-based method for higher de-
tection rates. The FG-based method can detect some of the
loitering anomalies while the flow-based method cannot.

A similar effect explains the region-based results in
which the FG-based method does better than the flow-based
method. The loitering and other “static” anomalies make
up a disproportionate fraction of the total anomalous re-
gions because many of them occur over many frames. The
FG-based method detects some of these regions while the
flow-based method misses essentially all of them. So even
though the flow-based method detects a greater fraction of
all anomalous tracks (at low false positive rates) it detects a
smaller fraction of all anomalous regions. This also sug-
gests that the track-based criterion may provide a better
measure of how an algorithm will perform in practice.

Some visualizations of the detection results for the flow-
based method (using T=4) are shown in Figures 6 - 8. In
the figures, red tinted pixels are anomaly detections and
blue boxes show the ground truth annotations. Figure 6
shows the correct detection of a motorcycle that rides onto
a sidewalk. Figure 7 shows the correct detection of a jay-
walker. Note that the anomalous region detected around the
jaywalker includes the person’s shadow which is arguably
also anomalous. The ground truth bounding box does not
include the shadow, but this is still counted as a correct de-
tection because of the low IOU threshold (0.1). There is also
a false positive region near the bottom, left corner which is
due to a person’s shadow. Figure 8 shows the correct detec-
tion of a car making an illegal u-turn. These correct detec-
tions show the range of scales that the baseline algorithm
can handle despite only looking at a single scale of 40x40
pixel video patches.

Figure 6. Detection result for Flow baseline showing correctly de-
tected motorcycle driving onto the sidewalk.

Figure 7. Detection result for Flow baseline showing correctly de-
tected jaywalker as well as a false positive on a person’s shadow.

Figure 8. Detection result for Flow baseline showing correctly de-
tected illegal u-turn.

7. Conclusions

We have presented a new dataset and new evaluation cri-
teria for video anomaly detection that we hope will help to
spur new innovations in this field. The Street Scene dataset
has more anomalous events and is a more complex scene
than currently available datasets. It will be made publicly
available. The new evaluation criteria fix the problems with
the criteria typically used in this field, and will give a more
realistic idea of how well an algorithm performs in practice.

In addition, we have presented two variations of a
new video anomaly detection algorithm that is straightfor-



ward and outperforms two previously published algorithms
which do well on previous datasets but not on Street Scene.
The new nearest-neighbor based algorithms may form an
interesting foundation to build on.
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