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Abstract
Ensuring control performance with state and input constraints is facilitated by the under-
standing of reachable and invariant sets. While exploiting dynamical models have provided
many set-based algorithms for constructing these sets, set-based methods typically do not
scale well, or rely heavily on model accuracy or structure. In contrast, it is relatively simple
to generate state trajectories in a data-driven manner by numerically simulating complex
systems from initial conditions sampled from within an admissible state space, even if the
underlying dynamics are completely unknown. These samples can then be leveraged for
reachable/invariant set estimation via machine learning, although the learning performance
is strongly linked to the sampling pattern. In this paper, active learning is employed to intel-
ligently select batches of samples that are most informative and least redundant to previously
labeled samples via submodular maximization. Selective sampling reduces the number of nu-
merical simulations required for constructing the invariant set estimator, thereby enhancing
scalability to higherdimensional state spaces. The potential of the proposed framework is
illustrated via a numerical example.
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Abstract—Ensuring control performance with state and input
constraints is facilitated by the understanding of reachable
and invariant sets. While exploiting dynamical models have
provided many set-based algorithms for constructing these sets,
set-based methods typically do not scale well, or rely heavily
on model accuracy or structure. In contrast, it is relatively
simple to generate state trajectories in a data-driven manner by
numerically simulating complex systems from initial conditions
sampled from within an admissible state space, even if the
underlying dynamics are completely unknown. These samples
can then be leveraged for reachable/invariant set estimation via
machine learning, although the learning performance is strongly
linked to the sampling pattern. In this paper, active learning is
employed to intelligently select batches of samples that are most
informative and least redundant to previously labeled samples
via submodular maximization. Selective sampling reduces the
number of numerical simulations required for constructing the
invariant set estimator, thereby enhancing scalability to higher-
dimensional state spaces. The potential of the proposed frame-
work is illustrated via a numerical example.

Index Terms—Machine learning; submodular maximization;
imbalanced learning; design of experiments; domain of attrac-
tion; nonlinear systems.

I. INTRODUCTION

Estimating domains of attraction, reachable, and invariant
sets for nonlinear dynamical systems in a computationally
efficient manner is a fundamental challenge in stability analy-
sis [1] and constrained control, with particular applications
in model predictive control [2], [3]. Convex programming
formulations such as sum-of-squares (SOS) and semi-definite
programming (SDP) have paved the way for efficacious
construction of such sets using quadratic and polynomial
Lyapunov functions for a sub-class of nonlinear dynamical
systems [4]–[6].

For systems that do not conform to structured representa-
tions or when underlying models are not readily available,
numerical simulations offer a fast and scalable alternative to
collecting reachability or invariance information. That is, one
can obtain samples on the admissible state space, generate
system trajectories considering these samples as initial con-
ditions, and, based on the state trajectory, indicate whether
the sample lies in the reachable/invariant set or not. Such
a data-driven approach to obtaining reachability/invariance
information can then be posed as a binary classification
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problem. Thus, supervised learning methods can be leveraged
to obtain estimates of reachable/invariant regions with high
computational efficacy [7]–[10]. Furthermore, approximation
properties of advanced supervised learning algorithms like
support vector machines and neural networks enhance gener-
alizability to large classes of dynamical systems, while a data-
driven approach eliminates the need to exploit specific system
structure. However, a potential weakness of this method is that
the estimate of the invariant set relies strongly on the sampling
pattern employed, and convergence guarantees (usually in a
Hausdorff sense) are asymptotic: that is, a large number of
samples may be required to yield good estimates of the set
of interest. To mitigate this issue, we adopt an active learning
formalism for selecting the most informative samples (in some
sense) instead of sampling arbitrarily.

Active learning (also referred to as ‘optimal experiment
design’ or ‘directed sampling’) is a fundamental tenet in
artificial intelligence that allows a learner to select the most
informative sample(s) from a pool of unlabeled samples based
on its current knowledge of the learning problem, thereby
restricting the training set size without degrading performance.
In this paper, we restrict our attention to ‘pool-based batch
selection’, which means that a batch of subsequent samples
will be queried for labeling by an oracle—in our case,
numerical simulations of the system under consideration—
from a pool of unlabeled samples. This generally prevents
prohibitive numerical simulations typical in single-instance
selection methods. While batch selection can be performed
based on single objectives such as distances from margins [11]
or choosing samples that exhibit maximum uncertainty [12],
recent methods have shifted towards a multi-criterion frame-
work where samples are selected to maximize informativeness
while minimizing redundancy [13]–[15]. Unfortunately, the
consequent learning problems are usually NP-hard, and these
methods seldom guarantee solution quality. In this paper,
we propose an active learning method that poses the batch
selection procedure as a submodular maximization problem
for which near-optimal solutions can be obtained using a
polynomial time greedy approach [16]. Previous utilization
of submodular functions for subset selection can be found
in [17], [18], although these approaches are either not multi-
criterion frameworks, requires specific classes of learners, or
may prove computationally more taxing due to inversion of
Fisher information matrices.

Specific contributions of this paper are as follows: (i) we
introduce a batch-mode active learning procedure to select



relevant samples for learning reachable/invariant set bound-
aries in a sampling-based, data-driven manner even when a
dynamical model representation is unknown; (ii) we pose the
multi-criterion optimization procedure within the active learn-
ing method as a submodular maximization problem for which
a greedy approach is near-optimal and operates in polynomial
time; (iii) we demonstrate the flexibility of this method with
multiple classifiers and illustrate its potential in tackling highly
imbalanced learning problems without exorbitant sampling.

II. MOTIVATION

Although we present our discussion using a discrete-
time dynamical system, the proposed method is identical for
continuous-time systems. Consider a generic nonlinear system

xt+1 = f(xt, ut), (1)

where t ∈ N denotes the time-step, xt ∈ X ⊂ Rnx , ut ∈
U ⊂ Rnu are the state and input constraints at time-step t. We
assume that the constraint sets X,U are compact, convex, and
contain the origin in their relative interiors. We further assume
that the origin is a unique equilibrium state-input pair for the
dynamics (1); that is, f(0, 0) = 0. Other than this, we impose
no structure on the nonlinearity f(·, ·); in fact f does not need
to be known.

We begin with the following standard definitions.

Definition 1 (T -step Reachable Set). Let T be a positive
integer and Ω ⊂ X. A non-empty set RT (Ω) within the
admissible state space X is a T -step reachable set for the
system (1) if it contains all initial states x0 ∈ X that can be
driven to a state xT ∈ Ω under the closed-loop dynamics (1)
within T time-steps.

Definition 2 (Positive Invariant Set). A non-empty set Ω(X)
within the admissible state space X is a positive invariant set
for the closed-loop system (1) under a control law u = κ(x)
if, for every initial condition x0 ∈ Ω, all subsequent states
xt ∈ Ω, ∀t > 0.

The satisfaction of state and input constraints is imperative
to ensuring correct and reliable operation of the closed-loop
system in safety-critical applications, making the estimation of
reachable and invariant sets a cogent problem in control system
design. We begin with the following critical assumption.

Assumption 1. There exists a reliable (albeit perhaps ex-
pensive to query) oracle O : X → {−1, 1} that returns
whether (+1) or not (−1) an initial condition x0 ∈ X lies
in a reachable/invariant set of the system (1).

Example 1. Consider the ε norm-ball Ω = {x ∈ X : ‖x‖2 ≤
ε} and suppose ut = κ(xt) is a controller that stabilizes
the system (1) to the origin. Then an oracle that provides
information about the reachable set R(Ω) is given by

O1(x0) =

{
+1, if x1 ∈ Ω

−1, otherwise.

Example 2. Consider an oracle that provides feasibility infor-
mation (this is a positive invariant set) for a nonlinear model
predictive controller (NMPC). Let N ∈ N be the prediction
horizon of an NMPC. Then, at time-step t, the following cost
function

J := F (x̄N |t) +

N−1∑
k=0

`(x̄k|t, ūk|t), (2a)

is minimized, subject to the state and input constraints

ūk|t ∈ U, x̄k|t ∈ X, ∀ k = {0, 1, . . . , N − 1}, (2b)
x̄k+1|t = f(x̄k|t, ūk|t), ∀ k = {0, 1, . . . , N − 1}, (2c)
x̄0|t = x(t), x̄N |t ∈ Xf . (2d)

Here, ` and F are design functions representing the stage
cost and terminal penalty, respectively, and the set Xf is an
appropriately designed terminal region. If one designs a local
controller κf : Rnx → Rnu such that: (i) the control action
κf (0) = 0; (ii) the control actions κf (x) ∈ U for all x ∈ Xf ;
and, (iii) the closed-loop trajectories of

xt+1 = f(xt, κf (xt)) (3)

reside in Xf for any initial condition x0 ∈ Xf with an
appropriate F and Xf , then the origin is stabilizable by the
NMPC with controls obtained by solving (2) in a receding
horizon fashion [19].

One can employ an oracle of the form

O3(x0) =

{
+1, if (2) has a feasible solution
−1, otherwise.

to estimate the feasible region of this NMPC.

Note that in both the above examples, the presence of data
generated by the oracles obviates the need for knowledge
of the underlying nonlinearity f . In other words, a critical
advantage of Assumption 1 is that we can estimate the reach-
able/invariant set without access to the model structure (1).
This is imperative for many applications where feasibility
is determined experimentally or from archival records such
as in smart buildings [20] or systems biology [21]. One
can also use this method to validate ‘black-box’ controllers
(where the controller’s behaviour is completely unknown, such
as for control with deep neural networks): in such cases,
sampling and reachable/invariant set estimation of the closed-
loop system under black-box control can generate a degree of
trust in the automation framework.

Our objective in this paper is to estimate the reach-
able/invariant set of complex, possibly unmodeled, systems
by employing active learning paradigms to select informative
samples for training a supervised learner. Concretely, we lever-
age machine intelligence to iteratively select initial conditions
within X for which the oracle of Assumption 1 should be
queried for labeling. With these labeled samples, our goal is
to characterize inner approximations of the reachable/invariant
set for consequent use in on-line control. Due to the iterative
framework of active learning algorithms, one expects gradual



improvement of the inner approximation with more samples,
which is an advantage of this framework over methods that
generate extremely conservative estimates of the inner approx-
imation either due to less flexbility in the choice of fitting
functions, or due to lossy convex relaxations.

III. PROPOSED ACTIVE LEARNING ALGORITHM

The major advantage of AL methods over traditional su-
pervised learning is the iterative improvement of learning
performance by systematically utilizing prior learners. The
essential steps in typical AL algorithms are described in
Algorithm 1. The AL setting is as follows. One is usually

Algorithm 1 Typical Active Learning (AL) Algorithm
Require: Initial set of labeled samples, L0
Require: Set of unlabeled samples, S
Require: Final number of labeled samples, Ns

Require: Batch size, B
Require: Iteration counter, k ← 0
Require: Oracle, O
1: while |Lk| < Ns do
2: ψk ← classifier constructed using Lk
3: Find B best (in some sense) samples from S
4: L′k ← label B samples using oracle O
5: Lk+1 ← append[Lk,L′k]
6: k ← k + 1
7: end while
8: ψ ← final classifier trained on Lk+1

provided with a set of labeled samples denoted by L0 and a
(much larger) set of unlabeled samples S. The objective of
AL algorithms is to select (sample-wise or batch-wise) the
most informative (in some sense) L′k ⊂ S at each iteration k
based on the classifier designed on the labeled data currently
available (that is, Lk−1). Subsequently, an oracle is queried
to generate labels for the newly selected set of samples L′k.
These labels are appended to Lk−1 to form the new labeled
set Lk. The process iterates until some termination criterion
is satisfied, such as a user-defined size of the labeled set.

The steps of our proposed algorithm is outlined below.
Step 1: Constructing L0 and S: To begin, we need a set of

labeled samples L0 and a set of unlabeled samples S. The set
of labeled samples may be provided from prior experiments,
or using the oracle O to label an arbitrary subset of S until a
minimum number of labeled samples are obtained satisfying a
minimum class-imbalance ratio1 ν ∈ (0, 1): this ensures that
a non-trivial classifier exists.

The unlabeled set S is generated by sampling arbitrarily
on X: samples that are well-distributed on X will yield
practical advantages [10]. The number of samples collected in
S should be large because (i) they are unlabeled so the only
computational overhead (offline) is in generating the samples,
which is usually inexpensive; and, (ii) good coverage of X will
ensure that there exist informative samples in close proximity
to the boundary of the true reachable/invariant set that should
be chosen by the AL algorithm.

1In binary classification, a class-imbalance ratio of ν implies that ν ×NL

samples within L0 are labeled as category ‘+1’ and the rest are labeled ‘-1’.

Algorithm 2 Procedure for constructing L0

Require: Minimum size of initial labeled set, NL ∈ N
Require: Minimum class-imbalance ratio ν ∈ (0, 1)
1: NL+ ← round(ν ×NL), minimum number of feasible samples in L0
2: k+, k− ← 0
3: while k+ + k− < NL do
4: x← sample drawn from X
5: l← O(x)
6: if l = 1 and k+ < NL+ then
7: L0 ← [L0, x]
8: k+ ← k+ + 1
9: end if

10: if l = −1 and k− < NL −NL+ then
11: L0 ← [L0, x]
12: k− ← k− + 1
13: end if
14: end while

Remark 1. For reachable/invariant sets that are small com-
pared to the measure of X, the set L0 may exhibit a very
low class-imbalance ratio if labeled samples are generated
randomly. To increase initial class-imbalance ratio ν for es-
timating the reachable set R(Ω), one can then sample more
densely around Ω to increase the likelihood of finding samples
that lie in R(Ω). An alternative procedure to increase ν (that
is applicable to both reachable and invariant set estimation)
involves a slight modification to the oracle: namely that it
returns the state sequence generated during simulation, along
with the label for feasible samples. That is,

Õ =

{
+1, {xk}Tk=1 if x0 is feasible
−1, otherwise.

(4)

Then, by Definitions 1 and 2, each x0 that is labeled to lie
within the T -step reachable/invariant set will generate states xt
for 0 < t ≤ T that are all within the T -step reachable/invariant
set, respectively. Thus, {xk}Tk=0 can be appended to the
feasible class, thereby raising the value of ν.

Remark 2. In the case of NMPC, each feasible initial state
produces N feasible states, since all intermediate open-loop
states {x̄k}N−1k=1 are feasible by the constraints in (2), along
with the invariance of Xf . Analogous to the above discussion,
one can append the labeled set with these sequences if one
has access to an oracle of the form (4).

Step 2: Posing the learning problem: With L0 and S
constructed, we train a classifier ψ0 on L0. At each subsequent
iteration, the objective is to use the prior classifier ψk to de-
termine the B most informative samples within the unlabeled
set S that simultaneously lowers redundancy with respect to
the current labeled set Lk. We pose this informativeness-
redundancy trade-off idea as a cardinality constrained sub-
modular maximization problem. This ensures that a greedy
approach will provide near-optimality, as we shall see in the
ensuing discussion.

Let
ζ(S) , E(S) +D(S), (5)



where

E(S) = −
∑
s∈S

∑
y∈{−1,1}

p(y|s, ψk) log2 |p(y|s, ψk)| (6)

denotes the Shannon entropy of the distribution p(y|s, ψk)
computed using the prior classifier ψk.

The function D(S) is defined by

D(S) =

|Lk|∑
i=1

max
s∈S

Dk
is, (7)

where Dk ∈ R|Lk|×|S| is a non-negative matrix whose ith
row Dk

i ≥ 0 contains the amount of mutual information
between the ith labeled sample and all the unlabeled ones
in S. This mutual information can be estimated by computing
the relative distance between the distributions of the ith and
sth samples conditional upon the classifier ψk. For example,
one can employ the Kullback-Liebler (KL) divergence metric

Dk
is = −

∑
y∈{−1,1}

piy log2

∣∣∣∣psypiy
∣∣∣∣ .

To find the B best samples in S, we solve the following
optimization problem:

L′k = arg max
S⊆S:|S|≤B

ζ(S). (8)

Intuitively, the problem (8) tries to maximize the quantity
E(·) that ascertains the uncertainty embedded in an unlabeled
sample, while choosing samples within S that possess rela-
tively low overlap with previously labeled samples, estimated
via the cost D(·). It is well known that this problem is NP-
hard [22] for which no polynomial-time algorithm exists with
an approximation factor better than (1− 1/e) (unless P=NP).
In the sequel, we will show that careful selection of E and D
can result in a near-optimal, polynomial time, greedy solution.

Remark 3. The cardinality of S is generally large to ensure
well distributed samples throughout X. For practical imple-
mentation, one may pre-select a more wieldy subset Sk ⊂ S
by considering the q > B most informative (based on their
entropy conditional upon the (k − 1) th classifier) samples
within S. The active samples drawn in the k th iteration will
then be restricted to samples within Sk.

Step 3: Solving (8) to obtain the next batch: We begin with
the following definitions [16].

Definition 3. Consider a set function ζ : 2W → R that maps
subsets of a finite set W to R. The function ζ is: normalized:
if ζ(∅) = 0; monotone: if ζ(W1) ≤ ζ(W2) for any W1 ⊆
W2 ⊆ W ; submodular: if, for every W1 ⊆ W2 ⊆ W , and
w ∈W \W2, the inequality ζ(W1∪{w})− ζ(W1) ≥ ζ(W2∪
{w})− ζ(W2) is satisfied.

The problem (8) can be solved approximately using a greedy
algorithm. The greedy algorithm involves iteratively selecting
the sample s ∈ S that increases ζ the most until the number
of samples selected equals the batch size B. The following

theorem states that selecting the functions E and D as we have
in (6) and (7) enables a greedy solution that is near-optimal
in polynomial time.

Theorem 1. Recall B is the batch size, and the set functions
E and D are defined in (6) and (7), respectively. Any solution
L′k,G obtained by solving (8) using a greedy algorithm is no
worse than a constant fraction (1−1/e) away from the optimal
value ζ? for (8); that is,

ζ(L′
k,G)

ζ? ≥ 1−
(
B−1
B

)B ≥ (1− 1
e

)
.

Remark 4 (Computational Complexity). Since we are select-
ing B samples in a batch, for the kth active sample, to evaluate
the incremental cost, we need k(|S| − (k − 1)) operations.
To find the maximum over these increments, we require
|S| − (k − 1) operations. Thus, at kth iteration of our greedy
algorithm, we have a total of (|S|−k+1)×(k+1) operations.
Hence, the complexity can be bounded by O(|S|B2).

Step 4: Computing the reachable/invariant set boundary:
Steps 1–3 are typically operated until a termination criterion
is attained. Common termination criteria include: size of the
final labeled set or number of iterations. The post-termination
classifier, denoted ψ∞, will not necessarily be an inner approx-
imation of the reachable/invariant set. To eliminate this issue,
one can use the method proposed in [10] to select sub-level
sets of the decision function ψ∞ until no infeasible point is
classified as feasible. Following arguments made in [10], if the
boundary of the true reachable/invariant set is the zero level
set of a continuous function, any classifier that can generate
decision functions that are dense in the space of continuous
functions can compute arbitrarily good approximations of the
region of interest.

IV. NUMERICAL RESULTS

We illustrate our proposed approach on the following
nonlinear discrete-time system studied in [23], with U =
{u ∈ R : |u| ≤ 2}. We define the admissible state space
X = {x ∈ R2 : ‖x‖∞ ≤ 4}. The objective of expanding the
state space to a region much larger than that considered in [23]
is to demonstrate the utility of active learning when random
sampling will result in a heavily imbalanced dataset.

The oracle in this case is a nonlinear MPC with a pre-
diction and control horizon of 8, akin to O3 in Example 2.
The cost function J described in (2) is parameterized by
F (x) = x>Px, with P =

[
91.56 −23.61
−23.61 167.28

]
, and `(x, u) =

x>Qx + u>Ru, where Q = 0.1I2, and R = 1. Note that, in
this case, Xf = {x ∈ R2 : x>Px ≤ 1}. The oracle returns
+1 when a feasible solution is found to the problem (2) from
a given initial condition in X, and −1 otherwise.

We select a lower bound on L0 to be NL = 100, and a
minimal initial class-imbalance ratio of the labeled set to be
ν = 0.1. To begin, we sample uniformly distributed random
points within X. Implementing Algorithm 2 results in 97
infeasible points (due to the large size of X and constraints on
U) and 1 feasible point. Using the idea in Remark 2, each point
on the prediction horizon for the feasible point is feasible due
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Fig. 1. [A] Distribution of initial random samples (infeasible: dots; feasible:
triangles). Note that the initial distribution is heavily imbalanced towards
infeasible samples because the measure of the feasible set is small. The
active samples gathered over multiple iterations are shown via red squares.
[B] Reconstruction of the true feasible set boundary (green continuous line)
using active learning (black dotted line) and passive learning (red dashed line).
Sub- and super-level sets of these reconstructions will form inner and outer
approximations, respectively. [C] Imbalance ratio (ν) trend with iterations.
[D] Training time for the active learning machine per iteration (bars) and
cumulative training time (black line) in seconds.

to invariance, which results in N = 8 feasible points, making
|L0| = 105. The initial sample set is illustrated in Fig. 1[A].
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Fig. 2. Comparison of precision-recall (PR) curves for different classifiers:
random forests, support vector machines, and neural networks. AUC stands
for area under the PR curve.

The unlabeled set of samples is generated using low-
discrepancy Halton samples [10]; |S| = 106. We fix the batch
size to be B = 100 samples. The total number of active
samples to be selected is set to Ns = 1000. The classifier ψk is
selected to be a support vector machine (SVM) with Gaussian
radial basis function kernels and Platt scaling to generate
probabilistic outputs. The learner is implemented in MATLAB
R2017a via the Statistics and Machine Learning toolbox with
default hyperparameters. The SVM’s prediction probabilities
are used to compute entropy and KL divergence as described
in (6) and (7), respectively. At the kth iteration, a set S′ ⊂ S
is pre-selected as the effective set of unlabeled samples with
q = 2000 samples drawn from S that exhibit the highest
entropy, estimated by the classifier ψk−1, for reasons discussed

in Remark 3. Subsequently, the submodular maximization
problem is solved at each iteration via the greedy algorithm.

Fig. 1[A] shows the active samples (red squares) selected
over all 10 iterations; as expected, the algorithm chooses
samples that are in the region of highest uncertainty, while
mostly ignoring samples near the periphery of X since they
are more likely to be infeasible. The effectiveness of the
approach is demonstrated in Fig. 1[B], where we compare
an active learner with a passive (or not active) learner trained
on 104 labeled samples. In spite of the 10× increase of the
training set, the estimated boundary of the passive learner (red
dashed line) is far more conservative than our approach (black
dotted line); our final estimate is close to the true feasible
region boundary (green continuous line). Although we did
not explicitly include imbalance correction as an objective,
sampling around higher uncertainty regions naturally reduces
imbalance in the resulting training set. This is apparent from
Fig. 1[C]: the imbalance ratio (expressed as a percentage)
improves from around 7% to near 50% at the end of 10 AL
iterations. The performance improvement comes with a trade-
off in terms of training time. As Fig. 1[D] shows, the time
required to train the SVM increases with each iteration due to
an increase in the number of training samples. The resultant
6 s that is required to train the SVM is 100× higher than a
corresponding SVM with a training set of equal cardinality
(0.06 s) and ≈ 3× higher than the SVM trained on 10000
samples (2.34 s).

A significant advantage of the proposed method is that
it seamlessly integrates with a wide variety of supervised
learning algorithms. To illustrate, we test the active learning
algorithm using three different classification frameworks: ran-
dom forests, support vector machines, and neural networks.
Our goal is not to compare the learners themeselves (hence,
hyperparameter tuning is not emphasized here), but to show
that using directed sampling improves the performance of each
classifier while hyperparameters are kept constant. This is
illustrated by constructing the precision-recall characteristics
of each of the algorithms with and without active learning. We
use precision and recall instead of classification accuracy as
a metric, because the dataset could be heavily imbalanced.
In such cases, a naive predictor that always predicts the
majority class will be very accurate owing to the imbalance
in samples. The precision-recall characteristics are computed
based on a uniform 300×300 grid within [−0.75, 0.75]2 to test
classification performance near the true decision boundary. We
see in Fig. 2 that the precision-recall (PR) curves for all three
classifiers with 1000 active samples (continuous lines) exhibit
significantly higher AUCs in comparison with their passive
counterparts (dotted lines) in spite of 10× more samples for
training.

Finally, we compare the performance of different AL al-
gorithms: marginal SVM [11], sampling by uncertainty [24],
batch-mode active learning using BatchRank and BatchRand
algorithms [15], and the proposed method. Results from the
comparative study tested on the same uniform 300× 300 grid
mentioned above are presented in Table I. Myopic algorithms



TABLE I
COMPARISON OF AL ALGORITHMS IN TERMS OF: AREA UNDER A PR CURVE WITH 1000 TOTAL ACTIVE SAMPLES, TIME REQUIRED TO SELECT B = 100

FROM A POOL OF 2000 UNLABELED SAMPLES, AND TIGHTNESS OF SOLUTION QUALITY GUARANTEES.

Algorithm AUC CPU Time [s] Optimization Method Solution Guarantees Complexity
Marginal SVM 0.772 <1 n/a n/a O(|S| ln |S|)
Uncertainty Sampling 0.924 <1 n/a n/a O(|S| ln |S|)
BatchRank 0.955 3.85 integer QP (LP relaxation) not on true objective function O(|S|2)
BatchRand 0.953 >200 integer QP (SDP relaxation) not on true objective function O(|S|3)
Proposed 0.957 5.91 submodular max. (greedy) near-optimal O(|S|B2)

(that rely solely on samples around the decision boundary)
such as marginal SVM and uncertainty sampling are outper-
formed by algorithms that explicitly maximize diversity among
selected samples. All three of the algorithms that trade-off
exploitation and exploration (BatchRank, BatchRand, and our
proposed method) exhibit similar areas under the PR curve.
Both the BatchRank and BatchRand algorithms rely on convex
relaxations of an NP-hard integer quadratic programming
problem: this results in certain complications that our method
is immune to. For example, the BatchRand algorithm exploits
a semidefinite programming (SDP) relaxation: the solution of
the SDP culminates in a spike in training times from 6 s for our
method to over 200 s. BatchRank entails a linear programming
relaxation whose solution is equivalent to a greedy selection
algorithm; however, since the problem solved in BatchRank
is a supermodular maximization, one cannot (yet) claim a
near-optimal bound on the solution quality, as we can in our
proposed formulation. Additionally, since |S| � B, we reduce
computational complexity in our proposed formulation in spite
of maintaining a multi-criterion AL framework.

V. CONCLUSIONS

In this paper, we developed an active learning framework for
estimating control-relevant sets such as reachable and invariant
sets in a data-driven manner. We pose the sample selection
paradigm as a submodular maximization problem and leverage
a greedy algorithm to compute solutions with guarantees.
The potential of the approach in estimating small volumes
within admissible state spaces in a data-driven manner and the
critical advantage of model-free set estimation is demonstrated
empirically.
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