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Abstract—This paper investigates the consensus problem of
general linear discrete-time multi-agent systems by using dis-
tributed model predictive control (DMPC) with self-triggered
mechanism. First, a novel DMPC based consensus algorithm is
proposed, where each agent only needs to obtain its neighbors’
predicted state sequences once at each time step. We prove
that the resultant DMPC optimization problem is feasible, and
the proposed algorithm guarantees the dynamic consensus of
agents. Then, to further reduce the communication cost and
the energy consumption of control updates, a self-triggered
DMPC based consensus algorithm is proposed with the control
input and the triggering interval jointly optimized. Numerical
examples including the benchmark problem with platooning
vehicles are provided to verify the effectiveness and advantages
of the proposed algorithms.
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I. INTRODUCTION

Cooperative control of multi-agent systems has been an
important area of research for decades due to its high efficiency
and operational capability in completing special tasks. Among
the extensive investigations, consensus, where all agents reach
an agreement on certain quantities of interest, is one of the
most fundamental and widely studied problems, e.g. [1]–
[5]. Consensus of multi-agent systems has a wide range
of industrial applications, such as intelligent transportation
systems [6], [7], wireless sensor networks [8], [9], and power
systems [10]–[12].

This work was supported by the National Natural Science Foundation of
China (Nos. 61751303, 71731004, 61803007), the National Science Fund for
Distinguished Young Scholars of China (No. 61425019), the Rail Transit Joint
Funds of Beijing Natural Science Foundation and Traffic Control Technology
(No. L171001), the U.S. National Science Foundation grant ECCS-1501044,
and Mitsubishi Electric Research Laboratories.

Jingyuan Zhan was with the Adaptive Networks and Control Lab, Depart-
ment of Electronic Engineering, the Research Center of Smart Networks and
Systems, School of Information Science and Engineering, Fudan University,
Shanghai 200433, and is with Beijing Key Laboratory of Transportation
Engineering, College of Metropolitan Transportation, Beijing University of
Technology, Beijing 100124, China (e-mail: jzhan13@fudan.edu.cn).

Zhong-Ping Jiang is with Department of Electrical and Computer Engi-
neering, Tandon School of Engineering, New York University, Brooklyn, NY
11201, USA (e-mail: zjiang@nyu.edu).

Yebin Wang is with Mitsubishi Electric Research Laboratories, Cambridge,
MA 02139 USA (e-mail: yebinwang@ieee.org).

Xiang Li (corresponding author) is with the Adaptive Networks and Control
Lab, Department of Electronic Engineering, and with the Research Center of
Smart Networks and Systems, School of Information Science and Engineering,
Fudan University, Shanghai 200433, China (e-mail: lix@fudan.edu.cn).

Model predictive control (MPC), being able to treat con-
straints, multi-variables, and performance criteria, has become
one of the most successful control strategies. Distributed MPC
(DMPC) algorithms have been proposed for multi-agent sys-
tems (see [13]–[16] and the references therein). The majority
of the existing DMPC algorithms consider the stabilization
of a priori known set point. In contrast, consensus requires
the agents to agree on a common trajectory online. Till now,
there are still few results considering DMPC for consensus.
Decentralized MPC based consensus schemes for first-order
and second-order multi-agent systems were presented in [17]
with sufficient conditions derived by exploiting the geometric
properties of the optimal path. A fast consensus algorithm was
proposed in [18] for the same class of multi-agent systems,
where only a few pinned agents were equipped with the
model predictive controllers. More recently, reference [19]
proposed a DMPC based consensus algorithm for multi-agent
systems with first-order dynamics, where not only the state
but also the control input information need to be exchanged.
As for general multi-agent systems with linear time invariant
(LTI) dynamics, an iterative algorithm was proposed in [20]
to reach the optimal consensus point by implementing the
primal decomposition and incremental sub-gradient methods.
A general DMPC framework for cooperative control of multi-
agent systems was presented in [21], where the agents were
required to optimize a local cost function in a sequential
order. Moreover, a novel distributed receding horizon control
algorithm was proposed in [22] for ensuring consensus under
necessary and sufficient conditions.

Algorithms developed in [20], [21] required iterative or
sequential communication and computation at each time step,
which would be time-consuming and lead to heavy communi-
cation cost inevitably. Reference [22] overcame such defect,
but could only achieve static consensus. Therefore, the first
objective of this paper is to come up with a novel DMPC based
consensus algorithm for general multi-agent systems with LTI
dynamics, where iterative or sequential communication and
computation at each time step can be avoided, as well as
dynamic consensus remains achievable.

It is worth noting that existing DMPC based consensus
algorithms [17]–[22] required each agent to solve a local
optimization problem at each time step. Such a treatment
would result in unnecessary communication cost and control
updates. Hence, the second objective of this paper is to study
the DMPC based consensus problem by introducing the self-



2

triggered mechanism, where information transmissions and
controller updates are executed at certain triggering time steps
rather than at every time step. The next triggering time step is
determined based on the information at the current triggering
time step.

As an alternative to the periodic sampled-data control,
event-triggered/self-triggered control is an effective approach
in saving energy consumption, and it has gained popularity
in networked control systems [23] and many industrial ap-
plications, such as smart home temperature control systems
[24] and smart grids [25]. Existing research on event-triggered
and self-triggered consensus problems focused on multi-agent
systems with single- or double-integrator dynamics [26]–[31]
and on general multi-agent systems with LTI dynamics [32]–
[36]. All these results were based on continuous-time systems,
while this paper considers the self-triggered distributed model
predictive consensus problem of discrete-time multi-agent sys-
tems. To the best of our knowledge, results on event- or self-
triggered model predictive consensus are scarce. Specifically,
event-triggered MPC [37]–[39] and self-triggered MPC [40]
were developed for single agent with linear or nonlinear
dynamics. References [41]–[43] considered event- and self-
triggered MPC of distributed agents with nonlinear dynamics.
However, they merely achieved ultimate boundedness prop-
erties. This serves another motive to study the self-triggered
DMPC based consensus problem in this paper.

The main contribution of this paper is two-fold. 1) We
propose a novel DMPC based consensus algorithm for multi-
agent systems with general LTI dynamics. The agents only
need to solve their respective local optimization problem
synchronously once at each time step, so as to avoid the
iterative or sequential communication and computation in [20],
[21]. Besides, the proposed algorithm overcomes the limitation
of [22] and achieves dynamic consensus, where the final
consensus state can be time-varying or even divergent. 2)
We further develop a self-triggered DMPC based consensus
algorithm, which effectively reduces the communication cost
and the energy consumption of control updates. Each agent
solves a local MPC problem to optimize not only the control
input but also the triggering interval. Similar idea can be found
in [40]. Nevertheless, reference [40] proposed a centralized
self-triggered MPC approach only. This study partially extends
the result in [40] to distributed control of multi-agent systems.

The remainder of this paper is organized as follows. Prelim-
inaries and problem formulation are presented in Section II.
A DMPC based consensus algorithm is proposed in Section
III, along with the corresponding feasibility and consensus
analyses. Section IV presents a self-triggered DMPC based
consensus algorithm, followed by the corresponding feasibil-
ity and consensus analyses. As two potential applications,
synchronization of linear oscillators and platoon of vehicles
are numerically studied in Section V to demonstrate the
effectiveness and the advantages of the proposed distributed
model predictive consensus algorithms. Finally, Section VI
concludes the whole paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

Mathematical notations used throughout this paper are de-
fined as follows. Denote R the set of real numbers. N ,
{0, 1, 2, ...} and N+ is the set of positive integers. Rn denotes
the set of n-dimensional real column vectors and Rn×m the
set of n × m-dimensional real matrices. For A ∈ Rn×n,
A > 0 means A is positive definite, AT denotes the transpose
of A, and ∥A∥ =

√
maxi λi(ATA). Given a column vector

x, the Euclidean norm of x is denoted by ∥x∥ = (xTx)1/2.
m,n , {m,m + 1, ..., n} with m ∈ N, n ∈ N and m < n.
The subscript i indicates that the variable is associated with
the ith agent.

Consider a multi-agent system consisting of N agents with
the ith agent dynamics described by the following discrete-
time equation

xi(k + 1) = Axi(k) +Bui(k), (1)

where xi ∈ Xi ⊆ Rn is the state of agent i, ui ∈ Ui ⊆ Rm

is the control input of agent i, and (A,B) ∈ Rn×n × Rn×m.
The state constraint set Xi is assumed to be a closed set, and
the input constraint set Ui is assumed to be a compact set
containing the origin in its interior.

The communication topology of multi-agent system (1) is
denoted by a digraph G = {V, E ,A} with a vertex set V =
{1, 2, ..., N}, an edge set E ⊆ {(i, j) : i, j ∈ V , j ̸= i} and an
adjacency matrix A = [aij ] ∈ RN×N . If agent i can receive
the information from agent j, then aij = 1; otherwise, aij = 0.
We assume there is no self-edge in G. The neighbors of agent
i are denoted by Ni = {j ∈ V : (i, j) ∈ E}. The digraph G
contains a directed spanning tree if and only if there exists a
root vertex such that any other vertex of the digraph can be
reached by at least one path starting from the root.

Definition 1: Multi-agent system (1) with a given commu-
nication topology G is said to achieve consensus if and only
if limk→+∞ ∥xi(k)− xj(k)∥ = 0 for all i, j ∈ {1, 2, ..., N}.

In this paper, we are going to design the control law ui(k)
for each agent i to achieve consensus by proposing a novel
DMPC method, and further propose a self-triggered DMPC
based consensus algorithm. Noth that though we consider the
discrete-time linear multi-agent system (1) only, the consensus
problem of a continuous-time linear multi-agent system in a
periodic sampled-data setting can also be solved by treating it
as the consensus problem of (1) equivalently.

III. DISTRIBUTED MODEL PREDICTIVE CONSENSUS

In this section, we will propose a novel DMPC based
consensus algorithm for multi-agent system (1) under a di-
rected communication graph, and then present the feasibility
and consensus analysis for the algorithm. We first make the
following assumption.

Assumption 1: The matrix pair (A,B) in (1) is controllable,
and the digraph G contains a directed spanning tree.
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A. DMPC Based Consensus Algorithm

Let the MPC cost function for agent i at time step k be

Ji (xi(k), x̄−i(k),ui(k))

=
H−1∑
l=0

(∥xi(k + l|k)− x̄−i(k + l|k)∥+ λ∥ui(k + l|k)∥)

+ V f
i (k)

(2)

where H ≥ 1 is the prediction horizon, ui(k) =
[uT

i (k|k), uT
i (k+1|k), ..., uT

i (k+H−1|k)]T the future control
vector of agent i to be determined, and λ > 0 the weight on
the future control vector. Given ui(k) and state at the current
step k, the predicted state at k + l, denoted by xi(k + l|k),
can be iteratively computed from the following formula

xi(k + l + 1|k) = Axi(k + l|k) +Bui(k + l|k).

With ui being optimal control u∗
i , the corresponding pre-

dicted state is also optimal and denoted by x∗(k + l|k).
x̄−i(k) = [x̄T

−i(k|k), x̄T
−i(k+1|k), ..., x̄T

−i(k+H|k)]T denotes
the averaged state trajectory of agent i’s neighbors with

x̄−i(k + l|k) =
∑
j∈Ni

xa
j (k + l|k)
|Ni|

.

xa
j (k+ l|k) represents the assumed state trajectory of agent j

at k, and it is obtained based on the optimal state trajectory
of agent j determined at the previous time step:

xa
j (k + l|k) =

{
x∗
j (k + l|k − 1), l ∈ 0,H − 1;

Ax∗
j (k +H − 1|k − 1), l = H.

(3)

V f
i (k) = Fi (xi(k +H|k), x̄−i(k +H|k)) = βi∥xi(k +

H|k)− x̄−i(k +H|k)∥ is the terminal cost with βi > 0.
Remark 1: The term ∥xi(k + l|k) − x̄−i(k + l|k)∥ in

the MPC cost function (2) differs from the consensus term∑
j∈Ni

aij∥xi(k + l|k) − xj(k)∥2Q in [22] in two aspects:
1) the averaged state trajectory x̄−i(k) is used as the ref-
erence trajectory rather than utilizing the static neighboring
states {xj(k)}j∈Ni over the whole prediction horizon; 2) the
Euclidean norm is designed instead of the commonly used
quadratic function. Such differences guarantee that all agents
in (1) reach dynamic consensus and facilitate the consensus
analysis, respectively.

Having defined the MPC cost function (2), each agent i
solves the following optimization problem Pi:

u∗
i (k) = arg min

ui(k)
Ji (xi(k), x̄−i(k), ui(k)) (4)

subject to

xi(k|k) = xi(k), (5)
xi(k + l|k) ∈ Xi, (6)
ui(k + l|k) ∈ Ui, (7)

∥xi(k + l|k)− xa
i (k + l|k)∥

≤ γ

H − 1
min
j∈Ni

∥xj(k)− x̄−j(k|k)∥, (8)

xi(k +H|k) ∈ X f
i (k) (9)

for any l ∈ 0,H − 1.
The novelty of problem Pi lies in constraints (8) and (9)

with respect to the state prediction sequence, where γ ∈ (0, 1).
(8) enforces a degree of consistency between what an agent
plans to do and what neighbors believe the agent will do. The
terminal region X f

i (k) in (9) is defined as

X f
i (k) , {x ∈ Xi|∥x− xa

i (k +H|k)∥
≤ (1− γ)v/βi min

j∈Ni

∥xj(k)− x̄−j(k|k)∥}

with v ∈ (0, 1). As a crucial element to establish stability,
we make an assumption with respect to the terminal region
and the terminal cost hereinafter. For the sake of notational
simplicity, we first denote bli , x∗

i (k + l|k) and ∆bli , bli −∑
j∈Ni

blj/|Ni|, l = 1,H for all i ∈ 1, N .
Assumption 2: For an arbitrary time step k, there exists an

auxiliary local controller ūi = κi

(
bHi , {bHj }j∈Ni

)
∈ Ui such

that
AbHi +Būi ∈ X f

i (k + 1), (10)

and

Fi

AbHi +Būi,
∑
j∈Ni

AbHj
|Ni|

− Fi

bHi ,
∑
j∈Ni

bHj
|Ni|


≤−

∥∥∆bHi
∥∥− λ∥ūi∥.

(11)

In the following proposition, we design a linear controller
of κi

(
bHi , {bHj }j∈Ni

)
, and derive sufficient conditions on the

controller and βi to ensure Assumption 2.
Proposition 1: Let the auxiliary local controller be ūi =

Ki∆bHi ∈ Ui. If

∥BKi∆bHi ∥ ≤ (1− γ)v

βi
min
j∈Ni

∥∆b1j∥ (12)

and
βi (∥A+BKi∥ − 1) + 1 + λ∥Ki∥ < 0, (13)

then Assumption 2 holds.
Proof: We easily obtain

Fi

AbHi +Būi,
∑
j∈Ni

AbHj
|Ni|

 = βi∥(A+BKi)∆bHi ∥.

Inequality (12) directly implies that (10) in Assumption 2
holds. Then we have

Fi

AbHi +Būi,
∑
j∈Ni

AbHj
|Ni|

− Fi

bHi ,
∑
j∈Ni

bHj
|Ni|


+
∥∥∆bHi

∥∥+ λ∥ūi∥
=βi∥(A+BKi)∆bHi ∥ − βi

∥∥∆bHi
∥∥+

∥∥∆bHi
∥∥+ λ∥ūi∥

≤ (βi∥A+BKi∥ − βi + 1 + λ∥Ki∥)
∥∥∆bHi

∥∥
≤0.

The first inequality follows from the compatibility of vector
norms, and the last inequality from (13). Till now, inequality
(11) in Assumption 2 is proved.

Remark 2: According to inequalities (12)-(13), Ki and βi

depend on time varying ∆bHi and ∆b1j , j ∈ Ni, which requires
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the design of Ki and βi at each time step. However, it’s
inefficient in real implementation. Considering the fact that
∥∆bHi ∥ ≪ ∥∆b1j∥, ∀j ∈ Ni, inequality (12) holds itself, and
we can always find a sufficiently large βi satisfying inequality
(13) for a given λ if ∥A+BKi∥ < 1.

The DMPC based consensus algorithm is specified as fol-
lows.

Algorithm 1 (DMPC based consensus algorithm):
1) Initialization: Set k = 0. Each agent i transmits its state

sequence {xa
i (l|0)}Hl=0 with xa

i (l|0) = Alxi(0) to all
j ∈ Ni, and then receives {xa

j (l|0)}Hl=0 from all j ∈ Ni.
Each agent i solves problem Pi by removing constraints
(8)-(9) to obtain u∗

i (0). Go to Step 3).
2) Each agent i solves problem Pi to obtain u∗

i (k).
3) Each agent i applies ui(k) = u∗

i (k|k).
4) Each agent i transmits the optimal state trajectory

{x∗
i (k + l|k)}Hl=1 to all j ∈ Ni, and then receives

{x∗
j (k + l|k)}Hl=1 from all j ∈ Ni.

5) By using x̄−i(k+1|k+1) =
∑

j∈Ni
x∗
j (k+1|k)/|Ni|,

each agent i transmits ∥x∗
i (k+1|k)− x̄−i(k+1|k+1)∥

to all j ∈ Ni, and then receives ∥x∗
j (k+1|k)− x̄−j(k+

1|k + 1)∥ from all j ∈ Ni.
6) Set k = k + 1, and go to Step 2).
Note that at the initialization step of Algorithm 1, each

agent i solves problem Pi without constraints (8)-(9), by
assuming that every neighbor applies zero control over the
prediction horizon. A similar idea can be found in [14]. When
k ≥ 1, constraints (8)-(9) are enforced. For an arbitrary agent
i without incoming neighbors, we let u∗

i (k+ l|k) = 0 directly
for all l ∈ 0,H − 1 and all k.

Remark 3: A key feature of the DMPC based consensus
algorithm is that each agent only needs to solve problem Pi

relying on the information of its own and its neighbors. Prob-
lem Pi can be reformulated as a standard form of second-order
cone programs (SOCPs), which have been widely studied and
readily solved by the interior-point method (see Chapter 11
of [44]) with good theoretical convergence properties and
efficient computational performance. Furthermore, numerous
recent contributions address the real-time implementation of
interior-point method solvers for SOCP on multiple platforms,
such as an embedded conic solver (ECOS) proposed in [45]
to solve SOCP with hundreds of decision variables within 10
msec. To better apply the state-of-the-art SOCP solvers in the
DMPC based consensus algorithm, we will mainly focus on
the reformulation of problem Pi as an SOCP in this paper.

In the remainder part of this subsection, we show how to
reformulate problem Pi as a standard form of SOCPs. Problem
Pi is a constrained problem of minimizing a sum of Euclidean
norms, which can be recast in the following canonical form

min
ui∈RHm

2H∑
l=1

∥Clui + dl∥ (14)

subject to

∥Elui + fl∥ ≤ gl, l = 1, 2, ..., (n+m+ 1)H, (15)

where ∥Clui + dl∥ with l = 1, ..., H and l = H + 1, ..., 2H
correspond to the terms w.r.t. x and u respectively in (2)

such that Cl ∈ Rn×Hm, dl ∈ Rn for l = 1, ...,H and
Cl ∈ Rm×Hm, dl ∈ Rm for l = H+1, ..., 2H , El ∈ Rnl×Hm,
fl ∈ Rnl , and gl ∈ R. Constraints (6) and (7) can be easily
recast in nH and mH inequalities of (15) respectively, and
constraints (8)-(9) are recast in H inequalities of (15). Note
that the objective function is not differentiable at any point ui

when Clui+dl = 0. Then we transform problem (14)-(15) into
the following SOCP by introducing new variable t ∈ R2H :

min
ui,t

1T t (16)

subject to

∥Clui + dl∥ ≤ eTl t, l = 1, ..., 2H (17)
∥Clui + fl∥ ≤ gl, l = 1, 2, ..., (n+m+ 1)H, (18)

where 1 is a column vector with all entries equal to 1, and
el ∈ R2H is with all zero entries except the l-th equal to 1.
By putting ui and t in a concatenated vector, we can easily
write problem (16)-(18) into a standard form of SOCPs (see
Chapter 4 of [44]) such that the interior-point method can be
applied.

B. Feasibility and Consensus Analysis

Before the consensus analysis of Algorithm 1, we prove its
iterative feasibility by the induction principle in the following
lemma.

Lemma 1: For each agent i in multi-agent system (1), if
problem Pi is feasible at time step k, then it is feasible at
time step k + 1 for all k ≥ 0.

Proof: Define

ūi(k + 1) = [u∗T
i (k + 1|k), ..., u∗T

i (k +H − 1|k), ūT
i ]

T

(19)

with ūi = κi

(
bHi , {bHj }j∈Ni

)
satisfying Assumption 2. Then

xi(k+ l|k+1) rendered by ūi(k+1) is equal to x∗
i (k+ l|k)

for all l ∈ 1,H such that (6)-(8) is easily fulfilled, and (9) is
also fulfilled due to (10). Then we conclude that ūi(k+ 1) is
a feasible solution of problem Pi at time step k + 1.

Let x = [xT
1 , x

T
2 , ..., x

T
N ]T , and define X0 ⊆ RnN as the

set of all states for which a feasible solution can be found in
step 1) of Algorithm 1. Then according to Lemma 1, we are
ready to present the feasibility result in the following theorem
whose proof is omitted for want of space.

Theorem 1: The DMPC based consensus algorithm (Al-
gorithm 1) is feasible if the initial state x(0) ∈ X0 and
Assumption 2 holds.

We are now in a position to state the main result.
Theorem 2: Consider multi-agent system (1) with commu-

nication topology G. Under Algorithm 1, system (1) reaches
consensus asymptotically if the initial state x(0) ∈ X0 and
Assumptions 1-2 hold.

Proof: Denote

J∗
i (k) = min

ui(k)
Ji(xi(k), x̄−i(k), ui(k)),

and

J̄i(k + 1) = Ji(xi(k + 1), x̄−i(k + 1), ūi(k + 1))



5

with ūi(k+1) defined in (19). Following the arguments in the
proof of Lemma 1, ūi(k+1) is a feasible solution of problem
Pi at time step k + 1. Then we have

J∗
i (k + 1)− J∗

i (k)

≤J̄i(k + 1)− J∗
i (k)

=
H−1∑
l=1

(∥x∗
i (k + l|k)− x̄−i(k + l|k + 1)∥

−∥x∗
i (k + l|k)− x̄−i(k + l|k)∥)

− ∥xi(k)− x̄−i(k|k)∥ − λ∥u∗
i (k|k)∥

+ ∥x∗
i (k +H|k)− x̄−i(k +H|k + 1)∥

+ λ∥ūi∥+ V f
i (k + 1)− V f

i (k)

(20)

Therein,

V f
i (k + 1)− V f

i (k)

≤Fi

AbHi +Būi,
∑
j∈Ni

AbHj
|Ni|

− Fi

bHi ,
∑
j∈Ni

bHj
|Ni|


+ βi

∥∥∥∥∥∥
∑
j∈Ni

x∗
j (k +H|k)− xa

j (k +H|k)
|Ni|

∥∥∥∥∥∥
≤− ∥x∗

i (k +H|k)− x̄−i(k +H|k + 1)∥ − λ∥ūi∥

+ βi

∥∥∥∥∥∥
∑
j∈Ni

x∗
j (k +H|k)− xa

j (k +H|k)
|Ni|

∥∥∥∥∥∥
≤− ∥x∗

i (k +H|k)− x̄−i(k +H|k + 1)∥
− λ∥ūi∥+ (1− γ)v∥xi(k)− x̄−i(k|k)∥,

(21)

the first inequality of which follows from the triangle inequal-
ity of vector norms, the second inequality from (11), and the
last inequality from (9).

For l ∈ 1, H − 1,

∥x∗
i (k + l|k)− x̄−i(k + l|k + 1)∥

− ∥x∗
i (k + l|k)− x̄−i(k + l|k)∥

≤∥x̄−i(k + l|k + 1)− x̄−i(k + l|k)∥

=

∥∥∥∥∥∥
∑
j∈Ni

x∗
j (k + l|k)− xa

j (k + l|k)
|Ni|

∥∥∥∥∥∥
≤ γ

H − 1
∥xi(k)− x̄−i(k|k)∥.

The first inequality follows from the triangle inequality, and
the last inequality from (8). Therefore,

J∗
i (k + 1)− J∗

i (k) ≤− (1− γ)(1− v)∥xi(k)− x̄−i(k|k)∥
− λ∥u∗

i (k|k)∥,

which, combined with J∗
i (k) ≥ 0 for any k, gives that

limk→∞ ∥xi(k)− x̄−i(k|k)∥ = 0 and limk→∞ ∥u∗
i (k|k)∥ = 0

for all i according to LaSalle’s invariance principle [46]. Since
x̄−i(k|k) =

∑
j∈Ni

x∗
j (k|k − 1)/|Ni| =

∑
j∈Ni

xj(k)/|Ni|,
we obtain limk→∞ ∥xi(k) −

∑
j∈Ni

xj(k)/|Ni|∥ = 0 for all
i, which further implies that consensus is reached when G
contains a directed spanning tree.

IV. DISTRIBUTED MODEL PREDICTIVE CONSENSUS WITH
SELF-TRIGGERED MECHANISM

This section investigates the distributed model predictive
consensus problem with self-triggered mechanism in order to
reduce communication cost and energy consumption of control
updates. We propose a self-triggered DMPC based consensus
algorithm with control inputs and triggering time steps jointly
determined.

A. Self-triggered DMPC Based Consensus Algorithm

Let kil denote the lth triggering time step of agent i with
l ∈ 0,+∞. The triggering interval hi

l = kil+1−kil satisfies hi
l ∈

1, p with p ≥ 1 denoting the maximum allowable interval. Let
the MPC cost function for agent i at triggering time step kil
be defined by

Ji(xi(k
i
l), x̄−i(k

i
l),ui(k

i
l), h

i
l)

=∥xi(k
i
l |kil)− x̄−i(k

i
l |kil)∥+ λ∥ui(k

i
l |kil)∥

+
r−1∑
q=0

(
∥xi(k

i
l + hi

l + q · p|kil)− x̄−i(k
i
l + hi

l + q · p|kil)∥

+λ∥ui(k
i
l + hi

l + q · p|kil)∥
)
+ V f

i (kil) +
α

hi
l

(22)

where r ∈ N+, hi
l + r · p is the prediction horizon denoted by

Hi
l , and ui(k

i
l) = [uT

i (k
i
l |kil), ..., uT

i (k
i
l +Hi

l − 1|kil)]T is the
future control vector of agent i to be determined. Control ui

is piecewise, i.e.,
ui(k

i
l |kil) = ui(k

i
l + 1|kil) = ... = ui(k

i
l + hi

l − 1|kil);
ui(k

i
l + hi

l + j · p|kil) = ui(k
i
l + hi

l + j · p+ 1|kil) = ...

= ui(k
i
l + hi

l + j · p+ p− 1|kil), j ∈ 0, r − 1
(23)

which is also illustrated in Fig. 1. xi(k
i
l + q|kil) denotes agent

i’s state prediction of future step kil+q at time step kil , xi(k
i
l+

q + 1|kil) = Axi(k
i
l + q|kil) + Bui(k

i
l + q|kil), x̄−i(k

i
l) =

[x̄T
−i(k

i
l |kil), ..., x̄T

−i(k
i
l + (r + 2)p|kil)]T denotes the averaged

state trajectory of agent i’s neighbors with

x̄−i(k
i
l + q|kil) =

∑
j∈Ni

xa
j (k

i
l + q|kil)
|Ni|

. (24)

xa
j (k

i
l + q|kil) represents the assumed state trajectory of agent

j, j ∈ Ni ∪ {i} by agent i at kil , and it is obtained based on
the optimal state trajectory of agent j determined at its latest
triggering time step Γj(k

i
l) < kil :

xa
j (k

i
l+q|ki

l) =

{
x∗
j (k

i
l + q|Γj(k

i
l)), q ∈ 0, r · p;

Ax∗
j (k

i
l + q − 1|Γj(k

i
l)), q ∈ r · p+ 1, (r + 2)p.

(25)
V f
i (kil) = Fi(xi(k

i
l +Hi

l |kil), x̄−i(k
i
l +Hi

l |kil)) = βi∥xi(k
i
l +

Hi
l |kil)− x̄−i(k

i
l +Hi

l |kil)∥ is the terminal cost with βi > 0.
α ∈ R+ is a design variable that is used to trade off the cost of
sampling against the cost of control. Similar idea is employed
in [40].

Denote B(p) =
∑p−1

q=0 A
qB and A(p) , Ap+B(p)Ki. Then

we make the following assumption.
Assumption 3: The matrix pair (Ap, B(p)) is controllable,

and the digraph G contains a directed spanning tree.
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Fig. 1. Illustration of the control sequence {ui(k
i
l + q|kil)}

Hi
l−1

q=0 of agent i
at triggering time step kil with hi

l = 2, p = 4, r = 3 and Hi
l = 14.

Given the MPC cost function (22), each agent solves the
following optimization problem SPi:

{u∗
i (k

i
l), h

i∗
l } = arg min

ui(ki
l),h

i
l

Ji
(
xi(k

i
l), x̄−i(k

i
l), ui(k

i
l), h

i
l

)
(26)

subject to (23) and

xi(k
i
l |kil) = xi(k

i
l), (27)

xi(k
i
l |kil), xi(k

i
l + hi

l + q · p|kil) ∈ Xi, (28)
ui(k

i
l |kil), ui(k

i
l + hi

l + q · p|kil) ∈ Ui, (29)
∥xi(k

i
l + hi

l + q · p|kil)− xa
i (k

i
l + hi

l + q · p|kil)∥
≤ γ

r
min
j∈Ni

∥xj(Γj(k
i
l))− x̄−j(Γj(k

i
l)|Γj(k

i
l))∥, (30)

xi(k
i
l +Hi

l |kil) ∈ X f
i (k

i
l) (31)

for any q ∈ 0, r − 1.
The terminal region X f

i (k
i
l) in (31) is defined as

X f
i (k

i
l) , {x ∈ Xi|∥x− xa

i (k
i
l +Hi

l |kil)∥
≤ (1− γ)v/βi min

j∈Ni

∥xj(Γj(k
i
l))− x̄−j(Γj(k

i
l)|Γj(k

i
l))∥}

with γ ∈ (0, 1) and v ∈ (0, 1). Before giving the following
assumption with respect to V f

i (kil) and X f
i (k

i
l), we first denote

bii , x∗
i (k

i
l + Hi

l |kil), bij , xa
j (k

i
l + Hi

l |kil+1), j ∈ Ni,
∆bi , bii −

∑
j∈Ni

bij/|Ni| and cj , xj(Γj(k
i
l+1)) −

x̄−j(Γj(k
i
l+1)|Γj(k

i
l+1)) for all i ∈ 1, N and all j ∈ Ni.

Assumption 4: For an arbitrary triggering time step kil , there
exists an auxiliary local controller ūi = κi (bii, {bij}j∈Ni) ∈
Ui such that

Apbii +B(p)ūi ∈ X f
i (k

i
l+1), (32)

and

Fi

Apbii +B(p)ūi,
∑
j∈Ni

Apbij
|Ni|

− Fi

bii,
∑
j∈Ni

bij
|Ni|


≤− ∥∆bi∥ − λ∥ūi∥.

(33)

Similar as Proposition 1, we design a linear controller of
κi (bii, {bij}j∈Ni) in the following proposition to validate
Assumption 4.

Proposition 2: Let the auxiliary local controller be ūi =
Ki∆bi ∈ Ui. If

∥B(p)Ki∆bi∥ ≤ (1− γ)v

βi
min
j∈Ni

∥cj∥ (34)

and
βi

(
∥A(p)∥ − 1

)
+ 1 + λ∥Ki∥ < 0, (35)

then Assumption 4 holds.
Proof: Inequality (34) directly implies that (32) in As-

sumption 4 holds. We easily obtain that Apbii + B(p)ui −∑
j∈Ni

Apbij/|Ni| = A(p)∆bi. Then

Fi

Apbii +B(p)ūi,
∑
j∈Ni

Apbij
|Ni|

− Fi

bii,
∑
j∈Ni

bij
|Ni|


+ ∥∆bi∥+ λ∥ūi∥

≤βi∥A(p)∆bi∥ − βi ∥∆bi∥+ ∥∆bi∥+ λ∥ūi∥

≤
(
βi∥A(p)∥ − βi + 1 + λ∥Ki∥

)
∥∆bi∥

≤0.

The last inequality follows from (35). Till now, inequality (33)
is proved.

Remark 4: According to inequalities (34)-(35), Ki and βi

depend on time varying ∆bi and cj , j ∈ Ni, which requires
the design of Ki and βi at each triggering time step. However,
it’s inefficient in real implementation. Considering the fact that
∥∆bi∥ ≪ ∥cj∥, ∀j ∈ Ni, inequality (34) holds itself, and we
can always find a sufficiently large βi satisfying inequality
(35) for a given λ if ∥Ap +B(p)Ki∥ < 1.

The self-triggered DMPC based consensus algorithm for
agent i is specified as follows.

Algorithm 2 (self-triggered DMPC based consensus algo-
rithm for agent i):

1) Initialization: Each agent i set k = 0 as the first
triggering time step, i.e., kil = 0 with l = 0. Each
agent i transmits its state sequence {xa

i (q|0)}
p+r·p
q=0 with

xa
i (q|0) = Aqxi(0) to all j ∈ Ni, and then receives

{xa
j (q|0)}

p+r·p
q=0 from all j ∈ Ni. Each agent i solves

problem SPi by removing constraints (30)-(31) to ob-
tain hi∗

l and u∗
i (0). Go to Step 3).

2) Agent i solves problem SPi to obtain hi∗
l and u∗

i (k
i
l).

3) Agent i transmits ∥xi(k
i
l) − x̄−i(k

i
l |kil)∥, {xa

j (k
i
l +

q|kil)}
(r+2)p
q=0 and the optimal state trajectory {x∗

i (k
i
l +

q|kil)}
Hi

l+p
q=1 to all j ∈ Ni.

4) Agent i applies ui(k) = u∗
i (k

i
l |kil).

5) Set k = k+1, and check whether k = kil+hi∗
l or not. If

k = kil +hi∗
l , set l = l+1 and go to Step 2); otherwise,

go to step 4).
Similar as Algorithm 1, we let u∗

i (k
i
l + l|kil) = 0, ∀l ∈

0, r · p+ p− 1, ∀k directly for any arbitrary agent i without
incoming neighbors.

Remark 5: To solve problem SPi, we may solve

min
ui(ki

l )
Ji(xi(k

i
l), x̄−i(k

i
l), ui(k

i
l), h

i
l) (36)

subject to (23) and (27)-(31), by assuming hi
l = 1, 2, ..., p, and

then obtain hi∗
l which gives the lowest value of the cost. The

computation method to solve (36) is the same as that to solve
problem Pi, which has been described in Remark 3. From
this point of view, the self-triggered DMPC based consensus
algorithm reduces the communication and control updating
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times at the cost of increased computational complexity. It
would be still interesting to develop more efficient methods to
solve problem SPi in our future research. A possible alterna-
tive is to establish the connection between problem SPi and
mixed-integer second-order cone program (MISOCP), which
is readily solved by combining existing solution methods for
SOCPs with extensions of mixed-integer linear or nonlinear
programming methods (see [47]).

B. Feasibility and Consensus Analysis

Before presenting the consensus analysis of the self-
triggered DMPC based consensus algorithm (Algorithm 2),
we prove its iterative feasibility by the induction principle in
the following lemma.

Lemma 2: For each agent i in multi-agent system (1) under
Assumption 4, if Problem SPi is feasible at time step kil , then
it is feasible at time step kil+1 for all l ≥ 0.

Proof: Define

ūi(k
i
l+1) =[u∗T

i (kil+1|kil), u∗T
i (kil+1 + 1|kil), ...,

u∗T
i (kil+1 + r · p− 1|kil), ūT

i (k
i
l+1 + r · p|kil+1), ...,

ūT
i (k

i
l+1 + r · p+ p− 1|kil+1)]

T

(37)

with ūi(k
i
l+1 + q|kil+1) = κi (bii, {bij}j∈Ni) satisfying As-

sumption 4 for any q ∈ r · p, r · p+ p− 1. Then xi(k
i
l+1+hi

l+
q · p|kil+1) rendered by ūi(k

i
l+1) is equal to x∗

i (k
i
l+1+hi

l + q ·
p|kil) for all q ∈ 0, r. Constraints (23) and (28)-(29) are easily
fulfilled. We also obtain xa

i (k
i
l+1+hi

l+q ·p|kil+1) = x∗
i (k

i
l+1+

hi
l + q · p|kil) such that (30) with q ∈ 0, r − 1 is fulfilled.

Besides, (32) directly gives that xi(k
i
l+1 + r · p + p|kil+1)

rendered by ūi(k
i
l+1) satisfies (31). Then we conclude that

{ūi(k
i
l+1), p} is a feasible solution of problem SPi at time

step kil+1.
Define X ′

0 ⊆ RnN as the set of all states for which a
feasible solution can be found in step 1) of Algorithm 2. Then
according to Lemma 2, we are ready to present the feasibility
result in the following theorem with proof omitted.

Theorem 3: The self-triggered DMPC based consensus al-
gorithm (Algorithm 2) is feasible if the initial state x(0) ∈ X ′

0

and Assumption 4 holds.
The main result concerning the self-triggered DMPC based

consensus algorithm is carried out in the following theorem.
Theorem 4: Consider multi-agent system (1) with commu-

nication topology G. Under Algorithm 2, system (1) reaches
consensus asymptotically with liml→∞ hi

l = p if the initial
state x(0) ∈ X ′

0 and Assumptions 3-4 hold.
Proof: Denote

J∗
i (k

i
l) = min

ui(ki
l),h

i
l

Ji(xi(k
i
l), x̄−i(k

i
l),ui(k

i
l), h

i
l),

and

J̄i(k
i
l+1) = Ji(xi(k

i
l+1), x̄−i(k

i
l+1), ūi(k

i
l+1), p)

with ūi(k
i
l+1) defined in (37). Following the arguments in

the proof of Lemma 2, {ūi(k
i
l+1), p} is a feasible solution

of problem SPi at time step kil+1.

J∗
i (k

i
l+1)− J∗

i (k
i
l)

≤ J̄i(k
i
l+1)− J∗

i (k
i
l)

=

r−1∑
q=0

(
∥x∗

i (k
i
l + hi

l + q · p|ki
l)− x̄−i(k

i
l + hi

l + q · p|ki
l+1)∥

−∥x∗
i (k

i
l + hi

l + q · p|ki
l)− x̄−i(k

i
l + hi

l + q · p|ki
l)∥

)
−∥x∗

i (k
i
l |ki

l)− x̄−i(k
i
l |ki

l)∥+ λ∥u∗
i (k

i
l |ki

l)∥
+∥xi(k

i
l +Hi

l |ki
l+1)− x̄−i(k

i
l +Hi

l |ki
l+1)∥

+λ∥ui(k
i
l +Hi

l |ki
l+1)∥+ V f

i (ki
l+1)− V f

i (ki
l)

+
α

p
− α

hi
l

(38)

Therein,

V f
i (kil+1)− V f

i (kil)

≤Fi

Apbii +B(p)ūi,
∑
j∈Ni

Apbij
|Ni|

− Fi

bii,
∑
j∈Ni

bij
|Ni|


+ βi

∥∥∥∥∥∥
∑
j∈Ni

xa
j (k

i
l +Hi

l |kil+1)− xa
j (k

i
l +Hi

l |kil)
|Ni|

∥∥∥∥∥∥
≤− ∥xi(k

i
l +Hi

l |kil+1)− x̄−i(k
i
l +Hi

l |kil+1)∥
− λ∥ui(k

i
l +Hi

l |kil+1)∥

+ βi

∥∥∥∥∥∥
∑
j∈Ni

xa
j (k

i
l +Hi

l |kil+1)− xa
j (k

i
l +Hi

l |kil)
|Ni|

∥∥∥∥∥∥
≤− ∥xi(k

i
l +Hi

l |kil+1)− x̄−i(k
i
l +Hi

l |kil+1)∥
− λ∥ui(k

i
l +Hi

l |kil+1)∥+ (1− γ)v∥xi(k
i
l)− x̄−i(k

i
l |kil)∥,

the first inequality of which follows from the triangle inequal-
ity of vector norms, the second inequality from (33), and the
last inequality from (31).

For any q ∈ 0, r − 1, it holds:

∥x∗
i (k

i
l + hi

l + q · p|kil)− x̄−i(k
i
l + hi

l + q · p|kil+1)∥
− ∥x∗

i (k
i
l + hi

l + q · p|kil)− x̄−i(k
i
l + hi

l + q · p|kil)∥
≤∥x̄−i(k

i
l + hi

l + q · p|kil+1)− x̄−i(k
i
l + hi

l + q · p|kil)∥

=

∥∥∥∥∥∥
∑
j∈Ni

xa
j (k

i
l + hi

l + q · p|kil+1)− xa
j (k

i
l + hi

l + q · p|kil)
|Ni|

∥∥∥∥∥∥
≤γ

r
∥xi(k

i
l)− x̄−i(k

i
l |kil)∥,

where the last inequality is due to (30). Therefore,

J∗
i (k

i
l+1)− J∗

i (k
i
l)

≤− (1− γ)(1− v)∥xi(k
i
l)− x̄−i(k

i
l |kil)∥ − λ∥u∗

i (k
i
l |kil)∥

+
α

p
− α

hi
l

,

which, combined with J∗
i (k

i
l) ≥ 0 for any l, gives that

liml→∞ hi
l = p, liml→∞ ∥xi(k

i
l) − x̄−i(k

i
l)∥ = 0 and

liml→∞ ∥u∗
i (k

i
l |kil)∥ = 0 for all i according to LaSalle’s

invariance principle [46]. Therefore, it follows that the trig-
gering interval converges to p and consensus is reached
asymptotically when G contains a directed spanning tree.

V. SIMULATION EXAMPLES

As two potential applications, synchronization of linear os-
cillators and platoon of vehicles are numerically studied in this
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section to demonstrate the effectiveness of the DMPC based
consensus algorithm (Algorithm 1) and the self-triggered
DMPC based consensus algorithm (Algorithm 2). Throughout
the simulation examples, we use ’fmincon’ function based on
the interior-point method in the MATLAB toolbox to solve
problems Pi and SPi in Algorithms 1 and 2 respectively.

Example 1: Consider a network of 5 identical linear
oscillators with interconnection topology shown in Fig. 2.
The dynamics of oscillator i is given by (1) with A =
[0.9762 0.2169 0; − 0.2169 0.9762 0; 0 0.9762 0.2169]
and B = [1 0; 0 1; 0 1]. The state and input constraint
sets for each i are Xi = {x ∈ R3||xj | ≤ 18, j = 1, 2, 3}
and Ui = {u ∈ R2||uj | ≤ 10, j = 1, 2} respectively. The
initial states of all oscillator are randomly chosen from the
uniform distributions on [−10, 10]3. We first visualize the
performance of the DMPC based consensus algorithm with
H = 3, λ = 0.01, γ = 0.6, v = 0.9 and βi = 3 for all i.
Note that Ki in (13) could be set as [−0.8970 − 0.2002 −
0.0015; 0.1058 −0.9329 −0.1002] such that (13) is satisfied.
State trajectories of the agents are shown in Fig. 3, where x1,
x2 and x3 correspond to the first, second and third dimension
of states, respectively. It reveals that dynamic consensus is
achieved. Then we assume the oscillators apply the self-
triggered DMPC based consensus algorithm (Algorithm 2)
with α = 2, r = 1, p = 3, λ = 0.01, γ = 0.6, v = 0.9
and βi = 3 for all i. We also notice that Ki in (35) could be
set as [−0.3024 −0.1404 0.0001; 0.1273 −0.3255 −0.0017]
such that (35) is satisfied. State trajectories of the agents are
shown in Fig. 4. It reveals that dynamic consensus is achieved,
and the convergence speed is comparable to that in Fig. 3.
Furthermore, Fig. 5 shows the triggering time instants of the
oscillators with the triggering intervals converging to 3, and
the total number of triggering instants is 175. In contrast
to the DMPC based consensus algorithm (Algorithm 1) with
300 triggering time instants, the self-triggered DMPC based
consensus algorithm (Algorithm 2) reduces the number of
triggering time instants significantly, although the computation
complexity is increased.

Fig. 2. Interconnection topology of the oscillators in Example 1.

Example 2: Consider a group of 5 vehicles moving along a
single lane with information transmission flow shown in Fig.
6. The dynamics of each vehicle [7] is described by{

ṙi(t) = vi(t)
v̇i(t) =

1
Mi

ui(t)
, (39)

where ri ∈ R and vi ∈ R are the position and velocity
of vehicle i respectively, Mi > 0 is the mass of vehicle i,
and ui ∈ R is the control input of vehicle i. The velocity
constraint is 0 m/s ≤ vi ≤ 10 m/s, and the input constraint is
|ui| ≤ 10 N for all i. In order to effectively improve traffic
safety and efficiency, the platooning of vehicles is to maintain
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Fig. 3. State trajectories of the oscillators under the DMPC based consensus
algorithm (Algorithm 1).
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Fig. 4. State trajectories of the oscillators under the self-triggered DMPC
based consensus algorithm (Algorithm 2).

a desired inter-vehicle spacing policy with a common velocity,
i.e., ri(t)− hi = rj(t)− hj and vi(t) = vj(t) for all i and j
as t → ∞, where hi−hj denotes the desired constant spacing
between vehicle i and j.

As mentioned in Section II, a continuous-time linear multi-
agent system in a periodic sampled-data setting can be trans-
formed into discrete-time system (1) equivalently. We assume
the sampled-data control is applied to system (39) with the
sampling period equal to 1 s, let Mi = 1 kg for all i, and
denote xi = [ri − hi; vi]. Then the platooning of system
(39) can be solved by treating it as the consensus problem of
discrete-time system (1) with A = [1 1; 0 1] and B = [0.5; 1].
Assume the initial positions of vehicles are r1 = 0 m,
r2 = −40 m, r3 = −50 m, r4 = −100 m, r5 = −140
m, and the initial velocities of vehicles are v1 = 2.9 m/s,
v2 = 4.7 m/s, v3 = 1.3 m/s, v4 = 2 m/s, v5 = 5 m/s.
Set h1 = 0 m, h2 = −20 m, h3 = −40 m, h4 = −60
m, h5 = −80 m. We first visualize the performance of the
DMPC based consensus algorithm with H = 3, λ = 0.01,
γ = 0.6, v = 0.9 m/s and βi = 3 for all i. Note that Ki

in (13) could be set as [−0.6167 − 1.2703] such that (13)
is satisfied. Position and velocity trajectories of the vehicles
are shown in Fig. 7, revealing that the desired inter-vehicle
spacing policy with a common velocity is achieved. Then
we assume the vehicles apply the self-triggered DMPC based
consensus algorithm (Algorithm 2) with α = 2, r = 2,
p = 4, λ = 0.01, γ = 0.6, v = 0.9 and βi = 3
for all i. We also notice that Ki in (35) could be set as
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Fig. 5. Triggering time instants of the oscillators under the self-triggered
DMPC based consensus algorithm (Algorithm 2).

[−0.083 − 0.4159] such that (35) is satisfied. Position and
velocity trajectories of the vehicles are shown in Fig. 8, and it
also reveals that the desired inter-vehicle spacing policy with
a common velocity is achieved. Furthermore, Fig. 9 shows
the triggering time instants of the vehicles with the triggering
intervals converging to 4 s, the total number of which is 151. In
contrast to the DMPC based consensus algorithm (Algorithm
1) with 300 triggering time instants, the number of triggering
time instants determined by the self-triggered DMPC based
consensus algorithm (Algorithm 2) is significantly reduced at
the expense of increased computational complexity.

Fig. 6. Platoon configuration consisting of 5 vehicles, where the dashed
arrows denote the information transmission flow among vehicles.
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Fig. 7. Position and velocity trajectories of the vehicles under the DMPC
based consensus algorithm (Algorithm 1).

VI. CONCLUSION

In this paper, we have studied the self-triggered DMPC
based consensus problem in general linear discrete-time multi-
agent systems with LTI dynamics. We have firstly proposed a
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Fig. 8. Position and velocity trajectories of the vehicles under the self-
triggered DMPC based consensus algorithm (Algorithm 2).
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Fig. 9. Triggering time instants under the self-triggered DMPC based
consensus algorithm (Algorithm 2).

DMPC based consensus algorithm, in which each agent needs
to obtain its neighbors’ predicted state sequences once to up-
date its control input at each time step. Then we have presented
a self-triggered DMPC based consensus algorithm, where the
triggering interval is optimized together with the control input,
and the information transmissions and control updates are
executed at triggering time steps only. Both algorithms have
been proved to be feasible and to drive the agents to achieve
dynamic consensus. Two numerical examples have also been
provided to validate the proposed algorithms. In contrast
to the DMPC based consensus algorithm, the self-triggered
DMPC based consensus algorithm can significantly reduce
the information transmission and control update times without
deteriorating the performance. An important and pressing topic
for future research is to further investigate the self-triggered
DMPC based consensus problem in heterogeneous multi-agent
systems with disturbances.
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