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Abstract

A common problem that arises in radar imaging systems, especially those mounted on mobile
platforms, is antenna position ambiguity. Approaches to resolve this ambiguity and correct
position errors are generally known as radar autofocus. Common techniques that attempt to
resolve the antenna ambiguity general by assume an unknown gain and phase error afflicting
the radar measurements. However, ensuring identifiability and tractability of the unknown
error imposes strict restrictions on the allowable antenna perturbations. Furthermore, these
techniques are often not applicable in near-field imaging, where mapping the position ambi-
guity to phase errors breaks down.

In this paper, we propose an alternate formulation where the position error of each an-
tenna is mapped to a spatial shift operator in the image-domain. Thus, the radar autofocus
problem becomes a multichannel blind deconvolution problem, in which the radar measure-
ments correspond to observations of a static radar image that is convolved with the spatial
shift kernel associated with each antenna. To solve the reformulated problem, we also develop
a block coordinate descent framework that leverages the sparsity and piece-wise smoothness
of the radar scene, as well as the one-sparse property of the two dimensional shift kernels.
We evaluate the performance of our approach using both simulated and experimental radar
measurements, and demonstrate its superior performance compared to state-of-the art meth-
ods.
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Abstract—A common problem that arises in radar imaging
systems, especially those mounted on mobile platforms, is antenna
position ambiguity. Approaches to resolve this ambiguity and
correct position errors are generally known as radar autofocus.
Common techniques that attempt to resolve the antenna ambigu-
ity generally assume an unknown gain and phase error afflicting
the radar measurements. However, ensuring identifiability and
tractability of the unknown error imposes strict restrictions on the
allowable antenna perturbations. Furthermore, these techniques
are often not applicable in near-field imaging, where mapping
the position ambiguity to phase errors breaks down.

In this paper, we propose an alternate formulation where
the position error of each antenna is mapped to a spatial
shift operator in the image-domain. Thus, the radar autofocus
problem becomes a multichannel blind deconvolution problem,
in which the radar measurements correspond to observations
of a static radar image that is convolved with the spatial shift
kernel associated with each antenna. To solve the reformulated
problem, we also develop a block coordinate descent framework
that leverages the sparsity and piece-wise smoothness of the radar
scene, as well as the one-sparse property of the two dimensional
shift kernels. We evaluate the performance of our approach
using both simulated and experimental radar measurements, and
demonstrate its superior performance compared to state-of-the-
art methods.

Keywords—Radar autofocus, blind deconvolution, sparse image
reconstruction, fused-Lasso, block-coordinate descent

I. INTRODUCTION

High resolution radar imaging has become essential in a
variety of remote sensing applications. While the resolution of
the imaging platform in the down-range direction is primarily
a function of the frequency and bandwidth of the transmitted
pulse, the resolution along the cross-range (azimuth) direction
depends on the aperture, i.e., the size of the radar array.
In order to achieve the large aperture required in modern
applications, practical systems deploy and distribute over a
large area one or more, often mobile, antennas or antenna
arrays, each having a relatively small aperture. The larger
aperture is achieved by the virtual array formed over the large
area of deployment and motion of the antennas.
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A multi-antenna distributed setup further reduces the oper-
ational and maintenance costs, allows for flexibility of plat-
form placement, and provides robustness to sensor failures.
Leveraging prior knowledge of the scene, such as sparsity,
the precise knowledge of the antenna positions along with a
full synchronization of received signals has been shown to
significantly improve the radar imaging resolution [2]-[5].

A fundamental challenge that arises in distributed array
imaging is the uncertainty in the exact positions of the
transmitting and receiving antennas. Advanced positioning and
navigation systems, such as the global navigation satellite
system (GPS/GNSS) and the inertial navigation system (INS),
generally provide reasonably accurate but not exact location
information. The remaining uncertainty in the true antenna
positions can still span multiple wavelengths. As a result, if the
inexact antenna positions are used as-is in the imaging process,
the received signal is distorted, effectively contaminated with
a gain and phase ambiguity. Consequently, if the position
perturbation is not compensated for, conventional reconstruc-
tion techniques produce out-of-focus radar images. A detailed
analysis of antenna position errors in bistatic synthetic arrays
can be found in [6].

There is extensive literature addressing the radar autofocus
problem by developing tools that compensate for antenna posi-
tion errors [7]-[12]. In some cases, the underlying structure of
the radar image, such as its sparsity, is exploited to limit the so-
Iution space and produce higher quality reconstructions [13]—
[19]. Instead of estimating the position error, most techniques
estimate an equivalent set of frequency-domain gain and phase
errors in the measured signal, i.e., model the effect of the
position error as a linear time-invariant filter. One advantage
of these techniques is that they can often be directly combined
with conventional imaging methods in the processing pipeline.
However, converting the problem to a phase recovery one often
poses severe restrictions on the applicability of solutions in
practical applications.

A. Main contributions

In contrast to earlier approaches, our work fundamentally
re-examines the acquisition model. Specifically, we study the
general high resolution radar imaging problem of recovering
a sparse stationary image of a scene under position ambiguity
of the antennas. We demonstrate in Section II that determin-
ing the antenna position ambiguity is equivalent to a blind
deconvolution problem in the image domain. In particular,
we assert that measurements acquired using an antenna in an
assumed position, but with unknown position error, are equal to
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Fig. 1: Position ambiguity of the radar antennas induces an image-
domain convolution model.

measurements of the scene convolved with a two-dimensional
unknown shift kernel, using an antenna without position error.
Figure 1 illustrates the key intuition of our formulation. The
unknown kernel shifting the scene mirrors the unknown shift
error of the antenna, relative to its assumed position. In
addition, we prove that the image-domain convolution model is
exact if the transmitting and receiving antennas are affected by
the same position error, a common occurrence in practice, for
example if transmission and reception uses the same antenna
or if both antennas are mounted on the same platform.

In addition to our novel formulation, we also propose in
Section IIT a block-coordinate descent algorithm to efficiently
solve the sparse blind deconvolution problem in the image
domain. We validate our approach using numerical simulations
and experimental results that demonstrate their effectiveness.
Figure 2 provides an example of the improvements due to our
approach. In this example, the scene in Figure 2(a), including
three reflective objects, is imaged using a distributed array
with 4 mobile antennas and position perturbations. Ignoring
position errors produces significant artifacts, as shown in
Figure 2(b). While conventional methods improve imaging
performance, as shown in Figure 2(c), there are still missing
targets and artifacts. Our approach is able to recover the scene,
as demonstrated in Figure 2(d). The performance improvement
is consistent in a variety of sensing conditions and very large
position errors. More details on this and other experiments are
provided in Section IV.

B. Background and Related Work

In its most general formulation, using an arbitrary gain
and phase error to model the data error in the frequency
domain, the radar autofocus problem is ill-posed. The over-
whelming majority of the literature addresses this ill-posedness
by imposing constraints on the dimensionality of the error.
These constraints include constant phase error assumptions
or restricted subspace assumptions [9], [20]-[23], and spar-
sity assumptions [13], [15], [17]-[19]. While some of these
assumptions may be valid under specific conditions of the
measurement process, they do not necessarily apply to the
general radar imaging problem.

In the context of autofocus using synthetic arrays,
well established approaches include phase gradient autofo-

RADAR AUTOFOCUS USING SPARSE BLIND DECONVOLUTION

Azimuth (m)

o
g
H

© )

Fig. 2: (a)—(b) Sparse recovery of radar images without autofocusing
obtained using (a) the correct antenna positions, and (b) the incorrect
antenna positions. (¢)—(d) Autofocus results using blind deconvolu-
tion according to (c) the time-domain convolution model; and (d)
using the proposed sparse blind deconvolution and the image-domain
convolution model.

cus (PGA) [7] and sharpness optimization autofocus tech-
niques [8], [24]-[26]. The PGA approach estimates the deriva-
tive of the phase error using a minimum variance estimator.
The underlying assumption is that individual targets in the
scene exhibit the same phase error. Alternatively, contrast
optimization techniques, optimize a sharpness function of the
reconstructed image. The radar imaging operators of each
measurement are assumed to be invertible and the phase errors
are assumed to impact individual columns in the radar image.

Another approach championed in [11], [20], [27] is the mul-
tichannel autofocus (MCA) and Fourier domain multichannel
autofocus (FMCA). Both techniques develop solutions that
map the autofocus problem into a constant modulus quadratic
program (CMQP) that is solved using subspace identification
methods or semidefinite relaxation. In these approaches, it is
assumed that the measurements are acquired at specific look
angles. For each look angle, the measurements are impacted
by an unknown delay, resulting in a constant unknown phase
shift under a narrow band assumption. The delays, and their
associated phases, change between different look angles. Such
a model has two limitations for high resolution radar imaging.
The first limitation is the assumption that a radar measurement
from one antenna position receives reflections from a single ray
along a single scan angle. In the general radar imaging setting,
a single radar measurement can receive reflections from a large
spatial area in the scene. The second limitation is related to
the first and materializes in the form of restricting the phase
ambiguity to a spatial shift along the radial line. In fact, we
prove in this paper that, in the general radar setting, the phase
ambiguity is realized instead as a two-dimensional spatial shift
of the radar image.

More generally, the radar autofocus problem can be viewed
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as a multichannel blind deconvolution problem, where the
distortions due to position errors can be considered as unknown
channels acting on the signals that are received in each
antenna. Blind deconvolution attempts to separate a signal and
a channel from their convolved mixture, i.e., their product
in the frequency domain, using assumptions on each of the
two. The multi-channel version considers multiple channels
affecting the same signal. Solutions to the general multichannel
blind deconvolution problem have existed in the literature since
the 1990s [28]-[32].

More recent research has focused on convex formulations
and recovery guarantees. The seminal work of Ahmed, Recht,
and Romberg [33] proposed a convex formulation of the
single-channel problem, recovering the two signals by lifting
the problem to a frequency-domain outer-product space. Under
this formulation, the acquired data are linear measurements of
an unknown rank-one matrix to be recovered. The unknown
channel and signal vectors are obtained by factoring this rank-
one matrix to its components. The authors presented a theoret-
ical analysis of the recovery guarantees of the lifted problem
when both unknowns exist in low dimensional subspaces, and
for a generic linear acquisition system. The analysis was later
generalized by Li and Strohmer [34] using the SparseLift
technique to the case where the signal is sparse and exists
on a union of subspaces spanned by an unknown subset of the
columns of a dictionary that has measurement concentration
properties. Along a similar track, Li, Lee, and Bresler [35],
[36] analyzed the identifiability properties of these bilinear
inverse problems. The problem of recovering a sparse signal
from diverse convolutive measurements was also studied by
Ahmed and Demanet [37] under the assumption that the
convolution filters are members of known low-dimensional
random subspaces.

Another convex approach that has been studied in [38]-[44]
recasts blind deconvolution as a linear least squares problem,
thus enjoying lower computational complexity compared to the
lifting approach when certain conditions are satisfied. Finally,
we point out that other nonconvex formulations with recovery
guarantees have been studied in [45]-[48]. A key difference
in this prior work and our model is that, in the terminology
of blind deconvolution, both our signals and our channels
are sparse in the same domain, thus violating most common
assumptions necessary for recovery guarantees. On the other
hand, our algorithm is able to exploit some additional diversity
due to the multi-channel nature of our formulation.

C. Notation

Throughout the text, lower case bold face letters x denote
vectors and upper case bold face letters X denote matrices.
Sets are denoted by calligraphic upper case letters 3 or upper
case Greek letters (2. Italicized bold upper case letters R(-)
refer to functions that act on vector spaces. We use F'; and Fo
to refer to the one-dimensional and two-dimensional Fourier
transform matrices, respectively. The matrix Dy is used to
indicate a diagonal matrix with the vector x on its main
diagonal. Superscripts " and " refer to the transpose and the
Hermitian transpose of matrices, respectively. The function

d(l + e) refers to the Dirac delta function of the variable [
delayed by the quantity e. The ¢; norm of a vector x is defined
as the sum of its absolute values, i.e., [|x]1 = > |x(j)|. The

J
¢35 norm of a vector is equal to the square root of the sum of
squares of the vector, i.e., ||x|2 = /> |x(4)[2.

J

II. PROBLEM FORMULATION
A. Signal model

We consider a two-dimensional radar imaging scenario in
which M distributed antennas are used to detect K targets.
A three-dimensional generalization is straightforward, but we
avoid it here for simplicity of exposition. The targets are
located within a spatial region of interest that is discretized
onagrid Q C R Q) = N, and N = N, x N, with N,
and N, specifying the number of grid points in the horizontal
and vertical directions. We use I € 2 to denote the index of
spatial positions, i.e., of grid-points in 2. We assume that the
grid is sufficiently fine, that off-grid errors are negligible, and
that there exists a single reflector in each grid point.

Let I' C R?|T'| = M be the set of all the spatial locations
of the M antennas. Note that the antennas may be located
anywhere, inside or outside of the grid, and not necessarily
on a grid point. Without loss of generality, we shall assume
that a subset of the antennas act as transmitter/receivers while
the remaining antennas are only receivers. A transmitting
antenna at position » € T' emits a time-domain pulse p(t)
with frequency spectrum P(w), where w = 27 f is the angular
frequency and f € B is the ordinary frequency in the signal
bandwidth B, |B| = F'. The received signal at antenna position
r’ € T due to the scattering of the transmitted pulse by a target
located at position I € ) is given by [49]

Y(w,l,r,7") = P(w)G(w,r, 7", 1)X(1) + Nw), (1)
where X (1) € C is the scene reflectivity at location I, N (w) is

a noise component, and G(w,r,7’,1) is the propagation gain
characterized by

Ilr=tlla+lir' =Ll
c

Glw,r, v’ I)=a(r,r e”™ <, (2

where  a(r,r’,l) is  the attenuation,

. —1 ‘1
Y H2tHT ll2

magnitude

is the phase change due to the transmission
delay, and c denotes the speed of light.

A typical scene comprises of multiple reflectors, at different
locations I € €. If we assume no shadowing and no multiple
reflections, the received data for receiver-transmitter pair is
the sum of (1) over all I in which reflectors are present. To
compact notation, we use x € C to denote the vectorized
reflectivity of the scene at all grid points in €2, with empty
grid points having zero reflectivity. Thus, the received signal
in (1) at all frequencies w can then be written in vector form
y(r,7") € C as follows

y(r,r") = A(r,7")x+n(r,r'), 3)

where A(r,r’) € CI'*¥ includes P(w) and G(w,r,7',1)
and denotes the radar imaging operator corresponding to the



transmitter and receiver pair at positions r and r’, respectively,
and n(r,r’) is the noise component.

B. Imaging under position uncertainty

Using (3) to estimate the scene reflectivity x from mea-
surements y (7, r’) requires exact knowledge of the imaging
operator A(r,r’), and consequently, the antenna positions
r and r’. However, positioning errors commonly occur in
practice, especially in distributed radar settings which rely
on inaccurate global positioning systems or inertial navigation
systems.

To model the effect of position errors, we consider
transmitter-receiver pairs indexed by m, positioned at
(Pm, 7). We denote the measurement vector at the assumed
position of the pair and the corresponding imaging operator
using y., := y("m,7,,) and A, := A(r.,, 7)), respectively.
We use 7, = 7,y + €, and 7/, = v, + e} to denote the
actual positions of the transmitter and receiver, respectively,
where e,, and e/, denote the corresponding positioning errors.

The actual received antenna measurement y,, := y (¥, 7.,,)
observes the scene reflectivity x through the perturbed imaging

~1

operator A, := A(7,,7,), i.e.,

ym = ;&mx + ny,. 4)

Since the operator A,, is unknown, we need to model the
received measurements y,, as a function of A,, and x.

1) Convolution in the measurement-domain: Standard ap-
proaches for radar autofocus use a gain and phase correction in
the measurements’ frequency domain to describe y,,, in terms
of A,, and x. More precisely, let g,, € C¥ be a complex
valued vector corresponding to the Fourier transform of a time-
domain kernel g,, € RM, ie, g,, = F{'g,,. The received
frequency-domain measurements are expressed as

ym =Dg Amx + Ny, (5)

m

where Dg is a diagonal matrix with g, on its diagonal
entries, i.e., modulates the acquired frequency-domain data. In
other words, the position error is assumed to affect the received
signal through a time-domain convolution with g,,. Given
M measurements y,,,,m € {1...M}, the radar autofocus
problem is regarded as a bilinear inverse problem in both the
reflectivity image x and the frequency-domain phase correction
vectors g, for all m.

Notice that the system in (5) has F' equations with F' + N
unknowns, which makes it severely ill-posed. Even in the
case where x is sparse, the problem remains ill-posed since
a general phase correction vector g,, continues to have F
degrees of freedom. In order to make the problem tractable,
the kernels g,,, = FTgm are often assumed to be shift kernels,
which reduces the degrees of freedom to a singe phase angle
per transmitter-receiver pair. However, the approximation that
gm 1s a shift operator is only valid in the far field regime, where
the position error can be approximated by a one dimensional
shift in the down-range direction of the virtual antenna array,
or if the scene only contains a single reflector.

Most work in the self-calibration and radar autofocus lit-
erature considers the measurement-domain convolution model
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in (5) with some important simplifications. For instance, the
convolution kernels g,, are assumed to be approximate shift
kernels and therefore sparse in the time-domain. Specifically,
the simplification allows the kernels g, to be restricted to a
lower d-dimensional subspace spanned by the columns of a
basis matrix B € CF'*¢ d < . Combining all measurements
M 1into a single system of equations, we obtain the following
bilinear inverse problem

y = DgXx +7, (6)
where the over-line notation indicates stacking the M vectors
(or matrices) vertically into a single vector (or matrix), for
Y1 A

and A = :
yuM Ay
this formulation, the vector g belongs to the M d-dimensional
subspace in CM¥" spanned by the basis matrix

example y = . Note that with

B O ...0

|0 B 0

B— € CMFxMd,
0 0 .. B

where 0 is the F' x d all zero matrix. Under this scenario, Ling
and Strohmer [34] proposed the SparseLift problem which
casts the blind deconvolution problem as a convex sparse
recovery program that estimates the sparse matrix X = gx"
in the lifted space of the outer products of g and x. However,
as the number of measurements and the dimensions of the
parameters increase, the SparseLift formulation can quickly
become intractable to solve. Alternatively, Mansour et al. [50]
proposed a stochastic gradient descent approach for solving
the nonconvex variation of (6) in the context of through-the-
wall-radar-imaging.

Other simplifications in the literature assume the operators
A, = A to be fixed for all m. In this case, the measurements
¥ represent multiple measurements of a single vector z :=
Ax observed through diverse channels g,,, i.e.,

ym = ngm- (7)

Existing solutions to (7) range from solving for a low rank
matrix in the lifted space of the variables z and g,, [33]-
[35], [37]; reformulating the problem as a linear least squares
problem [38]-[43]; or utilizing subspace identification tech-
niques [11], [20], [27].

While the simplifications described above can apply to
special cases of autofocusing and self-calibration problems,
they are not necessarily satisfied in general radar autofocus
problems as we demonstrated in the previous section. We
discuss next the image-domain blind deconvolution model and
propose a reconstruction algorithm to solve the problem.

2) Convolution in the image-domain: A key contribution
of our work is moving the convolution with the shift kernel
from the measurement domain to the image domain. More
precisely, let h,,, € RV 5,Nh < min{N,, Ny} be a vectorized
two-dimensional shift kernel of size Nj, x Np. Under the new
model, the received signal of the antenna pair indexed by m
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is written as
g’m :Am (X*hm)+nmv (8)

where * here denotes the two-dimensional convolution of the
image with the kernel.

We prove in Proposition 1 that when the transmitting and
receiving antennas are affected by the same position ambiguity,
the convolution kernel h,, is strictly a spatial shift kernel with
a single nonzero entry equal to one. This situation is prevalent
in systems where the transmitting and receiving antennas are
co-located. The system in (8) may still be underdetermined
with F' equations and N,% + N unknowns. However, given
enough measurements, it should be possible to recover x and
all shift kernels h,,, by utilizing an appropriate regularization
for each. In the next section, we demonstrate the appropriate-
ness of the image-domain convolution in (8) compared to the
measurement-domain convolution in (5) through an illustrative
example.

Proposition 1. Let y,, := A,,X, where X is a radar image
defined over a spatial domain ). Denote by e, and €., the
position ambiguities for the transmitter and receiver antenna
pair indexed by m.

If e}, = en and x is zero valued within a boundary of
width e,, inside ), then there exists a spatially shifted image
() =0l +ep)xx(l),Vl € Q such that y,, = A,,X, where
(1 + ey,) is the two dimensional shift kernel.

Otherwise, if €, = ey, + dy, with ||dy,|l2 < A, then the
approximation y,, ~ A,,X incurs a phase error bounded by
eT WA/ for each frequency w.

Proof: Consider the signal model in equations (1) and
(2), and let y(w) denote the received signal at an arbitrary
frequency w in the bandwidth of the radar pulse. We drop
the subscript m that indexes the receiver for ease of notation.
Ignoring the amplitude attenuation, the received signal at
perturbed antenna positions 7, 7" is given by

Fw) = A(w)x = Ze_iw LS PES LA T x(1), ©)

e

where A(w) is the row of A corresponding to the frequency
w. Recall that ¥ = r+e, 7 = r' +¢€’. When e = €', we have
7=l + 7" =12 =[r+e=Iz+[r +e 12
= lr =2+ [Iv" =12,

where I = I — e. Then the received signal ¥(w) satisfies

W =3 0
_ %eﬂ-w Hr—l\lztllr/—l\\zx(’lv+ e) 10)
le
=2

1eQ

o,
. r—1l r =1
i Ir=Tlig e’ iy

e (5T 4 ) 5 x(D))

where €1 is a displacement of the set {2 by e. Denote by i(lN) =

d(l + e) xx(l) and since the support of x is surrounded by a

zero valued boundary of width e inside {2, we get

) = e
leQ

= Z e

leQ

= A(w)X(0).

i lr =T+l ~Tla _ <
)

_iw%ﬂ” (11)

If ¢’ = e + d for some offset d, ||d||2 < A, then

I = dlls + [l — T2 — A
e P T
I = 0|y + [ = T2 + A

Consequently, the expression in (11) incurs a maximum phase
error equal to e¥“A/¢ when e # e. [ |

In short, Proposition 1 states that when the target image
has a zero-valued boundary of size |e|, and when both the
transmitter and receiver undergo the same spatial perturbation,
then measuring the radar image from the perturbed position
(r,7') is equivalent to measuring the radar image shifted by
—e from the original position (r,r’). On the other hand,
if the transmitting and receiving antennas undergo different
perturbations, then the proposed image-domain convolution
model becomes inexact.

3) An illustrative example: We simulate a radar scene with
three targets inside a region of interest {2 and generate mea-
surements corresponding to three transmitter-receiver antennas
as shown in Figure 3. The blue crosses and red circles indicate
the true positions and the assumed (erroneous) positions of the
antennas, respectively.

Consider first the antennas lying inside the dashed ellipse.
The time-domain measurements corresponding to each of the
antenna positions are shown in the top plot of Figure 4.
According to the model in (5), there exists a convolutional
kernel g shown in the bottom plot of Figure 4 that maps
the red curve corresponding to F'A,,x to the blue curve
corresponding to FY A, x, where F; is the one-dimensional
Fourier transform. However, it is clear from the figure that g
cannot be a simple shift kernel. On the other hand, consider
the reflectivity images in Figure 5 (a) and (b) obtained from
multiplying the received measurement y,, = A, x by the
adjoint of each of the true imaging operator A,, and the
erroneous imaging operator A,,. Notice that there does exist
a simple two-dimensional shift kernel that can be applied to
the true reflectivity image x to produce the measurements
Ym. To better illustrate this fact, we apply the same shift to
two other antennas as shown in Figure 3 and generate the
reflectivity images in Figure 5 (c) and (d) using each of the
imaging operators A, and A,,, respectively. The arcs visible
in Figure 5 (a) and (b) become focused on the shifted target
locations since the resulting virtual array has a wider aperture,
which in turn reduces the null space of the resulting imaging
operator.

Before ending this section, we consider again the image-
domain convolution model described in (8) and expressed in
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Fig. 4: Top: time-domain signals observed by the third set of antennas
shown in Figure 3 and highlighted by the dashed ellipse. The solid
blue line corresponds to the signal observed by the location of the
x. The dashed red line corresponds to the signal observed by the
location of the circle. Bottom: Convolution kernel that maps the red
curve to the blue curve.

the spatial Fourier domain below

Ym =A,(xxh,)+n, (12)
= AmFSDﬂ X+ n,,,

where ﬁm = Fyh,, and X = Fyx denote the two-dimensional

Fourier transforms of h,, and x, respectively, and Dﬁm

is the diagonal matrix with h,, on the diagonal. Notice
that the convolved signal (x *h,,) in (12) is now observed
through a linear operator A,, that has a large null space,
making the variety of convex optimization methods in the
literature developed for blind deconvolution inapplicable to
this scenario. We may consider convexifying problem (12) by
lifting into the variable representation X,,, = hx", such that
Ym = A, C vec(X,,), where the linear operator C maps
the vectorized outer-product matrix vec(X,,) to the output
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Fig. 5: Imaging results obtained by applying the adjoint of the true
imaging operator A in (a) and (c); and the wrong imaging operator
A in (b) and (d) to the received measurements. (a) and (b) show the
imaging result from the single antenna measurement marked by the X
in the ellipse shown in Figure 3. (c) and (d) show the imaging result
from using the antenna positions marked by all three x. The red
circles and white squares indicate the true positions and the shifted
positions of the targets, respectively.

of the convolution (x *h,,). However, the resulting linear
operator A,,,C contains repeated columns and lacks many of
the properties required for successfully recovering the sparse
and rank-one lifted variables X,,.

III. PROPOSED APPROACH

The approach we propose in this paper is based on using
block coordinate descent to compute the radar reflectivity
image x and the spatial convolution filters h,, from noisy
measurements y,,.

A. The global model

We first incorporate into the model in (12) the prior infor-
mation that the image x is sparse and piecewise continuous
and that the kernels h,, are two dimensional shift operators.
Therefore, we use a fused Lasso [51] penalty function Ry(-)
for x, and an ¢; norm regularizer Ry, (h,,) = ||h,,||; for the
convolution filters h,,. The overall optimization problem is
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described as follows

M
ml]{[l Z %Hym - A””FgDﬂmﬁ“% + MRh(h'rn)
xeCY, m=1
N2
h,, e R "
subject to  Rx(x) <,

1"h, =1,Vvme{l... M},

13)
where 1 is the all one vector, and as before, hm = Fs5h,,, and
x = Fyx. We use the regularization parameter u to control the
tradeoff between the sparse prior and the data mismatch cost.
We also use an upper bound 7 to constrain the penalty function
R, (x). We describe the detailed procedure for computing
later in this section.

The fused Lasso regularizer Ry (x) combines the ¢; norm
and the total variation (TV) norm of a signal:

R (x) = [[x[[s +~lIx[l7v, (14)

where the total variation norm ||x||7y is defined as the sum
of the ¢ norms of groups of elements in the gradient vector
s = Ex, where E : CV — C2V is the two dimensional finite
difference operator, such that, the first [V entries of s contain
the horizontal gradient coefficients, and the second N entries
contain the vertical gradient coefficients. Therefore, the total
variation norm of x is expressed in terms of the {5 ; mixed
norm of s as follows:

[xll7v = [Is[l2,1 = Z V()

The fused-Lasso was orlglnally proposed in the regression and
classification literature [S1] for determining sets of adjacent
features that identify a signal class. Its use as a penalty function
promotes the reconstruction of signals that are both sparse and
whose nonzero entries tend to cluster together. In the case of
radar imaging, this is precisely the property that is exhibited
by extended target reflections. Other nonconvex penalties have
been proposed in the literature [52]-[54] that may also be used
to regularize the solution. These penalties typically improve on
£1-based penalties in that they allow for the recovery of less
sparse signals.

T s2(N + ). (15)

The minimization in (13) is nonconvex and our aim is to
find a stationary point to the problem. Therefore, we present
in Algorithm 1 a block coordinate descent approach that
alternates between descent steps for each of x and h,,, for
all m. The shift kernels h,,, are all initialized to the no-shift
kernel h®, an N;, x N;, zero-valued matrix with the central
entry set equal to one. For each descent step, we apply a small
number of iterations of the fast iterative shrinkage/thresholding
algorithm (FISTA) [55] for updating h,,, and a similar number
of iterations of an accelerated projected gradient descent algo-
rithm (FPGD) inspired by FISTA and [56], [57] for updating
x. The optimization subroutines shown in Algorithm 1 use the

data fidelity cost function
M

1.
D(u):= Y o [[Fm — A" ul3, (16)

m=1

where u refers to either the image x or the sequence of
convolution kernels h,,. The forward operator with the respect
to x given the estimates of the kernels h!, at iteration ¢ is
defined as

ty .

Similarly, the forward operator with respect to h,, given the
estimate of the image x! at iteration ¢ is defined as

A(xY) == A, FYDp, Fy. (18)

A FiDp,p: Fo. (17)

Moreover, every descent step of h,,, produces an estimate h,,
which does not necessarily satisfy the shift kernel properties.
Therefore, we use a projector P(h,,) onto the space of shift
kernels which sparsifies h,, by setting to one its largest entry
and setting the remaining entries to zero. When the largest
value is shared among more than one entry, we choose the one
that is closest to the center of the kernel and set the remaining
entries to zero.

Algorithm 1 Block coordinate descent for solving (13)

input: measurements {y,, }»_,, initial guess x°, h®, max-
imum subroutine iterations 7', and parameters 7, fi.
set: j < 1; h% h? « h° for all m

1: repeat

2 AT+ A (h) Y for all m

3: Compute I according to (23) or (25)

4 XJ A fpgd({Am}m 13Rx7{ym}%:177_jvxj71aT)
5: for m < 1 to M do

6: .A"’ — A (x7)

7: hj eflsta(Ah,uRh,ym,h 1,T)

8: hi < P(hJ)

9: j—i+1

10:

until stopping criterion _
return: estimate of the radar image x’

B. fista subroutine for updating h,,

In general, FISTA can be used to solve convex optimization
problems of the form
migD( u) + AR(u), (19)
uec
where D(u) is a smooth data fidelity cost function and R
is a penalty function which can be non-smooth. The iterative
procedure involves a proximal gradient update with a Lipschitz
step size, in addition to a momentum term. The proximal
operator is defined as

proan( z) —argmln{|u z||3 + nR( )} 20)



More recently, it was shown in [58] that the proximal operator
can be replaced by a general nonexpansive denoiser without
affecting the convergence performance of the FISTA routine.

Note that the expression for D in (16) is separable in h,,
for every m. Therefore, the FISTA subroutine for updating h,,,
reduces to a standard non-negative sparse recovery problem
described in Algorithm 2. The function 7 (z;7n) in step
3 of the algorithm is the element-wise non-negative soft-
thresholding operator induced by the ¢; proximal shrinkage
function that modifies the entries z(j),Vj € {1...J} of a
vector z € R” as follows:

= { 05

Finally, we enforce the unit sum constraint by scaling the
vectors u’ as shown in step 5 of the algorithm.

if z(j) > S @1

otherwise.

Algorithm 2 fista subroutine for updating h,,

ll'lpllt Ah?,uRh7Y7n7h ! T
set: gp=1, u®= s =hi!

I: o < inverse of maximum eigenvalue of AHAm
2: fort<—1ton0
3 gt st 1+aAmH(ym—Amt D
4: ul Ty (25 ap)
5: ut T U
1+4+,/114
6 q #
7: b<—u+qt1tl(t—ut_1)
return: u”

C. fpgd subroutine for updating X,

Next, we describe the rules for computing 77 and the fast
projected gradient descent subroutine fpgd for updating x in
Algorithm 3.

Given the updated h,, kernels, our aim at this stage is
to find the image x that minimizes the fused Lasso penalty
term R, subject to the data fidelity condition ||D(x)|2 < o,
where o is an upper bound on the noise level, i.e., ||n|js < o.

n [56], [57], van den Berg and Friedlander developed a
framework for general gauge function minimization with least
squares constraints, where the problem is “flipped” by solving
a sequence of simpler least squares subproblems with gauge
constraints using projected gradient descent. The sequence of
subproblems is determined by specifying the upper bound 7
on the gauge penalty as well as an update rule for computing
the optimal 7.

1) Computing 77 : We follow a similar approach to [57] and
define the following subproblem for updating x

1 ~ m ;
min 5 Z [V — ATx||2 s.t. Ry(x) < 77, (22)

where the upper bound 77 is computed in terms of the residual
Ty = ¥m — A'x and the polar function RS to the gauge as
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S AEwl3 — o, /3 Fnl3
i i . (23)

T T Ry AP,

m

follows

The polar function of the fused Lasso penalty in (14) is given
by
Ry ()

where s = Eu is the gradient vector of u, the {3 o, norm

= i{nax V/52(j) + s2(N +j), and the (o, norm
je{1
||ulloo of a vector u selects its maximum entry in absolute

value.

= max{|| ufec, ¥l sll2,00 }, 24

We initialize the residual vector T,, = y,, and fix it for all
iterations j of Algorithm 1 until x converges to a stationary
point x* at some iteration j*. After that, we update r,, =
Ym — AZx* and the bound

Z HFmH% - 01 /Z ||?m||§
RS (30 ApHT,)

-

=7 4

s Vi>gT 0 (25)

and continue running the iterations of Algorithm 1 until x
converges to a new stationary point or until a maximum
number of iterations has been reached, at which point we
consider the exit condition has been met for our application.
Alternatively, the iterative procedure of Algorithm 1 may be
continued until the sequence of 77 ’s converges.

2) Updating x: The fast projected gradient descent sub-
routine for updating x is summarized in Algorithm 3. The
approach capitalizes on the momentum term used in FISTA
to speed up convergence but differs from FISTA in that the
proximal gradient update is replaced with a projected gradient
update in order to satisfy the constraint Ry(x) < 77. What
remains is to specify the procedure for projecting onto the
constrained fused Lasso penalty.

Proposition 2 shows that the projection of a point z € CV
onto Ry (z) = 7 can be obtained using the proximal shrinkage
of the fused Lasso penalty for an appropriate regularization
parameter A that can be computed using Newton’s method.

Proposition 2. Let z be any point in CV, and denote by
R.(z) = ||z|l1 + 7| zllrv the fused Lasso penalty func-
tion, such that, Ry(z) > 7 for some scalar T. Then the
orthogonal projection of z onto the ball F defined by {u €
CN . Ry(u) = 7} is obtained using the proximal shrinkage
operation proxy.p (z) defined as:

1
u* = arg min §|| u— 7|5+ n*Ry(n),

where n* is a regularization parameter computed using New-
ton’s root finding method.

Proof: The orthogonal projection of z onto F is given by
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the solution to the problem
m&n%” u — z||3 subject to Ry(u) =7
& maxming |u— 2[|3 + n(Rx(u) - 7) (26)
< max ARx(u,) —TA,
n

where u, = prox,p (z). Then, we need to find the 7 that
achieves the root of the function f(7) = Rx(u,)—7. However,
the solution u,, does not have an analytic form. Therefore, we
use the variational expression

R (uy) = [ 20, 1 = [ wyllon+ (| (E2)r, |21 = B uyll2,0m),

where (2, is the support set of u,, and I, is the support set of
the row norm vector of E u,. Consequently, we can evaluate
the gradient of f(n) with respect to n as g = —||uyllo —
v|/Euy,||2,0. Finally, the parameter 7 is updated using Newton’s
£
g

method as n = max 0,7 — } until it converges to n*. W

The proximal shrinkage operation of the combined ¢; norm
and total variation regularizers of x is performed by splitting
the proximal operators into the two stages shown in steps 2
and 3 of Algorithm 4. In the first stage, the soft-thresholding
operator 7 (z'; an) is used to sparsify the signal z!, where

z2(§) — B, if z(j) > B
T (z8) = { 2(j) + B, if z(j) <P (27)
0, otherwise.

A second proximal operator is then applied in step 3 of
the algorithm to enforce the total variation regularization.
We implement this proximal operator using the alternating
direction method of multipliers (ADMM) algorithm [59], [60].

Algorithm 3 fpgd subroutine for updating x

: . M o M j j—1
input: {AZ}_q, Ry, {Ym m=1 T, x5 T

m=

set: go=1, u’=s"=x/"

M
I: a « inverse of maximum eigenvalue of Y. A7HA™
m=1

2: fort < 1to 71 do
3: s+ a Y AT (3, — AT ST

m=1
4 u’ « projp_(z',77)
14+./1+4¢7_
50 g et
_1—1 —
6: St<_ut+¢hqlt (uf — w1
return: u?

IV. PERFORMANCE EVALUATION

In this section we evaluate the performance of our approach
using both simulated data and real experimental radar data.

A. Simulated data

We simulate a radar scene acquired by 32 distributed an-
tennas divided into four arrays as shown in Figure 6. The
true antenna positions are indicated by the x’s whereas the

Algorithm 4 projp : constrained fused Lasso projector

input: z, finite difference operator E, 7, .
set: A\=0,u=z

1: while Ry(u) > 7 do
Compute proximal shrinkage

: v T (za))

5w ang min {317 VI3 +aX B}
Update A

4 g —[lullo—7lEuf20

5. A<+ max {O, A— 7R"(OEJ)_T}
return: u

erroneous assumed positions are indicated by the dots. The
average absolute value of the position error of the antennas
is around 2\ with a maximum error of 3.5\, where ) is the
wavelength of the center frequency of a differential Gaussian
pulse centered at 6 GHz with a 9 GHz bandwidth. The received
signals are contaminated with white Gaussian noise at 4dB,
6dB, 8dB, 10dB, 15dB and 20dB peak signal to noise ratio
(PSNR) after matched-filtering with the transmitted pulse.

15 I I I I I I I
-1 0 1 2 3 4 5 6

Range (m)

Fig. 6: A distributed radar acquisition system with position ambi-
guity. The round dots indicate the assumed but erroneous antenna
positions, while the x’s indicate the true positions.

We generate ten different simulation layouts by randomly
perturbing the positions of the antennas in the four arrays
and constructing the five different target layouts shown in
Figure 7. We compute the reconstructed images using the
fused Lasso regularized least squares problem for both the
ground truth and erroneous antenna positions. We also gen-
erate the imaging result from the measurement-domain blind
deconvolution model in (6) by implementing a solver for a
sparsity regularized version of the linear least squares prob-
lem of [38], [42]. Figure 7 shows the reconstructed images
using the four methods above when the measurements are
contaminated with 15dB PSNR noise. The figure illustrates
that both the measurement-domain blind deconvolution method
and our proposed image-domain blind deconvolution method
are successful at recovering the target image. However, it can
also be seen that our proposed method is much more robust
to noise. For further validation, we present target detection
receiver-operating-characteristic (ROC) curves in Figure 8 that
demonstrate the superior performance of our method under



the different noise levels. In all cases, we set v = 0.5 and
uw= % after empirical trials, and set o equal to the /5
norm of the added noise.

Next, we compare the robustness of our proposed approach
to the state of the art iterative perturbation estimation scheme
of [17]. The method in [17] leverages the sparsity of the radar
scene as well as the proximity between consecutive antenna
positions in order to estimate the antenna perturbations and
consequently improve the reconstructed image quality. Since
the scheme in [17] relies on the antenna proximity to perform
coherence analysis, we use additional measurements at antenna
positions that interpolate the gaps between the x’s for a total of
52 antenna positions per array. We compare the reconstruction
performance in terms of the receiver operating characteristic
(ROC) curves as shown in Figure 9. To generate the ROC
curves, we simulate five different target positions as well as five
different antenna perturbations and noise realizations. It can be
seen from the figure that our proposed method is significantly
more robust to measurement noise even at extreme noise levels.
Finally, we recognize that the detection performance appears to
be best for both methods at the 15dB PSNR level. We attribute
this behavior to the limited number of noise realizations that
have been used in our simulations which happened to be more
favorable in the 15dB PSNR case.

B. Experimental data

We built a radar setup using one horn antenna mounted on
a platform that scans a scene that includes three cylindrical
metal reflectors of diameter 6cm, 6¢cm, and 8.2 cm each, as
shown in Figure 10 (a). The horn antenna was connected to
a signal source, in this case an Agilent 2-Port PNA model
5230A, which measured the scattering parameters of the scene.
The PNA was set to sweep over a frequency range from
1 — 10 GHz with a 30 MHz frequency step and the port
output power was set to 5 dBm. Over this range of frequencies
the horn antennas have approximately a 40 degree main lobe
beam width and a gain near 7 dBi. By moving the antenna
positions and repeating the same experiment, we were able to
collect radar measurements corresponding to four 13-element
virtual arrays for a total of 52 antenna positions. A schematic
of the experimental layout is shown in Figure 10 (b). The
true antenna positions are indicated by the x’s whereas the
erroneous assumed positions are indicated by the dots. The
horn of the antenna faces in the direction of the erroneous
uniform linear array. With a 6 GHz center frequency and
corresponding wavelength A, = 5cm, the maximum position
error was equal to 1.28)\. in the horizontal (range) direction
and 3.43)\. in the vertical (azimuth) direction for array 1.
On the other hand, the position error for arrays 2, 3, and 4
was over 10.8). in the vertical direction. The target locations
are indicated by the black circles inside the region of interest
marked by the dashed red line.

We applied our blind deconvolution method to recover
the radar image with parameters v = 0.5, p = 0.07 and
o = 1.2, which were chosen after an empirical search. The
radar image is discretized into a 101 x 101 image with pixel
resolution equal to \./4 = 1.25cm. We also set the size of the
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convolution filters equal to 49 x 49 pixels which is larger than
the perturbations of array 1 but smaller than the perturbation
of arrays 2, 3, and 4. Figure 11 (a)—(d) shows the reconstructed
images produced by the conventional backprojection scheme
and a standard fused Lasso regularized reconstruction which
do not compensate for the position ambiguity. Notice that
when the wrong antenna positions are used to build the radar
operator, the quality of the reconstructed imaged degrades
significantly. On the other hand, our proposed framework is
capable of generating a focused radar image in Figure 12 and
compensates for the antenna perturbation by computing the
spatial convolution filters shown in Figure 13. It is quite re-
markable how the shift kernels for arrays 1 and 2 are consistent
with the true antenna perturbations. The shift kernels of arrays
3 and 4 are only mildly following the antenna perturbation due
to the large perturbation in the true antenna position compared
to the erroneous assumed positions. Moreover, we notice that
an artifact also appears in the top right corner in Figure 12.
This arises due to both the large displacement of the third and
fourth arrays and the existence of a scatterer in the background
of the scene.

C. Discussion

In this section, we provide a discussion based on empirical
results that demonstrate the convergence of the proposed
algorithm, its robustness to the number of measurements, and
the advantage of the fused Lasso penalty over /1-based sparsity
regularization.

We begin by considering, in Figure1 14, the evolution of

Z H?m - AmXH%

m
iteration number for the fused Lasso solutions given each of
the true and wrong antenna positions. The corresponding cost
function for the blind deconvolution algorithm is given by
1

the data residual as a function of the

3
S ¥m — A7 (hi,)x||3 ) , where the kernels hf, change

acgé)rding to the iteration number. For each of the three plots
in the figure, a least squares problem with constrained penalty
is being solved and the plots demonstrate the convergence in
residual norm of the three algorithms. The jumps in the resid-
ual norms correspond to an update of the constraint parameter
T, after the algorithms converge for the initial values of 7. It
is also clear that the convergence of the blind deconvolution
algorithm is non-monotonic. However, the non-monotonicity
arises from the updates in the shift kernels hf, during the
block coordinate descent. The blind deconvolution algorithm
was approximately five times slower than the other methods
requiring 6193 seconds to converge, compared to 1328 seconds
for sparse recovery given the true antenna positions, and 1095
seconds for sparse recovery given the wrong antenna positions.
The biggest time sink is the formation of the radar propagation
matrix, delay-and-sum matrix, which is too large to be stored
in memory and must be recomposed at every iteration.

Next, we consider the robustness of the proposed approach
to the number of measurements, i.e., the number of perturbed
antennas. To that end, we vary the number of antennas per
array for the same setup as in Figure 6 from two antennas to
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Fig. 7: Ground truth and reconstructed images from noisy measurements at 15dB PSNR. First row shows an illustration of the five different
target layouts used in our simulations. Second row uses fused Lasso reconstruction with the true antenna positions. Third row uses fused Lasso
reconstruction with wrong antenna positions. Fourth row is the solution to the measurement-domain blind deconvolution problem. Last row is
the solution of our proposed method for the image-domain blind deconvolution problem.
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Fig. 8: Target detection ROC curves of the reconstructed images using (a) the proposed method, (b) solving the measurement-domain blind

deconvolution problem, and (c) fused Lasso recovery without compensating for position ambiguity.
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proposed sparse blind deconvolution scheme, and (b) the iterative
perturbation estimation scheme of [17].
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Fig. 10: (a) Photograph of the horn antenna and three cylindrical
targets used in our experimental setup. (b) Layout of the experimental
distributed radar acquisition setup. The round dots indicate the
assumed but erroneous antenna positions, while the x’s indicate the
true positions. The back circles in the top right corner indicate the
target positions.

52 antennas, while keeping the same aperture and array length.
We plot the target detection performance in terms of ROC
curves in Figure 15. As can be expected, the target detection
performance improves as the number of antennas increases and
the perturbations are random. It is interesting to see that the
detection performance mostly saturates around eight antennas
per array.

Finally, we demonstrate the advantage of using the fused
Lasso penalty as a signal prior compared to the standard /4
penalty that has been commonly used in the radar imaging
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Fig. 11: Imaging results for the experimental data obtained from
applying backprojection using (a) the correct imaging operator cor-
responding to the true antenna positions, and (b) the wrong imaging
operator corresponding to the erroneous uniformly spaced positions.
Results obtained using fused Lasso regularized reconstruction with
(c) the correct operator, and (d) the wrong operator.

22 24 26 28 3 a2 34
Range (m)

Fig. 12: Reconstructed image from the experimental data using the
proposed blind deconvolution approach.

literature. In the low noise scenario, choosing the ¢; penalty
as a regularizer for x can be sufficient for separating the true
target reflection from the shift kernels. However, under the
high noise setting, the noise materializes as sparse reflections,
especially when the antennas are perturbed and the coherent
cancellations are inactive. To demonstrate these effects, we
consider the radar measurements under 6dB PSNR and solve
the blind deconvolution problem with each of the ¢; penalty
and the fused Lasso penalty applied to the image x. Figure 16
shows the reconstructed images for each of the signal penalties
for both the true antenna positions and for the wrong positions
with blind deconvolution. It can be seen in Figures 16 (a) and
(b) that the ¢; penalty reconstructions exhibit several artifacts,
and the blind deconvolution algorithm fails to recover the
correct targets. On the other hand, the fused Lasso reconstruc-
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Fig. 13: Recovered convolution filters using the proposed blind deconvolution autofocus algorithm.
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Fig. 14: Change in the cost function of x with respect to the iteration
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Fig. 15: Sensitivity of the target detection to the number of antennas
per array.

tions in Figures 16 (c) and (d) preserve the extended target
reflections and successfully detect the true targets, up to a
global shift.

V. CONCLUSION

We developed a novel image-domain blind deconvolution
framework for recovering focused images from radar measure-
ments that suffer from position ambiguity. Contrary to exist-
ing convex approaches to blind deconvolution, the proposed
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Fig. 16: Reconstructed radar images from noisy measurements at
6dB PSNR using (a-b) ¢; sparsity, and (c-d) fused-Lasso sparsity.
The left column figures show the reconstruction from the true antenna
positions. The right column figures show the reconstruction after blind
deconvolution from the wrong antenna positions.

image-domain convolution model places the linear measure-
ment operator after applying the convolution operation. We
showed that this resulting model is exact in the setting when
the transmitter and receiver antennas are affected by the same
position error. To recover the scene, in the context of this
framework, we also developed a block coordinate descent algo-
rithm that alternates between recovering the target image under
fused Lasso penalty constraints, and estimating the sparse
convolution kernels of the antennas. The performance of the
proposed formulation was shown to be superior to state-of-the-
art methods that have addressed the radar autofocus problem.
Future efforts will address identifying conditions for finding
global optimal solutions for the proposed framework, in line
with the framework used in [61] for phase retrieval. Another
approach to investigate is finding a convex formulation of the



image-domain blind deconvolution problem.
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