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Robustifying the Kalman Filter against Measurement Outliers: An
Innovation Saturation Mechanism
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Abstract— Measurements made on a practical system can
often be subject to outliers due to sensor errors, changes in
ambient environment, data loss or malicious cyber attacks.
The outliers can seriously reduce the accuracy of the Kalman
filter (KF) when it is applied for state estimation. This paper
proposes an innovation saturation mechanism to robustify the
standard KF against outliers. The basic notion is to saturate an
innovation when it is distorted by an outlier, thus preventing it
from impairing the state estimation process. The mechanism
presents an adaptive adjustment of the saturation bound.
The design is performed for both continuous- and discrete-
time systems, provably leading to bounded-error estimation
given bounded outliers. Numerical simulation further shows
the efficacy of the proposed design. Compared to many existing
methods, the proposed design is computationally efficient and
amenable to practical implementation, and also requires neither
measurement redundancy nor extensive manual tuning.

I. INTRODUCTION

Arguably the most celebrated estimation approach, the
Kalman filter (KF) has found use in numerous applications
across the fields of control systems, signal processing, system
health monitoring, navigation and econometrics [1]. Its po-
pularity is partially attributed to the optimality—for a linear
system, it is optimal among all filters when certain Gaussian
noise assumptions are satisfied [2]. However, the perfor-
mance of the KF can be seriously degraded by measurement
outliers. In practice, outliers can come from a diversity of
sources, e.g., unreliable sensors, environmental variability,
data dropouts in transmission, and data falsification attacks
from cyberspace [3–6]. They can easily cause the KF to
deviate from a normal course, at least temporarily, and may
even trigger a complete failure in extreme cases.

How to robustify the KF against measurement outliers has
attracted significant interest from researchers during the past
years. Existing methods can be mainly divided into three
categories. The first category models the measurement noises
using heavy-tailed distributions rather than commonly used
exponential distributions, e.g., the Gaussian distribution as
used in the classical KF, to capture the occurrence of an
outlier. For instance, heavy-tailed Gaussian-mixture [7; 8]
and t-distributed noise models [9] are used to modify the
KF for better robustness. In [10], an outlier is viewed as
a result of measurement noises with variable covariances.
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Assuming the noise covariances to follow an inverse Gamma
distribution, it proposes to add to the KF a procedure of
adaptive identification of the key parameters involved in
the inverse Gamma distribution. Methods of the second
category seek to assign the measurement sample at each
time instant with a weight, in an attempt of downweighting
outlying measurements. In [3], an expectation-maximization
algorithm is used to enable adaptive determination of the
weight for a measurement. The results are generalized in [11]
and extended to the smoothing problem. In [12; 13], a
measurement-weighting-based prewhitening procedure is de-
signed to decorrelate outliers from normal measurements as a
basis for building a robust KF technique. The third category
considers simultaneous state and outlier estimation, which
regards an outlier as an input to the system’s measurement
process. The literature includes a few studies based on
minimum variance unbiased estimation [14–17]. In addition,
Bayesian methods are developed in [18; 19] to achieve joint
state and outlier estimation from a probabilistic perspective.
Despite the usefulness, these robust KF techniques come
with a dramatic increase in computational complexity, due
to the needed iterative optimization or other computationally
expensive procedures. Besides, they often require redundant
measurements in order to either differentiate outliers from
normal measurements or estimate them directly. This, ho-
wever, is not always possible, because a real system often
allows only a limited number of sensors to be deployed.

In addition to the above outlier-robust KF methods, one
can also find some other types of estimation approaches in
the literature capable of suppressing outliers. Among them,
a well-known one is H∞ filtering [20; 21], which considers
outliers as unknown yet bounded uncertainty. However, this
approach may introduce significant conservatism as it per-
forms worst-case estimation by design. A stubborn observer
is developed in [22], which employs a saturation function
in the output injection signal to mitigate the influence of
outliers. This method is not only computationally fast but
also can deal with large outliers.

In this work, we propose to robustify the classical KF with
an innovation saturation mechanism. The innovation plays a
key role in correcting the state prediction in the KF but can be
distorted by outliers. To overcome such a vulnerability, our
mechanism saturates the innovation when it is unreasonably
large in order to suppress the effects of outliers. The design of
the mechanism includes a procedure for adaptively adjusting
the saturation bound to effectively grasp the change of the
innovation. Along this line, we develop the saturated KF
(SKF) approaches for both continuous- and discrete-time



systems. It can be proven that the SKF would produce
bounded-error estimation when the outliers are bounded
in magnitude. Numerical simulation further illustrates the
effectiveness. This work is a generalization of [22] to the
KF. Compared to methods in the literature, the proposed
SKF approaches are structurally concise, computationally
efficient, and robust against even very large outliers, thus
lending itself well to practical application.

This paper is organized as follows. Section II develops
the SKF for linear continuous-time systems and analyzes
its stability. Section III extends the results to discrete-time
systems. A numerical example is provided in Section IV to
illustrate the usefulness of the proposed design. Finally, our
concluding remarks are presented in Section V.

Notation: Notations used throughout the paper are stan-
dard. The n-dimensional Euclidean space is denoted as Rn.
For a vector, ‖ · ‖ denotes its 2-norm. The notation I is
an identity matrix; X > 0 (≥ 0) means that X is a real,
symmetric and positive definite (semidefinite) matrix; for a
symmetric block matrix, we use a star (?) to represent a
symmetry-induced block; the notation diag(. . .) stands for
a block-diagonal matrix. The minimum and maxim eigen-
values of a real, symmetric matrix are denoted as λ(·) and
λ̄(·). Matrices are assumed to be compatible for algebraic
operations if their dimensions are not explicitly stated.

II. SKF FOR CONTINUOUS-TIME SYSTEMS

This section develops the SKF approach for a linear
continuous-time system and then analyzes its stability.

A. SKF Design

Consider the following model{
ẋt = Axt + wt,

yt = Cxt +Ddt + vt,
(1)

where x ∈ Rn is the state vector, y ∈ Rp the measurement
vector, and wt ∈ Rn and vt ∈ Rp zero-mean, mutually
independent noises with covariances given by Q ≥ 0 and
R > 0, respectively. Note that the measurement yt is
subjected to the outlier effects caused by a disturbance
dt ∈ Rm. As often needed for estimation, we assume that
(A,C) is detectable and (A,Q

1
2 ) stabilizable.

Modifying the classical KF, we propose the the following
state estimation procedure:

˙̂xt = Ax̂t +Kt · satσ (yt − Cx̂t) , (2a)

Kt = PtC
>R−1, (2b)

Ṗt = APt + PtA
> +Q−KtRK

>
t , (2c)

where Kt is the estimation gain matrix, and Pt a positive
definite matrix that represents the estimation error covari-
ance. Note that, for the classical KF, the state estimation
is corrected by the innovation (yt − Cx̂t). Its effectiveness,
however, can be compromised if yt is corrupted by an outlier.
To overcome this issue, we draw analogy to the design of

a stubborn observer in [22] and use a saturated innovation
instead, as shown in (2a). Specifically, it is defined as

satσ (yt − Cx̂t) =


...

sat√σi
(yi,t − Cix̂t)

...

 , (3)

where σi > 0, yi is the i-th element of y, and Ci the i-
th row of C. For a variable r, the saturation function is
defined as satε(r) = max {−ε,min{ε, r}}. For (3), one can
approximately view the saturation range [−√σi,

√
σi] as an

anticipated range of the innovation. If falling within this
range, the innovation is considered reasonable and applied
without change to update the state estimation. Otherwise, it
may be affected by an outlier and thus saturated so as not
to mislead the estimation.

It is observed that a fixed saturation bound can be limited
in efficacy of rejecting outliers as it may confuse with an
outlier a certain measurement generating a large innovation,
or vice versa. In addition, it can also be difficult in practice
to select a fixed bound, especially when knowledge about
possible outliers afflicting a system is scarce. The following
procedure is thus introduced to adaptively adjust the satura-
tion bound:

σ̇i,t = µiσi,t + γi (yi,t − Cix̂t)2 , σi,0 > 0, (4)

for i = 1, 2, . . . , p, where µi < 0 and γi > 0. We define Γ =
diag(γ1, γ2, . . . , γp). With (4), σi can dynamically change
according to the innovation (yi,t − Cix̂t). This will enable
an improved discernment between an outlier and a normal
measurement.

Putting together (2)-(4), we obtain the SKF for the linear
continuous-time system in (1). Next, we analyze the its
stability properties.

B. Stability Analysis

Define the state estimation error as et = x̂t − xt. The
dynamics of et is governed by

ėt = Aet −Kt · satσ(Cet −Ddt − vt)− wt. (5)

To proceed further, we define the following matrix

St =

[
Mt − αP−1

t −C>
(
R−1 +W

)
C>(Γ −R−1)D

? 2W WD
? ? U

]
,

where Mt = P−1t QP−1t +C>(R−1−Γ)C, W is a diagonal
positive definite matrix, U a positive definite matrix, and
α > 0 a positive scalar. Furthermore, we recall a well-known
fact [23]: if (A,Q

1
2 ) is stabilizable and (A,C) detectable, Pt

for P0 ≥ 0 in (2c) will approach a unique positive-definite
solution P̄ satisfying

AP∞ + P∞A
> +Q− P∞C>R−1CP∞ = 0.

We also assume wt = 0 and vt = 0 to perform the stability
analysis in a deterministic setting. Hence, Q and R would
be considered as weight matrices rather than covariances.



The following result is obtained about the stability of the
proposed SKF.

Theorem 1: Suppose wt = 0, vt = 0 and ‖dt‖ ≤ δ <∞,
where δ > 0. If there exist P0, W , U , α and Γ such that
S(t) ≥ 0 and 0 < α ≤ −max(µi) for i = 1, 2, . . . , p, then
the estimation error et is upper bounded with

‖et‖ ≤

√
1

c2

[
e−αtV0 +

1

α
(1− e−αt)c1δ2

]
, (6a)

lim
t→∞

‖et‖ ≤
√

c1
αc3

δ, (6b)

where c1 = λ̄(U +D>ΓD), c2 = λ(P−1t ) and c3 =
λ(P−1∞ ).

Proof: We consider using the Lyapunov function

Vt = e>t P
−1
t et +

∑
i σi,t.

The first-order time derivative of Vt along (5) is

V̇t = 2e>t P
−1
t ėt + e>t

d
(
P−1t

)
dt

et +
∑
i

σ̇i,t

= 2e>t P
−1
t [Aet −Kt · satσ (Cet −Ddt)]

− e>t P−1t

(
APt + PtA

> +Q−KtRK
>
t

)
P−1t et

+
∑
i µiσi,t + (Cet −Ddt)>Γ(Cet −Ddt)

= −e>t P−1t QP−1t et + e>t C
>(R−1 + Γ)Cet

− 2e>t C
>R−1satσ (Cet −Ddt)− 2e>t C

>ΓDdt

+ d>t D
>ΓDdt +

∑
i µiσi,t.

Let us define st = Cet −Ddt − satσ(Cet −Ddt). Then,

V̇t = −e>t Mtet + 2e>t C
>R−1st + 2e>t C

>(R−1 − Γ)Ddt

+ d>t D
>ΓDdt +

∑
i µiσi,t.

By [24, Lemma 1.6], we have

−s>t W (st − Cet +Ddt) ≥ 0.

It then follows that

V̇t ≤ V̇t − 2s>t W (st − Cet +Ddt)

= −e>t Mtet + 2e>t C
> (R−1 +W

)
st − 2s>t Wst

+ 2e>t C
>(R−1 − Γ)Ddt − 2s>t WDdt+

+ d>t D
>ΓDdt +

∑
i µiσi,t

= −

etst
dt

> Mt −C>
(
R−1 +W

)
C>(Γ−R−1)D

? 2W WD
? ? U


·

etst
dt

+ d>t
(
U +D>ΓD

)
dt +

∑
i µiσi,t.

If St ≥ 0, we have

V̇ (t) ≤ −αe>t P−1t et − α
∑
i σi,t +

∑
i(µi + α)σi,t

+ d>t
(
U +D>ΓD

)
dt.

If 0 < α ≤ −max(µi), one has µi + α ≤ 0. Then,

V̇t ≤ −αVt + d>t
(
U +D>ΓD

)
dt

≤ −αVt + c1‖dt‖2

≤ −αVt + c1δ
2.

Hence,

Vt ≤ e−αtV0 +
1

α
(1− e−αt)c1δ2.

Furthermore, Vt ≥ c2‖et‖2. Then,

‖et‖2 ≤
1

c2

[
e−αtV0 +

1

α
(1− e−αt)c1δ2

]
,

which implies (6a). When t→∞, we can obtain (6b). •
Theorem 1 shows that, if the system is noise-free and the

outliers are upper-bounded, the proposed SKF can lead to
bounded-error estimation under certain conditions. Meanw-
hile, it is easy to verify that et will exponentially approach
zero as t→∞ if dt = 0.

Remark 1: For the proposed SKF, selection of P0 is
critical to make the condition St ≥ 0 satisfied. Given the
structure of St, it is cautioned that too large a P0 may
bring the risk of divergent estimation. However, note that
Pt is monotonically non-decreasing for P0 = 0 if (A,Q

1
2 )

is stabilizable and (A,C) detectable [23]. Leveraging this
property, we recommend that P0 be set to zero or close to
zero when the SKF approach is to be implemented. •

III. SKF FOR DISCRETE-TIME SYSTEMS

Extending the notion in Section II, this section investigates
the development of SKF for linear discrete-time systems.

A. SKF Design
Consider a discrete-time system{

xk+1 = Axk + wk,

yk = Cxk +Ddk + vk.
(7)

The notations in above are the same as in Section II. Still,
the noises wk and vk are zero-mean, mutually independent
with covariances Q ≥ 0 and R > 0, respectively. We also
assume that (A,Q

1
2 ) is stabilizable and (A,C) detectable

without loss of generality. In addition, we assume that A is
invertible.

For this system, we propose the SKF as follows:

x̂k|k−1 = Ax̂k−1|k−1, (8a)

Pk|k−1 = APk−1|k−1A
> +Q, (8b)

x̂k|k = x̂k|k−1 +Kk · satσ
(
yk − Cx̂k|k−1

)
, (8c)

Kk = Pk|k−1C
> (CPk|k−1C> +R

)−1
, (8d)

Pk|k = Pk|k−1 −Kk

(
CPk|k−1C

> +R
)
K>k , (8e)

where x̂k|k−1 is the one-step-forward prediction of xk, and
x̂k|k the updated estimate when yk arrives to correct the
prediction. In addition, Kk is the estimation gain, and Pk|k−1
and Pk|k the estimation error covariances in the standard KF.
Akin to (2), an innovation saturation mechanism is used to
deal with possible measurement outliers, as shown in (8c).
The saturation bound is dynamically adjusted by

σi,k+1 = µiσi,k + γi
(
yi,k − Cix̂k|k−1

)2
, σi,0 > 0, (9)

for i = 1, 2, . . . , p where −1 < µi < 1 and γi > 0.



B. Stability Analysis

Now, let us consider the stability analysis for the above
SKF. Defining the state prediction error as ek = x̂k|k−1−xk,
its dynamics can be expressed as

ek+1 = x̂k+1|k − xk+1

= Aek −AKk · satσ (Cek −Ddk − vk)− wk. (10)

Before proceeding further, we show some results that will
be needed later. Given that (A,Q

1
2 ) is stabilizable and that

(A,C) detectable, Pk|k−1 will converge to a fixed positive
definite matrix P∞ satisfying

P∞ = AP∞A
> +Q−AP∞C>

(
CP∞C

> +R
)−1

· CP∞A>.

It is also known that Pk|k−1 is upper and lower bounded,
and so is Pk|k. Hence, there should exist an ε > 0 such that
P−1k|k ≤ εI . Then,

P−1k+1|k =
(
APk|kA

> +Q
)−1

= A−>
(
Pk|k +A−1QA−>

)−1
A−1

= A−>
[
P−1k|k − P

−1
k|k

(
P−1k|k +A>Q−1A

)−1
P−1k|k

]
A−1

≤ A−>
[
P−1k|k − P

−1
k|k
(
εI +A>Q−1A

)−1
P−1k|k

]
A−1

= A−>
[
P−1k|k − P

−1
k|kQ̄P

−1
k|k

]
A−1,

where Q̄ =
(
εI +A>Q−1A

)−1
. We also define

Zk =

T1,k − αP−1k|k−1 T2,k − C>W T3,k
? T4,k + 2W T5,k +WD
? ? U

 ,
where W is a diagonal positive definite matrix, U a positive
definite matrix, α > 0 a positive scalar, and

T1,k = C>R−1C + P−1k|kQ̄P
−1
k|k − P

−1
k|kQ̄C

>R−1C

− C>R−1CQ̄P−1k|k − C
>R−1C

(
Pk|k − Q̄

)
· C>R−1C − C>ΓC,

T2,k = −C>R−1 + P−1k|kQ̄C
>R−1

+ C>R−1C
(
Pk|k − Q̄

)
C>R−1,

T3,k =
[
− C>R−1 + P−1k|kQ̄C

>R−1

+ C>R−1C
(
Pk|k − Q̄

)
C>R−1 + C>Γ

]
D,

T4,k = −R−1C
(
Pk|k − Q̄

)
C>R−1,

T5,k = −
[
R−1C

(
Pk|k − Q̄

)
C>R−1

]
D.

In addition, we consider another matrix

T6,k = D>
[
R−1C

(
Pk|k − Q̄

)
C>R−1 + Γ

]
D.

Here, the upper boundedness of Pk|k implies that T6,k is also
upper bounded, with the bound denoted as T̄6.

The following theorem shows the result about the stability
of the prediction error dynamics.

Theorem 2: Suppose wk = 0, vk = 0, ‖dk‖ ≤ δ <∞ and
that A is invertible. If there exist P0|−1, W , U , α and Γ such
that Zk ≥ 0 and 0 < α ≤ 1 −max(µi) for i = 1, 2, . . . , p,
then the estimation error ek is upper bounded with

‖ek‖ ≤

√
1

c2

[
(1− α)kV0 +

1− (1− α)k−1

α
c1δ2

]
, (11a)

lim
k→∞

‖ek‖ ≤
√

c1
αc3

δ, (11b)

where c1 = λ̄(T̄6 + U), c2 = λ(P−1k|k−1), and c3 = λ(P−1∞ ).
Proof: Consider a Lyapunov function

Vk = e>k P
−1
k|k−1ek +

∑
i σi,k.

Using (10), we have

Vk+1 = e>k+1P
−1
k+1|kek+1 +

∑
i σi,k+1

≤ [Aek −AKk · satσ(CAek −Ddk)]
>

·A−>
[
P−1k|k − P

−1
k|kQ̄P

−1
k|k

]
A−1

· [Aek −AKk · satσ(Cek −Ddk)]

+
∑
i µiσi,k + (Cek −Ddk)

>
Γ (Cek −Ddk)

= e>k

[
P−1k|k − P

−1
k|kQ̄P

−1
k|k

]
ek − 2e>k

[
P−1k|k − P

−1
k|kQ̄P

−1
k|k

]
·Kk · satσ(Cek −Ddk) + sat>σ (Cek −Ddk) ·K>k
·
[
P−1k|k − P

−1
k|kQ̄P

−1
k|k

]
Kk · satσ(Cek −Ddk)

+ (Cek −Ddk)
>

Γ (Cek −Ddk) +
∑
i µiσi,k.

Let us define

sk = Cek −Ddk − satσ(Cek −Ddk).

In addition, we have P−1k|k = P−1k|k−1 +C>R−1C, P−1k|kKk =

C>R−1 and K>k P
−1
k|kKk = R−1CPk|kC

>R−1. These rela-
tions can be readily proven. It then follows that

Vk+1 ≤ e>k P−1k|k−1ek − e
>
k T1,kek − 2e>k T2sk − 2e>k T3,kdk

− s>k T4,ksk − 2s>k T5,kdk + d>k T6,kdk +
∑
i µiσi,k.

According to [24, Lemma 1.6], we have

−s>kW (sk − Cek +Ddk) ≥ 0.

It can be obtained that

Vk+1 ≤ Vk+1 − 2s>kW (sk − Cek +Ddk)

= e>k P
−1
k|k−1ek − e

>
k T1,kek − 2e>k (T2 − C>W )sk

− 2e>k T3,kdk − s>k (T4,k + 2W ) sk

− 2s>k (T5,k +WD) dk + d>k T6,kdk +
∑
i µiσi,k

= e>k P
−1
k|k−1ek −

eksk
dk

>

·

T1,k T2,k − C>W T3,k
? T4,k + 2W T5,k +WD
? ? U

eksk
dk


+ d>k (T6,k + U) dk +

∑
i µiσi,k.



If Zk ≥ 0, then

Vk+1 ≤ (1− α)e>k P
−1
k|k−1ek + (1− α)

∑
i σi,k

+
∑
i(µi + α− 1)σi,k + d>k (T6,k + U) dk.

Because 0 < α ≤ 1−max(µi) for i = 1, 2, . . . , p,

Vk+1 ≤ (1− α)Vk + d>k (T6,k + U) dk

≤ (1− α)Vk + λ̄
(
T̄6 + U

)
δ2,

from which one can easily obtain (11a)-(11b). •
Remark 2: For the discrete-time case, it is also recom-

mended that Pk|k−1 is initialized with a small P0|−1, which
can be zero or near zero, in order to make the conditions in
Theorem 2 satisfied more easily. •

Remark 3: It is observed that stability analysis of the SKF
approach for both continuous- and discrete-time systems
involves simplifying assumptions, e.g., zero process and
measurement noises and invertible A (for the discrete-time
case). The zero-noise assumption allows us to perform the
analysis in a deterministic setting. This move makes the
problem more tractable by avoiding the nonlinear, saturation-
function-based transformation of random noise variables,
which will appear otherwise in a stochastic setting and may
obstruct a proof. Yet, this does not imply that the SKF
approach can only be applied to deterministic systems. From
a large number of simulations, we still consistently observe
satisfactory estimation performance when noises exist. An
example in this respect is also shown in Section IV. Besides,
although the assumption that A of a discrete-time system is
invertible sounds strong, it is noticed that a zero-order-hold
discretization of a linear continuous-time system will always
result in an invertible A. How to relax these assumptions
still presents interesting challenges, which will motivate our
further work. •

Remark 4: It is worth pointing out that different strategies
can be developed and used to enable the saturation bound
adjustment. For instance, one can modify (4) as

σ̇i,t = µiσi,t + γi|yi,t − Cix̂t|,

or (9) as

σi,k+1 = µiσi,k + γi|yi,k − Cix̂k|k−1|,

which should come with a different set of stability conditions.
It will hence be interesting to investigate different methods
for adjusting the saturation bound and assessing their perfor-
mance. •

IV. ILLUSTRATIVE EXAMPLE

In this section, we present a numerical simulation exam-
ple to illustrate the effectiveness of the proposed SKF for
discrete-time systems. Consider a discrete-time system as
in (7) with

A =

0.8 0.32 0
0 −0.67 0.5

0.2 −0.1 −0.9

 , B =

 0.4
−1.2
0.9

 ,
C =

[
1.4 0.6 0.3

]
, D = 1.
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Fig. 1: Output measurement profile affected by outliers.

Suppose that the system is excited by a sinusoidal input
uk = 2 sin(kπTs/2) with the sampling period Ts = 0.01
seconds. The noise covariances are given by Q = 10−3I
and R = 10−3, respectively. In addition, the measurement
yk is subjected to occasional outliers, dk, at the fourth, fifth,
sixth, seventh and eighth seconds, with a magnitude of -7.25,
9, -1.5, 7.5 and -11.25. The profile of yk is depicted in Fig. 1,
which shows that the outlier measurements considerably
deviate from the norm.

Both the classical KF and the proposed SKF are applied
to perform estimation for the considered system for a com-
parison. For the SKF, µ = 0.7 and γ = 1. The initial P0|−1
is set as P0|−1 = 0.1I for both filters. The estimation results
are summarized in Fig. 2. It is observed from Fig. 2(a)-2(c)
that the classical KF leads to satisfactory estimation for each
state variable when there is no outlier. However, inaccurate
and quite turbulent estimation results when an outlier arises,
implying risks for practical system monitoring or control. For
the SKF, it demonstrates estimation performance comparable
to the classical KF when the system is running free of out-
liers. When outliers appear, it can still maintain a smooth and
accurate estimation, thanks to the innovation saturation. This
reflects a remarkable effectiveness of the SKF in suppressing
the undesirable influence of outliers. The profile of σ is
illustrated in Fig. 2(d), which shows a dynamic change in
response to the appearance of outliers.

V. CONCLUSION

The KF has gained wide application in numerous fields
as one of the most popular state estimation tools. Its perfor-
mance, however, can be reduced by measurement outliers due
to sensor anomaly, data transmission errors or cyber attacks.
Aiming to enhance robustness of the KF, this paper proposes
to apply an innovation saturation mechanism to the standard
KF. This mechanism saturates the innovation process, which
is crucial for correcting the state estimation, to ensure
that a reasonable correction is applied when outliers occur.
The design is performed for both continuous- and discrete-
time Kalman filtering. Theoretical analysis provides useful
stability properties of the proposed approaches. Numerical



0 1 2 3 4 5 6 7 8 9 10

Time

-6

-4

-2

0

2

4

6

x
ve
rs
u
s
x̂

x1

x̂1 (KF)
x̂1 (SKF)

(a)

0 1 2 3 4 5 6 7 8 9 10

Time

-5

-4

-3

-2

-1

0

1

2

3

4

5

x
ve
rs
u
s
x̂

x2

x̂2 (KF)
x̂2 (SKF)

(b)

0 1 2 3 4 5 6 7 8 9 10

Time

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x
ve
rs
u
s
x̂

x3

x̂3 (KF)
x̂3 (SKF)

(c)

0 1 2 3 4 5 6 7 8 9 10

Time

0

50

100

150

200

250

300

350

400

σ

(d)

Fig. 2: Estimation of the state variables: (a) x1 versus x̂1;
(b) x2 versus x̂2; (c) x3 versus x̂3; change of σ.

simulation further illustrates that the proposed design can
bring about significant robustness against outliers.
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