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Positive Invariant Sets for Safe Integrated Vehicle Motion Planning and
Control

Karl Berntorp, Claus Danielson, Avishai Weiss, and Stefano Di Cairano

Abstract— This paper describes a method for real-time inte-
grated motion planning and control of autonomous vehicles.
Our method leverages feedback control, positive invariant
sets, and equilibrium trajectories of the closed-loop system
to guarantee collision-free closed-loop trajectory tracking. Our
method jointly steers the vehicle to a target region and controls
the velocity while satisfying constraints associated with the
future motion of the obstacles with respect to the vehicle.
We develop a receding-horizon implementation and verify the
method in a simulated road scenario. The results show that
our method generates safe dynamically feasible trajectories
while accounting for obstacles in the environment and modeling
errors. In addition, the computation times indicate that the
method is sufficiently efficient for real-time implementation.

I. INTRODUCTION

Autonomous vehicle guidance and control is commonly
divided into trajectory generation (motion planning) and
trajectory tracking (vehicle control) [1], [2]. Trajectory gen-
eration is often performed using either sampling-based meth-
ods such as rapidly-exploring random trees (RRTs) [3]–
[5] or graph-search methods [6], [7]. Trajectory tracking in
automotive is frequently done by conventional (e.g., PID)
or more advanced control algorithms (e.g., model-predictive
control (MPC) [8], [9]). Viewing the trajectory generation
and tracking problems as decoupled is appealing as it sim-
plifies the problem. This is the dominant approach in the
robotics community [3] and is also frequently used in auto-
motive applications [1]. However, the time scales, dynamics,
and stringent performance and driving requirements that are
present in automotive systems motivate a more integrated
approach to planning and control than in traditional robotics.
It may be advantageous to not consider planning and control
as isolated parts of the autonomous vehicle, but rather as
interacting components. Thus, an important question is how
to connect the motion planning and vehicle control to ensure
performance and safety of the vehicle [8], [10].

This paper builds on our previous work in [11], in which
we developed a method for motion planning and tracking that
enabled lane-change maneuvers be performed on structured
road networks. Our approach in [11] assumed a constant ve-
locity over the planning horizon. It used a graph search over
a finite set of lateral displacements on the road to determine a
trajectory from initial state to desired lane, where a constraint
admissible positive invariant set was associated with each
lateral displacement. that starts inside the set remains in the
set for all future times as long as the setpoint is unchanged.
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This work extends the method to allow variable velocity
within the planning horizon. Our method steers the vehicle
and controls the velocity using state-feedback controllers,
while satisfying input and state constraints associated with
the future motion of the obstacles with respect to the vehicle.
Instead of using lateral displacements, to account for the
velocity variations we define reference paths on the road,
with respect to the local vehicle frame, that are associated
with equilibrium trajectories of the closed-loop system. Our
method uses a graph search over reference paths, to find
a path from the initial state to the desired region, where a
constraint admissible positive invariant set is associated with
each reference path.

We formulate the planning and tracking problem in er-
ror coordinates of the vehicle with respect to the road-
aligned coordinate frame. This reduces the dimensionality
of the graph-search problem to an extent that computational
times become suitable for real-time execution. Compared
to methods for lane-change maneuvers and overtaking in
automotive based on MPC (e.g., [12], [13]), and algorithms
connecting MPC and set invariance for obstacle avoidance in
robotic systems (e.g., [14], [15]), our method does most of
the computations offline. MPC relies on solving constrained
optimization problems in real time, whereas our approach
solves a low-dimensional graph-search problem that accounts
for a model of the closed-loop system and uses predesigned
unconstrained linear quadratic controllers to track the ref-
erence path generated by the graph search. We exploit a
receding-horizon implementation, which provides feedback
both in planning stage and in the vehicle-control stage;
obstacle avoidance and constraint-satisfaction are accounted
for already at the planning stage and the state-feedback
control takes care of the remaining modeling errors.

Notation: We denote vectors in lower-case bold font as x
and matrices with X , and x̂ denotes the estimate of x. A set
O is positive invariant for the system xk+1 = f(xk) if ∀x ∈
O we have f(x) ∈ O. If V (x) is a Lyapunov function for the
stable system xk+1 = f(xk), then any level set O{x ∈ Rn :
V (x) ≤ ρ} is positive invariant since V (f(x)) ≤ V (x),
and we write x0:k = {x0, . . . ,xk}. A graph G = (V, E) is
defined by a set of vertices V and a list of edges E ⊂ V ×V .
Two vertices i, j ∈ V are adjacent if (i, j) ∈ E . A path is a
sequence of adjacent vertices, and two vertices i, j ∈ E are
connected if there exists a path connecting them.

II. MODELING AND PROBLEM STATEMENT

We refer to the automated vehicle as the ego vehicle (EV),
whereas other moving entities in the region of interest (ROI)



of the EV are designated as other vehicles (OV). The OVs
can be either in autonomous or manual mode. The modeling
of the EV is done in the local error coordinates with respect
to a road-aligned frame, with the origin at the start of each
planning step fixed to the middle of the road. We introduce
the following assumptions.

Assumption 1: Positions and velocities of the OVs relative
to the EV at the current time are known.

These can be measured and estimated by cameras, Lidars,
radars, and/or ultrasound sensors attached to the EV. The
future states of the OVs over the planning horizon are not
assumed to be known a priori in the method we propose.

Assumption 2: The road geometry, number of lanes, and
the direction of travel in each lane is known.
These quantities are usually known over the ROI from maps
and onboard cameras.

A. Vehicle Model

We introduce the following assumption on the driving
behavior.

Assumption 3: The planner operates regular driving ma-
neuvers, while emergency braking and aggressive evasive
maneuvers are handled by a separate control system.

Due to Assumption 3, the planner only operates in normal
driving conditions where the lateral dynamics are well rep-
resented by a planar single-track model with lumped right
and left wheels on each axle, where the lateral tire forces
are modeled by the linear approximations Fy,f ≈ Cfαf ,
Fy,r ≈ Crαr, where Cf , Cr are the front and rear lateral
tire stiffness coefficients. The slip angles αf , αr can be
approximated as αf ≈ δ − vy+lf ψ̇

vx
, αr ≈ lrψ̇−vy

vx
, where δ

is the steering angle of the front wheel (a control input), vx
and vy are the longitudinal and lateral velocity of the vehicle,
respectively, ψ̇ is the yaw rate, and lf , lr are the distances
from the center of mass to the front and rear wheel base. We
introduce the lateral dynamics state vector

xlat =
[
ey ėy eψ ėψ

]T
, (1)

where ey and eψ = ψ − ψd denote the lateral position
and vehicle orientation, respectively, in the road-aligned
coordinate frame, and ψd is the angle of the tangent of the
road with respect to the inertial frame.

The model of the lateral dynamics in the error coordinates
(1) can be written as the linear system [16]

ẋlat = Aexlat +Beδ +Deψ̇d. (2)

For the longitudinal dynamics, from Assumption 3 we
use the approximation ax = v̇x + vyψ̇ ≈ v̇x, since in
normal driving conditions vyψ̇ � v̇x. Furthermore, again
motivated by Assumption 3, we assume that the longitudinal
slip is sufficiently small such that the contribution of the
longitudinal force to the lateral motion of the vehicle will be
negligible compared to the lateral force. This results in

ėx = vx − vx,nom, (3a)

mv̇x =
∑
i=f,r

Rτi, (3b)

where ex is the longitudinal position in the road-aligned co-
ordinate frame, with respect to a nominal reference path with
nominal velocity vx,nom, m is the mass, and R is the wheel
radius. We model the total actuation torque τ =

∑
i=f,r τi as

a first-order system from input torque τ to acceleration with
time constant Tc, which gives the longitudinal dynamics

ėx = vx − vx,nom, (4a)

v̇x = −Tc
m
vx + Tcua, (4b)

where we have introduced the control input ua = τR/m,
and the nominal desired velocity vx,nom is assumed constant
over the planning horizon. The combined continuous-time
nonlinear lateral and longitudinal dynamics are described by
(2) and (4), with input vector u = [δ ua]T. Next, we convert
the continuous-time dynamics to discrete time with sampling
period ∆t, which results in the system

xlat,k+1 = A(vx,k)xlat,k + bδk + d(vx,k)dk, (5a)
xlon,k+1 = Fxlon,k + gua,k + h(vx,k)wk, (5b)
ylat,k = Cxlat,k, (5c)
ylon,k = Exlon,k, (5d)

where xlon = [ex vx]T, k is the time index corresponding
to time tk, d = ψ̇d is the disturbance term on the lateral
dynamics and w = vx,nom is the nominal velocity we wish
to track. Eqs. (5c), (5d) model the outputs we wish to plan
a trajectory for and, subsequently, control.

B. System Constraints

We impose various constraints on the vehicle states and
inputs. The input vector is subject to symmetric constraints
on acceleration and steering angle, which can be written as

U = {uk : umin ≤ uk ≤ umax}. (6)

These constraints are determined by the physical limitations
of the vehicle, induced by ensuring that the assumptions
made for deriving (2) hold, or determined as a tradeoff
between the level of aggressiveness and driving comfort.

The output yk = [ylat,k ylon,k]T is constrained as yk ∈
Yk ∈ Rm, where the output set Yk can be time-varying and
is determined from different constraints. The road boundaries
in the road-aligned frame impose constraints on the lateral
position of the EV. The term ψ̇d associated with the curvature
of the road in the global frame, together with bounds on the
allowed lateral accelerations, also give rise to constraints,
and limitations on local lateral velocity error can also be set.
These constraints can compactly be written as

Yk = {yk : Hkyk ≤Kk} (7)

for appropriately defined matrices Hk and Kk. In this paper,
(7) only treats the lateral dynamics, since the longitudinal
dynamics (5b) is completely governed by the input constraint
(6) and the nominal velocity vx,nom, which is a known
parameter, as will be described in detail in Sec. III. The ve-
locity is a setpoint and the overshoot when converging to the
setpoint can be adjusted by tuning of the controller response



to the dynamics (4). In this paper (7) is time invariant and
hence can be determined offline. In general (7) can be time
varying, which, however increases the computational burden
since the invariant set computation depends on (7).

The spatial extent of the collision area of the EV around
the jth OV is denoted with Bj . The longitudinal and lateral
position and the velocity of each OV relative to the EV
are included in the state vector xOV and add further time-
varying constraints on the outputs of the EV. We define
the (deterministic or probabilistic) jth obstacle set at time
step k as D(x̂jOV,k,Bj), which is a function of the predicted
OV state vector and the spatial extent. Denote the planning
horizon with Np. Then, the predicted set of the jth obstacle
for each k ∈ [0, Np] is

Sjk = D(x̂jOV,k,B
j). (8)

The area the motion planner should avoid up until time index
k is computed as the union over all OV trajectory sets (8),

Sk =

M⋃
j=1

Sjk. (9)

C. Problem Statement

The objective of the integrated motion-planning and vehi-
cle control approach developed in this paper is to generate an
input trajectory uk ∈ U for all k ∈ [0, Np] over the planning
horizon Np, such that the resulting trajectory obtained from
(5) satisfies the constraints (7), avoids the obstacle set (9),
and reaches a given goal region Xgoal, that is, xNp

∈ Xgoal.

III. SAFE MOTION PLANNING USING POSITIVE
INVARIANT SETS

The main idea of the method is that we determine regions
on the road where it is safe to travel, each region is
associated with the controller that renders it invariant. Then,
we compute the trajectory to navigate the road by graph
search to find a safe path through the regions with associated
tracking control for computing the closed-loop trajectories.

A. Feedback Control and Offline Graph Construction

In our previous approach using positive invariant sets for
motion planning [11], we generated the paths by connecting
equilibrium points that correspond to lateral positions on
the road, where each equilibrium was associated with an
invariant set. However, to allow variable velocity we must
include velocity information into the equilibria.

We formulate the path-planning problem as a graph-search
problem over the graph G = (V, E) of vertices V and edges
E incorporating the closed-loop dynamics. The planning
horizon Np is constructed with sampling period Ts, where
Ts = `∆t for a positive integer ` is a multiple of the sampling
period ∆t of the vehicle dynamics model. At each time step
k ∈ [0, Np] in the planning phase we define a set of candidate
equilibrium references

R = {rjk}
R
j=1 ⊂ R2, (10)

where each equilibrium reference point

rjk =
[
vjx,nom ējy,k

]T
(11)

is modeled in the local vehicle frame relative to the position
and velocity at the beginning of the planning phase. Note
also that with the sampling time ∆t of the vehicle dynamics,
the nominal longitudinal relative position reference ex,k is
also defined. The set of lateral reference points {ēiy}

ny

i=1

define a grid on the road and includes the middle of each
lane. For each candidate nominal velocity {vjx,nom}

nv
j=1 the

relative motion of the OVs to the EV will be different, and
by checking for feasibility in the set of candidate reference
velocities, the graph search will eventually find a collision-
free closed-loop trajectory for a given reference velocity
vjx,nom. The number of reference paths in (10) is R = nynv
and constitute reference paths over the planning horizon Np.

The motion planner integrates trajectory generation and
trajectory tracking by exploiting state-feedback controllers
for both longitudinal and lateral motion. The longitudinal
dynamics (5b) is linear, and we are interested in tracking
the nominal velocity vnom. We enforce integral action [17]
by adding εx,k = εx,k−1 + ∆tėx to (5b) and design a state-
feedback controller

ax,k = −κT
x (rx,k −

[
xlat,k εx,k,

]T
), (12)

where rx,k = [0 vx,nom 0]T and κx is the feedback gain.
The lateral dynamics (5a) is nonlinear in vx. We linearize the
dynamics (5a) about the nominal reference velocity vx,nom,
which gives a locally linear model

xlat,k+1 = Ãxlat,k + bδk + d̃dk. (13)

We use a local state-feedback controller and again enforce
integral action, εy,k = εy,k−1 + ∆tey, which results in

δk = −κT
y (ry,k − xalat,k) + δffk (14)

for the augmented system with state xalat,k =[
xT
lat,k εy,k

]T
, and where ry,k = [ēy,k 0 0 0 0]T.

The feedforward term δffk corrects for the disturbance dk
due to the curvature of the road. We design the feedback
gain κx to globally asymptotically stabilize vx,nom and
κy to locally stabilize the lateral reference point (11), and
construct a family of positive invariant sets {Oi}no

i=1 ⊆ R5

of states xalat ∈ R5. Each positive invariant set Oi is a
level set of the quadratic Lyapunov function V (xalat − riy)
associated with the system (5a) in closed-loop with the
controller κy . The ith positive invariant set is

Oi = {xalat ∈ R5 : (xalat − riy)TP (xalat − riy) ≤ ρi}, (15)

where P is a symmetric matrix associated with the Lyapunov
function V (·) [11]. Although each reference equilibirum
point riy has an associated positive invariant set Oi, storage-
wise typically no 6= nr since the scale factor ρi is the same
for multiple invariant sets. Since V (·) is a Lyapunov function
associated with the feedback gain κy , any state trajectory that
is initially inside Oi will remain inside Oi for all k > 0 if riy



is unchanged. The scale factor ρi is determined as the largest
value such that Oi does not violate the input constraints
(6) and the static output constraints (7). Determining ρi is
in general a nonxonvex optimization problem. However, for
our locally linear dynamics (5a) and constraints (6), (7), the
problem has a closed-form solution [18].

Each vertex v ∈ V of the graph includes the lateral
equilibrium point, the state-feedback controller that stabilizes
the equilibrium point, and the safe set associated with the
state-feedback controller. The edges E indicate which of the
setpoints are connected by safe trajectories. An equilibrium
point ry,i with positive invariant set Oi is connected to ry,j
with positively invariant set Oj in ` time steps (i.e., in one
planning step) if Oi is contained in Ō`j [19],

Oi ⊆ Ō`j , (16)

where

Ō`j = {x ∈ R5 : (xalat − rjy)TP̄ (xalat − rjy) ≤ ρj}, (17)

where P̄ = (Āa,`)TPĀa,`, Āa = Ã − bκy . Evaluating
(16) exactly requires solving a nonconvex quadratically-
constrained quadratic program. However, a sufficient con-
dition for (16) to hold is

(riy − rjy)TP̄ (riy − rjy) ≤ ρj − ρi
∥∥P−1/2ĀaP 1/2

∥∥
F
, (18)

where ‖·‖F is the Frobenius norm. Checking for connectivity
using (18) is not exact, however, conservative.

Remark 1: We focus on the lateral dynamics when design-
ing the invariant sets. For driving maneuvers where Assump-
tion 3 holds, the longitudinal dynamics are approximately
decoupled from the lateral dynamics, as indicated by (5b).

B. Obstacle Avoidance

The connectivity test (18) between equilibrium points is
done offline and in absence of any OVs. While it is possible
to change online the size of ρi and ρj in (15) and (17),
respectively, depending on the obstacle constraints Sk, the
computational cost will be too high for implementation on
an embedded platform for automotive applications. Instead,
during runtime, we check for intersection of the invariant
sets with the obstacle set (9),

Oi
⋂
Sk 6= ∅. (19)

In practice, we introduce a safety time of Ns time steps and a
lateral safety margin w to account for sensing and estimation
errors with respect to the OVs. The equilibrium point ri
associated with Oi is marked as unsafe and eliminated from
the graph search between k−Ns and k+Ns. As we traverse
the different reference velocities, the relative motion of the
OVs will be different and therefore different vertices will in
general be connected for the different reference velocities.
The method is compatible with motion-prediction and threat-
assessment methods proposed in literature [20].

C. Online Graph Search and Reference Tracking

With all edges between the vertices determined, we con-
struct a weighted adjacency matrix M between all vertices
in V . If two vertices are not connected, the corresponding
edge weight is set to ∞. A connection between two vertices
is indicated by setting the edge weight to the cost of
moving between the different vertices. For instance, edges
corresponding to transitions between the middle of either of
the lanes might have a low cost, whereas transitions close to
the road boundaries may have larger cost. Because of time-
causality and size limitations of the positively invariant sets,
the matrix will be upper-block diagonal and very sparse.,

We employ Dijkstra’s algorithm for the graph search in
our numerical experiments. Starting with the first candidate
velocity reference v1x,nom, we traverse the set of candidate
velocities until a solution has been found. When the graph
search is completed and the reference path has been found,
this path is submitted to the controllers (12), (14) for
execution.

IV. IMPLEMENTATION CONSIDERATIONS

The size of the invariant sets will change with the velocity
setpoint we linearize around to get the linear model (13). In
practice, we design a lateral controller for a subset of the
range of velocities such that connectivity and stability in this
subset is guaranteed.

In the adjacency matrix M it is possible to encode [19]
a minimum length of the planning horizon. The nominal
planning horizon is Np long, but it may be possible to reach
the target region Xgoal in fewer steps, and due to the stage
costs associated with traversing the nodes, the graph search
will favor solutions that have fewer steps. As solutions that
are too short may be overly aggressive for passengers, we
encode in M that the path must be at least Nm steps long,
where 0 < Nm ≤ Np.

The vehicle model (2) assumes knowledge of the distur-
bance ψ̇d, which has to be estimated. The disturbance can be
written as ψ̇d(t) = vxc(t), where c(t) is the road curvature,
which is an unknown function of time. However, it is possible
to point-wise estimate the curvature given data points of
either the road boundary or the lane markers, or from a map.

The computed steering inputs and corresponding trajec-
tory are implemented as a receding horizon strategy. The
computed trajectory is Np steps long but is only applied for
a portion Nc of the whole plan. This ensures that feedback
is not only imposed during the trajectory tracking but also
in the planning stage.

The vehicle dynamics sampling period ∆t is typically
determined by the update rate of the sensors or the available
computing power and can be considered independent of
the other parameters. However, nr and Ts that indicate the
number of setpoints and the sampling-period in the planner,
respectively, are tightly connected. For instance, a small Ts
means that a large number of setpoints nr is needed.

The proposed algorithm is summarized in Algorithm 1.
Most of the computations are done offline. Online, the most
demanding task is to perform the prediction of obstacles



(Line 4) and the intersection test (Line 5). Line 5 scales
linearly with the number of obstacles and the collision checks
are quadratic in the output dimension. The graph search
(Line 7) is computationally fast, since the graph matrix M is
upper block-diagonal and sparse and applying standard state-
feedback control (Line 14) is computationally inexpensive.
The computational cost depends on the number of obstacles
in the region of interest and how many reference velocities
the method needs to traverse before finding a solution.

Algorithm 1 Proposed method
Offline: Compute Oi using (15) ∀i ∈ [1, . . . , nr] for
different velocity setpoints and construct adjacency ma-
trices M by determining (16) using (18).

1: Input: x̂0, {x̂ov,0}Mj=1, Xgoal.
2: Predict obstacle set (9).
3: for v ∈ {vix,nom}

nv
i=1 do

4: Closed-loop prediction of EV using v.
5: Check for intersection using (19) and remove

corresponding edges in M .
6: Determine the setpoint x0 belongs to.
7: Perform a graph search to find a reference path

r̄0:N , N ∈ [Nm, Np], where rN ∈ Xgoal.
8: if Solution found then
9: Break loop.

10: end if
11: end for
12: for k = 1 to Nc do
13: Estimate ψ̇d.
14: Control the vehicle using (12), (14) with setpoint r̄k.
15: end for
16: Go to Line 1.

V. SIMULATION STUDY

We consider an autonomous vehicle (EV) that travels
on the outer ring test track of the Japanese Automotive
Research Institute. In the simulation, the obstacle set is
predicted by designing lane-tracking controllers that control
the OVs assuming a fixed lane over the planning horizon
Np. The desired velocity is vx = 20 m/s. Hence, this is
the first candidate reference velocity the planner tries to find
a collision-free trajectory for. The gridding of the velocity
setpoints is done in decrements of 2 m/s down to 10 ms/s,
that is, using five reference velocity setpoints. The goal
region is chosen such that a path is considered to have
reached the region if the endpoint is at least Nm steps long
and is in the middle of either of the lanes.

The planning is done in the road-aligned, local coordinate
frame. However, in the simulation, the computed control
inputs are used in a vehicle modeled in the global coordinate
frame. Furthermore, the disturbance ψ̇d due to the road
curvature nor the true motion of the vehicles are known to
the planner. The disturbance is estimated online by fitting
a circle segment to the data points. The obstacle set (9) is
determined from obstacle predictions in the local frame, by
using the position and velocity of each OV at time instant
corresponding to the beginning of each planning phase. The

TABLE I
PARAMETER VALUES USED FOR THE SIMULATION STUDY.

Parameter value Unit Description

∆t 0.1 s Sampling period vehicle dynamics
Ts 0.5 s Sampling period in planner
Np 20 (10) steps (s) Nominal planning horizon
Nm 10 (5) steps (s) Minimum planning horizon
Nc 5 (0.5) steps (s) Control horizon
nr 36 - # road discretization points

simulation therefore also gives indications on how robust is
the planner to these uncertainties.

Table I shows the algorithm parameters. These values
correspond to a weighted adjacency matrix M ∈ R758×758,
out of which approximately 3100 elements are nonzero (i.e.,
about 0.5%). We design one set of state-feedback controllers
(12), (14) for the entire range [20, 10] of reference velocities
and construct the adjacency matrix M using the connectivity
test for v5x,nom = 10 m/s such that we ensure connectivity
for the same vertices for all vjx,nom > v5x,nom.

Fig. 1 shows five snapshots of a situation where the
EV catches up with two slower moving OVs, one in each
lane. Eventually, there is no collision-free trajectory for the
preferred velocity v1nom, so the planner tests the different
candidate velocities in decreasing order until a solution is
found. In the figure, the time at which switching between
setpoints occur can be seen in the second to fourth subplots.
The positive invariant sets projected on the road are shown
in green. When the switching between different setpoints is
initiated (e.g., the second plot from the left), the contraction
of the invariant sets due to (18) is noticeable. Fig. 2 displays
the velocity profile for the time period corresponding to the
snapshots. The time instants when the different snapshots
occur are indicated by dashed lines.

Fig. 3 shows the computation time for the planning steps
across the scenario. The nominal computation time is on
average less than 25 ms. A slight increase can be seen
for the time period when the velocity is decreased (c.f.
Fig. 2), however, the increase is minor. The complexity grows
linearly with the number of elements in the adjacency matrix
[11] and the number of obstacles.

VI. CONCLUSION

This paper presented a method for integrating motion plan-
ning and vehicle control by exploiting positive invariant sets.
The method enforces the vehicle to satisfy constraints on the
vehicle motion as well as avoiding collisions. The method
uses a graph search over lateral displacements on the road for
different reference velocity setpoints, and then executes state-
feedback controllers combined to track the reference path
resulting from the graph search. The simulation study showed
that the method can safely navigate the vehicle through tight
passages where combined slow-down and lane change is
needed, and the online computation requirements are modest.
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Fig. 3. Computation time over the time steps for the driving scenario
(Fig. 1). The implementation is in MATLAB on a 2014 i5 2.8GHz laptop.
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