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Assignment and Control of Two-Tiered Vehicle Traffic

Gustav Nilsson Piyush Grover Uroš Kalabić

Abstract— This work considers the assignment of vehicle
traffic consisting of both individual, opportunistic vehicles and
a cooperative fleet of vehicles. The first set of vehicles seek
a user-optimal policy and the second set seeks a fleet-optimal
policy. We provide explicit sufficient conditions for the existence
and uniqueness of a Nash equilibrium at which both policies
are satisfied.

We also propose two different algorithms to determine the
equilibrium, one centralized and one decentralized. Further-
more, we present a control scheme to attain such an equilib-
rium in a dynamical network flow. An example is considered
showing the workings of our scheme and numerical results are
presented.

I. INTRODUCTION

The eventual introduction of autonomous vehicles onto

roads will result in new possibilities for technological impact

in traffic route planning. Already today, due to the number

of connected devices and navigation solutions, many route

decisions are made according to the solution of an optimiza-

tion problem. While such schemes aim to optimize overall

traffic flow and increase the utility for drivers and passengers,

new challenges arise with the increase in optimal decision-

making.

A classical example of optimal route planning decreasing

utility is called Braess’s Paradox. The paradox is that, given

that each user tries to follow their own optimal path, the

overall equilibrium may not be optimal from a system per-

spective, i.e., if a system planner controls all users’ choices,

the planner can decrease overall delay in the system better

than the collective of users. The loss of optimality here is

often refereed to as price of anarchy [1].

In this work, we study the assignment of traffic where the

network includes the operator of a large fleet of autonomous

vehicles among many ordinary drivers. This situation may

fast become a reality, as the tenth principle of the Shared

Mobility Principles for Livable Cities [2] states,

10. We support that autonomous vehicles (AVS)

in dense urban areas should be operated in only

shared fleets.

The restriction to autonomous traffic to be operated solely

by fleets would incentivize the need for novel methods of

traffic control for use in networks with fleets.
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The traffic assignment problem for different classes of

vehicles with different objectives has been studied previ-

ously. In [3], the authors study the equilibrium between user-

optimal, i.e., anarchistic, users and system-optimal users, i.e.,

those who minimize the total delay for all users in system.

In [4], the authors study existence and uniqueness of an

equilibrium for three different classes of users: user-optimal,

system-optimal, and fleet-optimal,1 i.e., those who minimize

the delay for their own fleet. If one is able to control a certain

fraction of vehicles, one can do so in such a way as to ensure

system optimality of the equilibrium. This can be modeled

as a Stackelberg game and in [5], a heuristic algorithm

is introduced to compute the optimal actions which, when

followed by enough of a proportion of vehicles, nearly results

in system optimality.

In [6], the authors show that a user-optimal flow assign-

ment can be implemented in distributed congestion-avoiding

feedback controllers in a dynamical flow network for a single

class of vehicles. In [7], the authors then show that those

local routing polices can be updated through feedback of the

given network state and introduce a sufficient condition for

stability of the dynamical system according to these updates.

In this work, we study a two-tier assignment problem,

where one class of users seeks user optimality, i.e., minimizes

their own travel time in the network, while the other class

of users seeks fleet optimality, i.e., minimizes the total travel

time for the entire fleet. We provide simpler conditions for

uniqueness of equilibrium than that of [4] and introduce

two different algorithms to obtain the equilibrium, one cen-

tralized with proven convergence properties and the other

decentralized. We also show the interaction between the two-

tier assignment problem and a multi-commodity dynamical

network flow model, with provable stability properties in the

case of acyclic networks. By having this linkage between the

static assignment problem and the dynamical network flow

problems, we allow for further development of feedback con-

trollers in order to improve the robustness of the assignment.

Due to paper length limitations, we have omitted proofs of

the latter results.

The rest of the paper is structured as follows. In Section II,

we present the traffic model and optimization problems. In

Section III, we study the assignment problem and present

sufficient conditions for existence and uniqueness of the

equilibrium along with two algorithms for computing the

assignment. In Section IV, we show the relationship between

delay functions and flow-density functions and propose a

dynamical model. In Section VI, we present conclusions.

1Also called Nash-Cournot-optimal
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Fig. 1. Example of a traffic network

A. Notation

The set of real numbers is denoted by R. We let G =
(V , E) denote a graph, with node set V and link set E . For

a directed link e = (i, j) ∈ E , let σ(e) = i ∈ V denote its

tail and τ(e) = j ∈ V its head. The set of incoming links

to a node is given as E−
v := {e ∈ E | τ(e) = v} and the set

of outgoing links is E+
v := {e =∈ E | σ(e) = v}. The norm

‖·‖ is the vector 2-norm.

II. PROBLEM FORMULATION

A traffic network, modeled as a directed graph G = (V , E),
is a network of traffic flows along links e ∈ E , representing

unidirectional roads, and nodes v ∈ V , representing junctions

between roads; a schematic is shown in Fig. 1. The link set

E is given as an ordered set of links E = {ei}
ne

i=1 and the

node set V is given as an ordered set of nodes V = {vj}
nv

j=1.

The graph topology, which defines the connections between

nodes and links, can be represented by using the node-link

incidence matrix B ∈ R
nv×ne where,

Bji =











1 if σ(ei) = vj ,

−1 if τ(ei) = vj ,

0 o.w.

In this work, we consider a traffic network facilitating two

types of traffic. The first type, which we call Class A, consists

of vehicles optimizing a user-optimal policy, i.e., vehicles

minimizing their marginal delay. The second type, which we

call Class B, consists of vehicles optimizing a fleet-optimal

policy, i.e., vehicles minimizing the total delay of the fleet.

The flows of Class A and Class B vehicles along each edge

are denoted by xA, xB ∈ R
ne , respectively, where the entries

of xA and xB are identified with the edges of G with the

same ordering as the set E . Exogenous inflows and outflows

for Class A and Class B vehicles are given as λA, µA ∈ R
nv

and λB, µB ∈ R
nv , respectively, where the entries of λA,

µA, λB , and µB are nonnegative and are identified with the

nodes of G with the same ordering as the set V . We further

assume that the exogenous flows are feasible, i.e., there exist

xa, xb ∈ R
ne such that Bxa = λA−µA and Bxb = λB−µB.

Definition 1: Each link ei ∈ E is identified with a delay

function di : R → R, mapping the flow xA
i or xB

i to a delay

value. Delay functions are assumed to be twice continuously

differentiable, strictly increasing, and nonnegative at 0.

Class A and Class B vehicles optimize different policies.

Class A vehicles minimize the amount of time taken for each

vehicle to arrive at its destination given the current state of

traffic. In this case, the assignment of traffic flow along each

link is given as the solution to the following optimization

problem [8],

min
xA

gA(xA, xB) :=

ne
∑

i=1

∫ xA
i

0

di(s+ xB
i )ds , (1a)

subject to BxA = λA − µA , (1b)

xA ≥ 0 . (1c)

Class B vehicles minimize the average amount of time taken

for each vehicle to arrive at its destination given the current

state of traffic. In this case, the assignment of traffic flow

along each link is given as the solution to the following

optimization problem [8],

min
xB

gB(xA, xB) :=

ne
∑

i=1

xB
i di(x

A
i + xB

i ) , (2a)

subject to BxB = λB − µB , (2b)

xB ≥ 0 . (2c)

We study the assignment of traffic flow based on the

solution of (1) and (2), the optimal behavior of vehicles

when the dynamical traffic network is at equilibrium. Based

on this assignment, it becomes necessary to route the traffic

to achieve the desired flows. The assignment and routing

scheme is presented in Fig. 2. In the figure, the assignment

block computes the optimal traffic flows xA∗, xB∗ ∈ R
ne

based on delay functions di and exogenous flows. Once the

assignment is computed, the desired inflows are achieved by

employing a routing policy which routes the fleet of Class B

vehicles, denoted GB , in the presence of a routing policy of

the opportunistic behavior of Class A drivers, denoted GA.

Assignment GB

GA

Dynamical

flow network

λ, µ, d(x) xB∗

xA∗

Fig. 2. Conceptual schematic of the assignment and control, note that
Class A vehicles are assumed to find the optimal assignment on their own

III. ASSIGNMENT

The solutions to (1) and (2) depend on each other, so it is

of interest to investigate the properties of equilibrium values

xA∗ and xB∗ which solve both equations simultaneously.

In the following result, we provide sufficient conditions

for the existence and uniqueness of an equilibrium, which

depend solely on the properties of the delay functions di.

The proof relies on results of [9], which provides conditions

for existence and uniqueness of equilibria in convex games.

The optimization problems (1) and (2) are both convex under

certain choices of the delay functions di. Here, we present

the requirements imposed on di which imply existence

and uniqueness. We begin with a sufficient condition for

existence.



Proposition 1: Assume that

2d′i(x
A
i + xB

i ) + xB
i d

′′
i (x

A
i + xB

i ) ≥ 0, (3)

for all ei ∈ E and all feasible xA, xB ∈ R
ne . Then there

exist xA∗ and xB∗ such that xA∗ is a solution to (1) given

xB = xB∗, and xB∗ is a solution to (2) given xA = xA∗.

Proof: Theorem 1 of [9] states that there exists a

solution to any concave (resp. convex) game. A game is

concave (resp. convex) if the cost functions are concave

(resp. convex) and individual constraints of every strategy

are convex, i.e., the constraints can be written in the form

h(x) ≥ 0 where every h is a convex function. Since the

constraints are convex in both (1) and (2), all that is left to

show is that the cost functions are both convex.

In the case of (1), the cost function is convex because di is

monotonically increasing for all i = 1, . . . , ne, implying that

its integral is monotonically increasing and therefore convex.

In the case of (2), convexity follows from (3).

Results for uniqueness are less straightforward to obtain

than results for existence. We proceed by providing a suffi-

cient condition for uniqueness, which is a generalization of

Proposition 4 of [4], in which the authors require di(xi) to

be linear and strictly monotone.

Proposition 2: The pair xA∗ and xB∗ of Proposition 1 is

unique if di satisfies the following relationship,

2d′i(x
A
i + xB

i ) > xB
i d

′′
i (x

A
i + xB

i ) , (4)

for all ei ∈ E and feasible xA > 0 and xB > 0.

Proof: Let S(xA, xB , yA, yB) = gA(xA, yB) +
gB(yA, xB) and let,

h(xA, xB) =

[

∇xAgA(xA, xB)
∇xBgB(xA, xB)

]

,

be the pseudogradient of S. Since di is differentiable for any

i = 1, . . . , ne, the pseudogradient is given by,

h(xA, xB) =





















d1(x
A
1 + xB

1 )
...

dn(x
A
n + xB

n )
d1(x

A
1 + xB

1 ) + xB
1 d

′
1(x

A
1 + xB

1 )
...

dn(x
A
n + xB

n ) + xB
n d

′
n(x

A
n + xB

n )





















.

Let H be the Jacobian of h. It is equal to,

H =

[

A B

C D

]

,

where,

A = B = diag
(

d′i(x
A
i + xB

i )
)ne

i=1
,

C = diag
(

d′i(x
A
i + xB

i ) + xB
i d

′′
i (x

A
i + xB

i )
)ne

i=1
,

D = diag
(

2d′i(y
A
i + xB

i ) + xB
i d

′′
i (y

A
i + xB

i )
)ne

i=1
.

Now let,

F = H +HT =

[

2A A+ C

A+ C 2D

]

=

[

2A D

D 2D

]

.

d1(x1)

d2(x2)

λA, λB

Fig. 3. The network of Example 1

According to Theorem 7 of [9], S is strictly diagonally

convex if H is positive definite for all feasible xA > 0
and xB . Furthermore, according to Theorem 3 of [9], if S

is strictly diagonally convex then the equilibrium xA∗ and

xB∗ is unique. We now show that F is positive definite by

considering its Schur complement F̄ = 2D+DT(2A)−1D =
2D+(2A)−1D2. The Jacobian is positive definite if and only

if F̄ and A are positive definite. The matrix A is positive

definite because di is strictly increasing. The matrix F̄ is,

F̄ = diag

(

4d′i(x
A
i + xB

i ) + 2xB
i d

′′
i (x

A
i + xB

i )

−
(2d′i(x

A
i + xB

i ) + xB
i d

′′
i (x

A
i + xB

i ))
2

2d′i(x
A
i + xB

i )

)ne

i=1

,

= diag

(

2d′i(x
A
i + xB

i )−
(xB

i d
′′
i (x

A
i + xB

i ))
2

2d′i(x
A
i + xB

i )

)ne

i=1.

,

and its elements are positive when (4) is satisfied.

We now consider the special case where the delay func-

tions are given by a linear relation to the power of a positive

exponent. Let,

di(xi) = (αixi + βi)
ci , (5)

where αi > 0, βi ≥ 0 and ci > 0 are parameters. We

introduce this form of delay function because it is useful in

modeling the behavior of traffic flow in the free-flow regime,

where the flows do not saturate. In the sequel, we will show

how these delay functions can recover the free-flow regime

of the fundamental diagram.

Corollary 1: Suppose the delay functions take the form

in (5) with αi, ci > 0 and βi ≥ 0 for all ei ∈ E . The

solution exists and is unique if ci ≤ 3.

We have thus far shown that an equilibrium solution to

the optimization problems (1) and (2) always exists and

given conditions that guarantee this equilibrium to be unique.

We now present a case in which a slight modification no

longer guarantees uniqueness of the equilibrium solution.

Specifically, if we introduce a capacity constraint on the flow

of each node, then uniqueness may not be guaranteed since

capacity constraints are concave constraints.

Example 1: Consider the network of Fig. 3 with d1(x1) =
x1 and d2(x2) = 2x2 and impose a constraint on the flow

capacity of link 1 so that xA
1 + xB

1 ≤ 1. Then xA = (0, 1),
xB = (1, 0) is an equilibrium because the minimizer of

xB
1 d1(x

B
1 ) + xB

2 d2(1 + xB
2 ) = xB2

1 + 2xB
2 (1− xB

2 ) is (1, 0)
and the minimizer of the other optimization must satisfy

0 ≤ xA
1 + xB

1 = xA
1 + 1 ≤ 1, implying that xA

1 = 0
and therefore xA = (0, 1). Furthermore, xA = (1, 0),



xB = (0, 1) is also an equilibrium because the minimizer

of
∫ xA

1

0 d1(s)ds +
∫ xA

2

0 d2(s + 1)ds = 1
2x

A2
1 + xA2

2 + 2xA
2

is (1, 0) and the minimizer of the other optimization must

satisfy 0 ≤ xA
1 + xB

1 = 1 + xB
1 ≤ 1, implying that xB

1 = 0
and therefore xB = (0, 1).

In the sequel we present two algorithms, one centralized

and one decentralized, to determine traffic equilibrium.

A. Algorithms for determining traffic assignment

We propose two algorithms for determining the equilib-

rium flows xA∗ and xB∗. The first is a centralized algorithm

based on the idea that the optimal flow assignment for

each class of vehicles are updated simultaneously in the

constraint-admissible, opposite direction of the gradient of

the objective functions. This is done by keeping the total

flow in the system the same as an initial assignment, while

making sure that the flow on each link remains non-negative.

1) Centralized algorithm: We begin by defining the La-

grangian corresponding to the optimization problem (1),

LA(xA, xB , γA, κA) = −gA(xA, xB)+

(γA)T (BxA − λA + µA) + (κA)TxA ,

where γA ∈ R
nv and κA ∈ R

ne . We define LB analogously,

LB(xA, xB , γB, κB) = −gB(xA, xB)+

(γB)T (BxB − λB + µB) + (κB)TxB .

The algorithm we propose updates the flow assignments by

following the gradients of the Lagrangians,

ẋA = ∇xALA = −∇xAgA(xA, xB) +BTγA + κA,

=: fA(xA, xB, γA, κA) , (6)

ẋB = ∇xBLB = −∇xBgB(xA, xB) +BTγB + κB,

=: fB(xA, xB, γB, κB) . (7)

The values of γA, γB , κA, and κB are chosen according to

the optimization,

(γA, κA) = argmin
κA≥0

‖fA(xA, xB, γA, κA)‖2 , (8)

(γB, κB) = argmin
κB≥0

‖fB(xA, xB, γB, κB)‖2 , (9)

subject to the constraint that κA
i = 0 and κB

i = 0 whenever

xA
i > 0 and xB

i > 0, respectively.

Proposition 3: Given feasible initial states xA(0), xB(0),
i.e., Bxk(0) = λk − µk and xk(0) ≥ 0 are satisfied for

k = A,B, the algorithm (6)-(9) converges to an equilibrium.

2) Decentralized algorithm: We now present a decentral-

ized algorithm for obtaining traffic assignment equilibrium.

The benefits of decentralized algorithms are several. Since

traffic networks are often large-scale networks, we are able

to decrease the amount of computations by solving part

of the optimization locally in the network and restricting

communication to the local neighborhood. Furthermore, it

imposes desired scalability problems to the algorithm. If a

part of the network topology changes, only the algorithm as-

sociated with the neighboring areas needs to be updated. The

algorithm presented above is in general not decentralized due

to the fact that γ in (8)–(9) is computed using (B̄T B̄)−1B̄T ,

which is in general not limited to having entries between

neighboring nodes. Furthermore, when one of the links has

zero flow, the κ value associated with it may affect the

computations of γ all over the network. For our decentralized

algorithm, we propose a dual descent scheme. We utilize

the idea that, in order to compute the optimal flow on one

link ei ∈ E , we only need information about the Lagrange

multipliers γA,B associated with the tail node τ(ei) and head

node σ(ei). The dynamics to update the Lagrange multiplier

for each node vj ∈ V are then only dependent on the

incoming flows x
A,B
i for the links satisfying σ(ei) = vj and

the outgoing flows x
A,B
i for the links satisfying τ(ei) = vj .

The algorithm consists of solving the following,

xA = argmin
xA≥0

LA(xA, xB , γA, 0) ,

xB = argmin
xB≥0

LB(xA, xB , γB, 0) ,

γ̇A = BxA − λA + µA ,

γ̇B = BxB − λB + µB .

Since xA and xB depend only on the differences between

different components in γA and γB , the system above will

have multiple equilibria in γA and γB. These will be related

to each other by a constant offset term so that if (γ̃A, γ̃B)
is an equilibrium, then (γ̃A + c1ne

, γ̃B + d1ne
) will be

an equilibrium for any scalars c and d. This is not a

limitation, however, due to the fact the difference in Lagrange

multipliers determines the flow.

The decentralized aspect of the algorithm can be shown

by deriving the necessary conditions,

0 = di(x
A
i + xB

i ) + γA
τ(i) − γA

σ(i) ,

0 = xB
i d

′
i(x

A
i + xB

i ) + di(x
A
i + xB

i ) + γB
τ(i) − γB

σ(i) ,

for all i = 1, . . . , ne. Defining d̃−1 as,

d̃−1(γi) =

{

0 if γi < di(0),

d−1
i (γi) o.w.

(10)

Then,

xA
i = max

{

d̃−1
i (ΓA

i )− xB
i , 0

}

,

xB
i = max

{

ΓB
i − ΓA

i

d′i(d̃
−1(ΓA

i ))
, 0

}

,

where Γk
i = γk

σ(i) − γk
τ(i) for k = A,B, thus showing that

updates of the flow are independent of nonadjacent nodes.

Example 2: In the case when the delay functions are

affine, i.e., di(xi) = αixi + βi, the expressions introduced

above become,

xA
i = max

{

ΓA
i − βi

αi

− xB
i , 0

}

,

xB
i = max

{

ΓB
i − ΓA

i

αi

, 0

}

.



IV. ROUTING OF TWO-TIER TRAFFIC

In this section, we study the stability of a routing scheme

that statically allocates traffic to each node dependent on

the solution to the assignment problem. To model the flow

dynamics in the network, we introduce traffic density vectors

ρA, ρB ∈ R
ne . A static relationship between the densities

and the flows on each link can be derived from delay

functions, in the same way as proposed for one class of

vehicles in [6]. Specifically, since the outflow on each link

is given by the (average) speed times the density ρi, and the

the speed is given by the length of the link ℓi > 0 over the

delay di(xi), the following relationship is assumed to hold,

ρi =
xidi(xi)

ℓi
.

We define the flow function Wi to be the map from density

ρi to flow xi, i.e., xi = Wi(ρi). Using the above relationship,

we obtain,

di(xi) =

{

W
−1

i (xi)ℓi
xi

if xi > 0 ,
ℓi

W ′
i (0)

if xi = 0 .

We observe that the flow function Wi(ρi) is always strictly

increasing, due to the fact that

W ′
i (W

−1
i (xi)) =

ℓi

di(xi) + xid
′
i(xi)

> 0 .

Example 3: Let the delay function be given by di(xi) =
αixi + βi. Then,

ρi =
xi(αixi + βi)

ℓi
,

and hence,

xi = Wi(ρi) =

√

1

4

(

βi

αi

)2

+
ρiℓi

αi

−
1

2

βi

αi

.

The density dynamics follows from the conservation of

mass, i.e., the change of density for each class of vehicles on

each link is equal to the inflow minus the outflow. Combined

with the static relationship between flow and density, the

dynamic equations become,

ρ̇Ai = λ̃A
σ(ei)

GA
σ(ei)→i −

ρAi
ρi

Wi(ρi) , (11a)

ρ̇Bi = λ̃B
σ(ei)

GB
σ(ei)→i −

ρBi
ρi

Wi(ρi) , (11b)

where,

λ̃A
v =

∑

ei∈E
−
v

ρAi
ρi

Wi(ρi) + λA
v , (12a)

λ̃B
v =

∑

ei∈E
−
v

ρBi
ρi

Wi(ρi) + λB
v , (12b)

and Gk
v→i, k = A,B, is the fraction of flow of class A or

B that should be routed from node v to link ei. For a given

flow assignment xk∗, the routing policies are given by,

Gk
v→i :=







xk∗

i∑
ej∈E

+
v

xk∗
j

if
∑

ej∈E
+
v
xk∗
j > 0 ,

0 o.w.
(13)

The following result is similar to the results of [10], with

a modification made to take unbounded Wi into account.

Proposition 4: Suppose G is acyclic. Then the dynamics

given by (11)-(13) converge to the assigned equilibrium.

V. NUMERICAL EXAMPLE

In this section, we perform numerical simulations so that

we may test the schemes proposed in Sections III and IV on

a network with dynamics given in (11). The network, shown

in Fig. 1, is similar to the one used to illustrate Braess’s

paradox, but with one additional link, which we have added

to test if our algorithm can handle cycles, we have added an

extra link to the Braess network.

Depending on the choice of parameters, the user- and

fleet-optimal assignments can be different. Moreover, the

optimal assignment in the first node can depend on the delay

functions in other parts on the network, rather than just the

outgoing links from the first node. Let the delay functions

be affine, given by di(xi) = αixi + βi for all links with the

values of αi and βi specified in Table I. We let λA = µA = 1
and λB = µB = 4 and, for simplicity, we let all the links

be of unit length, i.e., ℓi = 1 for all links. The results of

simulations using the centralized and decentralized algorithm

are shown in Fig. 4. In both simulations, the solver dynamics

are simulated by using an Euler solver with a step length of

0.1. While the decentralized algorithm does not require a

start from a feasible solution, i.e., the initial flows xA and

xB can be any non-negative value, the centralized algorithm

needs to start from a feasible solution because the algorithm

has no information about exogenous arrivals.

The routing polices GA and GB , presented in (13), are de-

termined according to the desired assignment. Fig. 5 presents

the outflows of each class of vehicles from each link. Two

simulations are performed. The first simulation corresponds

to setting all initial densities to zero, i.e., ρAi (0) = ρBi (0) = 0
for all ei ∈ E . The second simulation corresponds to setting

all initial densities to 5, i.e., ρAi (0) = ρBi (0) = 5 for all

ei ∈ E . In the first simulation, link e7 can be removed from

the network without causing any effect on the dynamics.

This is because Gk
v3→e7

= 0 for k = A,B, thus making

the network equivalent to an acyclic network with proven

convergence properties according to Proposition 4. In the

second simulation, link e7 contributes with a converging

inflow to node v1 but has no inflow to itself. Therefore it can

be seen as a converging inflow to node v1 and the proof of

Proposition 4 can be slightly modified to show convergence

in this case as well.

VI. CONCLUSION

In this paper, we have analyzed the assignment and

control of vehicle traffic in a network of vehicles that

follow either user-optimal or fleet-optimal paths. For the

assignment problem, we have provided sufficient conditions

for the existence and uniqueness of an equilibrium, as well as

two algorithms to compute it. For control, we have showed

how the assignment may be achieved using static routing.
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Fig. 4. The assigned equilibria xA∗ and xB∗ computed by centralized
(solid) and decentralized (dotted) algorithms, plotted as a function of
algorithm iteration. Both algorithms converge to the unique equilibrium,
but the centralized one converges in fewer iterations.

TABLE I

PARAMETERS AND ASSIGNED FLOWS FOR SIMULATIONS

ei αi βi xA∗

i
xB∗

i

e1 1 1 1 4
e2 1 1 0.25 2.5
e3 2 1 0.75 1.5
e4 1 3 0.125 2.25
e5 1 1 0.875 1.75
e6 2 1 0.125 0.25
e7 1 2 0 0

We applied our scheme to a modified Braess network and

presented numerical results that exemplify our approach.
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