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Abstract
Active learning—a class of algorithms that iteratively searches for the most informative sam-
ples to include in a training dataset—has been shown to be effective at annotating data for
image classification. However, the use of active learning for object detection is still largely
unexplored as determining informativeness of an object-location hypothesis is more difficult.
In this paper, we address this issue and present two metrics for measuring the informativeness
of an object hypothesis, which allow us to leverage active learning to reduce the amount of
annotated data needed to achieve a target object detection performance. Our first metric
measures “localization tightness” of an object hypothesis, which is based on the overlapping
ratio between the region proposal and the final prediction. Our second metric measures “lo-
calization stability” of an object hypothesis, which is based on the variation of predicted
object locations when input images are corrupted by noise. Our experimental results show
that by augmenting a conventional active-learning algorithm designed for classification with
the proposed metrics, the amount of labeled training data required can be reduced up to 25%.
Moreover, on PASCAL 2007 and 2012 datasets our localization-stability method has an aver-
age relative improvement of 96.5% and 81.9% over the base-line method using classification
only.
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Abstract. Active learning—a class of algorithms that iteratively searches for the

most informative samples to include in a training dataset—has been shown to

be effective at annotating data for image classification. However, the use of ac-

tive learning for object detection is still largely unexplored as determining in-

formativeness of an object-location hypothesis is more difficult. In this paper,

we address this issue and present two metrics for measuring the informativeness

of an object hypothesis, which allow us to leverage active learning to reduce

the amount of annotated data needed to achieve a target object detection perfor-

mance. Our first metric measures “localization tightness” of an object hypothesis,

which is based on the overlapping ratio between the region proposal and the final

prediction. Our second metric measures “localization stability” of an object hy-

pothesis, which is based on the variation of predicted object locations when input

images are corrupted by noise. Our experimental results show that by augment-

ing a conventional active-learning algorithm designed for classification with the

proposed metrics, the amount of labeled training data required can be reduced up

to 25%. Moreover, on PASCAL 2007 and 2012 datasets our localization-stability

method has an average relative improvement of 96.5% and 81.9% over the base-

line method using classification only.
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1 Introduction

Prior works have shown that with a large amount of annotated data, convolutional neu-

ral networks (CNNs) can be trained to achieve a super-human performance for various

visual recognition tasks. As tremendous efforts are dedicated into the discovery of effec-

tive network architectures and training methods for further advancing the performance,

we argue it is also important to investigate into effective approaches for data annotation

as data annotation is essential but expensive.

Data annotation is especially expensive for the object-detection task. Compared to

annotating image class, which can be done via a multiple-choice question, annotating

object location requires a human annotator to specify a bounding box for an object.

Simply dragging a tight bounding box to enclose an object can cost 10-times more time

than answering a multiple-choice question [32, 22]. Consequently, a higher pay rate has

to be paid to a human labeler for annotating images for an object detection task. In

addition to the cost, it is more difficult to monitor and control the annotation quality.
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Active learning [28] is a machine learning procedure that is useful in reducing the

amount of annotated data required to achieve a target performance. It has been applied

to various computer-vision problems including object classification [13, 6], image seg-

mentation [16, 4], and activity recognition [8, 9]. Active learning starts by training a

baseline model with a small, labeled dataset, and then applying the baseline model to

the unlabeled data. For each unlabeled sample, it estimates whether this sample contains

critical information that has not been learned by the baseline model. Once the samples

that bring the most critical information are identified and labeled by human annotators,

they can be added to the initial training dataset to train a new model, which is expected

to perform better. Compared to passive learning, which randomly selects samples from

the unlabeled dataset to be labeled, active learning can achieve the same accuracies with

fewer but more informative labeled samples.

Multiple metrics for measuring how informative a sample is have been proposed

for the classification task, including maximum uncertainty, expected model change,

density weighted, and so on [28]. The concept behind several of them is to evaluate

how uncertain the current model is for an unlabeled sample. If the model could not

assign a high probability to a class for a sample, then it implies the model is uncertain

about the class of the sample. In other words, the class of the sample would be very

informative to the model. This sample would require human to clarify.

Since an object-detection problem can be considered as an object-classification

problem once the object is located, existing active learning approaches for object de-

tection [1, 30] mainly measure the information in the classification part. Nevertheless,

in addition to classification, the accuracy of an object detector also relies on its local-

ization ability. Because of the importance of localization, in this paper we present an

active learning algorithm tailored for object detection, which considers the localization

of detected objects. Given a baseline object detector which detects bounding boxes of

objects, our algorithm evaluates the uncertainty of both the classification and localiza-

tion.

Our algorithm is based on two quantitative metrics of the localization uncertainty.

1. Localization Tightness (LT): The first metric is based on how tight the detected

bounding boxes can enclose true objects. The tighter the bounding box, the more

certain the localization. While it sounds impossible to compute the localization

tightness for non-annotated images because the true object locations are unknown,

for object detectors that follow the propose-then-classify pipeline [7, 26], we esti-

mate the localization tightness of a bounding box based on its changes from the

intermediate proposal (a box contains any kind of foreground objects) to the final

class-specific bounding box.

2. Localization Stability (LS): The second metric is based on whether the detected

bounding boxes are sensitive to changes in the input image. To evaluate the local-

ization stability, our algorithm adds different amounts of Gaussian noise to pixel

values of the image, and measures how the detected regions vary with respect to

the noise. This one can be applied to all kinds of object detectors, especially those

that do not have an explicit proposal stage [24, 20, 21, 37].

The contributions of this paper are two-fold:
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1. We present different metrics to quantitatively evaluate the localization uncertainty

of an object detector. Our metrics consider different aspects of object detection

in spite that the ground truth of object locations is unknown, making our metrics

suited for active learning.
2. We demonstrate that to apply active learning for object detection, both the local-

ization and the classification of a detector should be considered when sampling

informative images. Our experiments on benchmark datasets show that considering

both the localization and classification uncertainty outperforms the existing active-

learning algorithm works on the classification only and passive learning.

2 Related Works

We now review active learning approaches used for image classification. For more detail

of active learning, Settles’s survey [28] provides a comprehensive review. In this paper,

we use the maximum uncertainty method in the classification as the baseline method

for comparison. The uncertainty based method is used for CAPTCHA recognition [31],

image classification [12], automated and manual video annotation [15], and querying

samples for active decision boundary annotation [11]. It also has been applied to differ-

ent learning models including decision trees [17], SVMs [34], and Gaussian processes

[14]. We choose uncertainty-based method since it is efficient to compute.

Active learning is also applied for object detection tasks in various specific applica-

tions, such as satellite images [1] and vehicle images [30]. Vijayanarasimhan et al. [36]

propose an approach to actively crawl images from the web to train part-based linear

SVM detector. Note that these methods only consider information from the classifier,

while our methods aim to consider the localization part as well.

Current state-of-the-art object detectors are based on deep-learning. They can be

classified into two categories. Given an input image, the first category explicitly gener-

ates region proposals, following by feature extraction, category classification, and fine-

tuning of the proposal geometry [7, 26]. The other category directly outputs the object

location and class without the intermediate proposal stage, such as YOLO [24], YOLO

9000 [25], SSD [20], R-FCN [3], Focal Loss [18], and Single-Shot Refinement [38].

This inspires us to consider localization stability, which can be applied to both cate-

gories.

Besides active learning, there are other research directions to reduce the cost for

annotation. Temporal coherence of the video frames are used to reduce the annotation

effort for training detectors [23]. Domain adaptation [10] is used to transfer the knowl-

edge from an image classifier to an object detector without the annotation of bounding

boxes. Papadopoulos et al. [22] suggest to simplify the annotation process from draw-

ing a bounding box to simply answering a Yes/No question whether a bounding box

tightly encloses an object. Russakovsky et al. [27] integrate multiple inputs from both

computer vision and humans to label objects.

3 Active Learning for Object Detection

The goal of our algorithm is to train an object detector that takes an image as input and

outputs a set of rectangular bounding boxes. Each bounding box has the location and
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Fig. 1: A round of active learning for object detection.

the scale of its shape, and a probability mass function of all classes. To train such an

object detector, the training and validation images of the detector are annotated with

an bounding box per object and its category. Such an annotation is commonly seen in

public datasets including PASCAL VOC [5] and MS COCO [19].

We first review the basic active learning framework for object detection in Sec.

3.1. It also reviews the measurement of classification uncertainty, which is the major

measurement for object detection in previous active learning algorithms for object de-

tection [28, 1, 30]. Based on this framework, we extend the uncertainty measurement to

also consider the localization result of a detector, as described in Sec. 3.2 and 3.3.

3.1 Active Learning with Classification Uncertainty

Fig. 1 overviews our active learning algorithm. Our algorithm starts with a small train-

ing set of annotated images to train a baseline object detector. In order to improve the

detector by training with more images, we continue to collect images to annotate. Other

than annotating all newly collected images, based on different characteristics of the

current detector, we select a subset of them for human annotators to label. Once being

annotated, these selected images are added to the training set to train a new detector.

The entire process continues to collect more images, select a subset with respect to the

new detector, annotate the selected ones with humans, re-train the detector and so on.

Hereafter we call such a cycle of data collection, selection, annotation, and training as

a round.

A key component of active learning is the selection of images. Our selection is

based on the uncertainty of both the classification and localization. The classification

uncertainty of a bounding box is the same as the existing active learning approaches

[28, 1, 30]. Given a bounding box B, its classification uncertainty UB(B) is defined as
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Fig. 2: The process of calculating the tightness of each predicted box. Given an interme-

diate region proposal, the detector refines it to a final predicted box. The IoU calculated

by the final predicted box and its corresponding region proposal is defined as the local-

ization tightness of that box.

UB(B) = 1−Pmax(B) where Pmax(B) is highest probability out of all classes for this

box. If the probability on a single class is close to 1.0, meaning that the probabilities

for other classes are low, the detector is highly certain about its class. To the contrast,

when multiple classes have similar probabilities, each probability will be low because

the sum of probabilities of all classes must be one.

Based on the classification uncertainty per box, given the i-th image to evaluate,

say Ii, its classification uncertainty is denoted as UC(Ii), which is calculated by the

maximum uncertainty out of all detected boxes within.

3.2 Localization Tightness

Our first metric of the localization uncertainty is based on the Localization Tightness

(LT) of a bounding box. The localization tightness measures how tight a predicted

bounding box can enclose true foreground objects. Ideally, if the ground-truth loca-

tions of the foreground objects are known, the tightness can be simply computed as

the IoU (Intersection over Union) between the predicted bounding box and the ground

truth. Given two boxes B1 and B2, their IoU is defined as: IoU(B1, B2) = B1
∩B2

B1∪B2 .

Because the ground truth is unknown for an image without annotation, an estimate

for the localization tightness is needed. Here we design an estimate for object detectors

that involves the adjustment from intermediate region proposals to the final bounding

boxes. Region proposals are the bounding boxes that might contain any foreground

objects, which can be obtained via the selective search [35] or a region proposal net-

work [26]. Besides classifying the region proposals into specific classes, the final stage

of these object detectors can even adjust the location and scale of region proposals based
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(a) (b)

Fig. 3: Images preferred by LT/C. Top rows show two figures are two cases that will

be selected by LT/C, which are images with certain category but loose bounding box

(a) or images with tight bounding box but uncertain about the category (b).

on the classified object classes. Fig. 2 illustrates the typical pipeline of these detectors

where the region proposal (green) in the middle is adjusted to the red box in the right.

As the region proposal is trained to predict the location of foreground objects, the

refinement process in the final stage is actually related to how well the region proposal

predicts. If the region proposal locates the foreground object perfectly, there is no need

to refine it. Based on this observation, we use the IoU value between the region proposal

and the refined bounding box to estimate the localization tightness between an adjusted

bounding box and the unknown ground truth. The estimated tightness T of j-th pre-

dicted box Bj
0

can be formulated as following: T (Bj
0
) = IoU(Bj

0
, Rj

0
), where Rj

0
is

the corresponding region proposal fed into the final classifier that generates Bj
0
.

Once the tightness of all predicted boxes are estimated, we can extend the selec-

tion process to consider not only the classification uncertainty but also the tightness.

Namely, we want to select images with inconsistency between the classification and the

localization, as following:

– Given a predicted box that is absolutely certain about its classification result (Pmax =
1), but it cannot tightly enclose a true object (T = 0). An example is shown in Fig-

ure 3 (a).

– Reversely, if the predicted box can tightly enclose a true object (T = 1) but the

classification result is uncertain (low Pmax). An example is shown in Figure 3 (b).

The score of a box is denoted as J , which is computed per Equ. 1. Both conditions

above can get value close to zero.

J(Bj
0
) = |T (Bj

0
) + Pmax(B

j
0
)− 1| (1)

As each image can have multiple predicted boxes, we calculate the score per image

as: TI(Ii) = minjJ(B
j
0
). Unlabeled images with low score will be selected to annotate

in active learning. Since both the localization tightness and classification outputs are

used in this metric, later we use LT/C to denotes methods with this score. Another

way to approach this problem is using the objectiveness score of intermediate bounding

boxes. It’s not explored in this paper since it does not explicitly encode the localization

information.
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Fig. 4: The process of calculating the localization stability of each predicted box. Given

one input image, a reference box (red) is predicted by the detector. The change in pre-

dicted boxes (green) from noisy images is measured by the IoU of predicted boxes

(green) and the corrsponding reference box (dashed red).

3.3 Localization Stability

The concept behind the localization stability is that, if the current model is stable to

noise, meaning that the detection result does not dramatically change even if the in-

put unlabeled image is corrupted by noise, the current model already understands this

unlabeled image well so there is no need to annotate this unlabeled image. In other

words, we would like to select images that have large variation in the localization pre-

diction of bounding boxes when the noise is added into the image. This is similar to the

idea of distributional smoothing with virtual adversarial training [33], which uses KL-

divergence based robustness of the model distribution against local perturbation around

the datapoint to ensure local smoothness. Our localization stability method selects im-

ages from where the model distribution has low local smoothness. Adding these images

with annotation to the training set may ensure local smoothness.

Fig. 4 overviews the idea to calculate the localization stability of an unlabeled im-

age. We first detect bounding boxes in the original image with the current model. These

bounding boxes when noise is absent are called reference boxes. The j-th reference

box is denoted as Bj
0
. For each noise level n, a noise is added to each pixel of the im-

age. We use Gaussian noise where the standard deviation is proportional to the level n;

namely, the pixel value can be changed more for higher level. After detecting boxes in

the image with noise level n, for each reference box (the red box in Fig. 4), we find a
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corresponding box (green) in the noisy image to calculate how the reference box varies.

The corresponding box is denoted as Cn(B
j
0
), which has the highest IoU value among

all bounding boxes that overlap Bj
0
.

Once all the corresponding boxes from different noise levels are detected, we can

tell that the model is stable to noise on this reference box if the box does not significantly

change across the noise levels. Therefore, the localization stability of each reference box

Bj
0

can be defined as the average of IoU between the reference box and corresponding

boxes across all noise levels. Given N noise levels, it is calculated per Equ. 2:

SB(B
j
0
) =

∑N

n=1
IoU(Bj

0
, Cn(B

j
0
))

N
, (2)

With the localization stability of all reference boxes, the localization stability of this

unlabeled image, says Ii, is defined based on their weighted sum per Equ. 3 where M
is the number of reference boxes. The weight of each reference box is its highest class

probability in order to prefer boxes with high probability as foreground objects but high

uncertainty to their locations.

SI(Ii) =

∑M

j=1
Pmax(B

j
0
)SB(B

j
0
)

∑M

j=1
Pmax(B

j
0
)

. (3)

4 Experimental Results

Reference Methods: Since no prior work does active learning for deep learning based

object detectors, we designate two informative baselines that show the impact of pro-

posed methods.

– Random (R): Randomly choose samples from the unlabeled set, label them, and

put them into labeled training set.

– Classification only (C): Select images only based on the classification uncertainty

Uc in Sec. 3.1.

Our algorithm with two different metrics for the localization uncertainty are tested.

First, the localization stability (Section 3.3) is combined with the classification infor-

mation (LS+C). As images with high classification uncertainty and low localization

stability should be selected for annotation, the score of the i-th image (Ii) image is de-

fined as follows: UC(Ii) − λSI(Ii) ,where λ is the weight to combine both, which is

set to 1 across all the experiments in this paper. Second, the localization tightness of

predicted boxes is combined with the classification information (LT/C) as defined in

Section 3.2.

We also test three variants of our algorithm. One uses the localization stability only

(LS). Another is the localization tightness of predicted boxes combined with the clas-

sification information but using the localization tightness calculated from ground-truth

boxes (LT/C(GT)) instead of the estimate used in LT/C. The other is combining all 3

cues together (3in1).
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Dataset PASCAL 2012 PASCAL 2007 MS-COCO PASCAL 2007
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mAP
500 1000 1500 2000 2500 3000 3500

44%

50%

56%

62%

Number of labeled images
m

A
P

 

 

R
C
LS+C
LT/C
LT/C(GT)

500 1000 1500 2000 2500 3000 3500

48%

54%

60%

66%

Number of labeled images

m
A

P

 

 

R
C
LS+C
LT/C
LT/C(GT)

���� ���� ���� ���� ����
��	�


��


��	�


��


��	�


��


��	�


��


�����������������������

�
�
�

�
�
� !�

��� "��� "��� ���� ���� ���� ����

##


#�


#�


��


�����������������������

�
�
�

�
�
� !�

(a) (b) (c) (d)

Saving
500 1000 1500 2000 2500 3000 3500

−5%

0%

5%

10%

15%

20%

25%

R
el

at
iv

e 
sa

vi
ng

# of labeled images for Random
500 1000 1500 2000 2500 3000 3500

0%

5%

10%

15%

20%

25%

R
el

at
iv

e 
sa

vi
ng

# of labeled images for Random
���� ���� ���� ���� ����

$�


$"


�


"


�


�


#


�


�


�
��
�%
�&
��
��
&�
'�

(�������������������������'���
��� "��� "��� ���� ���� ���� ����
�


�


"�


"�


��


��


�
��
�%
�&
��
��
&�
'�

(�������������������������'���

(e) (f) (g) (h)

Fig. 5: Result on PASCAL 2012, PASCAL 2007, MS-COCO, and SSD, from left to

right, respectively. (Top) Mean average precision curve of different active learning

methods. Each point in the plot is an average of 5 trials. (Bottom) Relative saving of

labeled images for different methods.

For the easiness of reading, data for LS and 3in1 are shown in the supplementary

result. Our supplementary result also includes the mAP curves with error bars that in-

dicate the minimum and maximum average precision (AP) out of multiple trials of all

methods. Furthermore, experiments with different designs of LT/C are included in the

supplementary result.

Datasets: We validated our algorithm on three datasets (PASCAL 2012, PASCAL

2007, MS COCO [5, 19]). For each dataset, we started from a small subset of the train-

ing set to train the baseline model, and selected from the remained training images for

active learning. Since objects in training images from these datasets have been anno-

tated with bounding boxes, our experiments used these bounding boxes as annotation

without asking human annotators.

Detectors: The object detector for all datasets is the Faster-RCNN (FRCNN) [26],

which contains the intermediate stage to generate region proposals. We also tested our

algorithm with the Single Shot multibox Detector (SSD) [20] on the PASCAL 2007

dataset. Because the SSD does not contain a region proposal stage, the tests for lo-

calization tightness were skipped. Both FRCNN and SSD used VGG16 [29] as the

pre-trained network in the experiments shown in this paper.

4.1 FRCNN on PASCAL 2012

Experimental Setup: We evaluate all the methods with the FRCNN model [26] using

the RoI warping layer [2] on the PASCAL 2012 object-detection dataset [5] that consists

of of 20 classes. Its training set (5,717 images) is used to mimic a pool of unlabeled im-

ages, and the validation set (5,823 images) is used for testing. Input images are resized

to have 600 pixels on the shortest side for all FRCNN models in this paper.
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(b) PASCAL 2007

Fig. 6: The difference in difficult classes (blue bars) between the proposed method

(LS+C) and the baseline method (C) in average precision on (a) PASCAL 2012 dataset

(b) PASCAL 2007 dataset. Black and green bars are the average improvements of LS+C

over C for all classes and non-difficult classes.

The numbers shown in following sections on PASCAL datasets are averages over 5

trails for each method. All trials start from the same baseline object detectors, which are

trained with 500 images selected from the unlabeled image pool. After then, each active

learning algorithm is executed in 15 rounds. In each round, we select 200 images, add

these images to the existing training set, and train a new model. Each model is trained

with 20 epoches.

Our experiments used Gaussian noise as the noise source for the localization stabil-

ity. We set the number of noise level N to 6. The standard deviations of these levels are

{8, 16, 24, 32, 40, 48} where the pixels range from [0, 255].

Results: Fig. 5 (a) and (e) show the mAP curve and the relative saving of labeled

images, respectively, for different active learning methods. We have three major ob-

servations from the results on the PASCAL 2012 dataset. First, LT/C(GT) outperforms

all other methods in most of the cases as shown in Fig. 5 (e). This is not surprising

since LT/C(GT) is based on the ground-truth annotations. In the region that achieves

the same performance as passive learning with a dataset of 500 to 1,100 labeled im-

ages, the performance of the proposed LT/C is similar to LT/C(GT), which represents

the full potential of LT/C. This implies that LT/C using the estimate of tightness of

predicted boxes (Section 3.2) can achieve results close to its upper bound.

Second, in most of the cases, active learning approaches work better than random

sampling. The localization stability with the classfication uncertainty (LS+C) has the

best performance among all methods other than LT/C(GT). In terms of average saving,

LS+C and LT/C have 96.5% and 36.3% relative improvement over the baseline method

C.

Last, we also note that the proposed LS+C method has more improvements in the

difficult categories. We further analyze the performance of each method by inspecting

the AP per category. Table 1 shows the average precision for each method on the PAS-

CAL 2012 validation set after 3 rounds of active learning, meaning that every model

is trained on a dataset with 1,100 labeled images. For categories with AP lower than

40% in passive learning (R), we treat them as difficult categories, which have a asterisk

next to their name. For these difficult categories (blue bars) in Fig. 6a, we notice that
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the improvement of LS+C over C is large. For those 5 difficult categories the average

improvement of LS+C over C is 3.95%, while the average improvement is only 0.38%

(the green bar in Fig. 6a) for the rest 15 non-difficult categories. This 10× difference

shows that adding the localization information into active learning for object detection

can greatly help the learning for difficult categories. It is also noteworthy that for those

5 difficult categories, the baseline method C performs slightly worse than random sam-

pling by 0.50% in average. It indicates that C focuses on non-difficult categories to get

an overall improvement in mAP.

Table 1: Average precision for each method on difficult categories of PASCAL 2012

validation set after 3 rounds of active learning (number of labeled images in the training

set is 1,100). Each number shown in the table is an average of 5 trials and displayed in

percentage. Numbers in bold are the best results per column, and underlined numbers

are the second best results. Catergories with AP lower than 40% in passive learning (R)

are defined as difficult categories and marked by asterisk.

Method boat* bottle* chair* table* plant* mAP

R 28.4 32.0 25.8 36.4 21.6 52.9

C 25.5 30.8 26.4 36.7 22.5 54.0

LS+C 29.6 35.2 31.3 40.7 24.8 55.3

LT/C 29.5 33.8 29.5 41.8 23.2 54.7

4.2 FRCNN on PASCAL 2007

Experimental Setup: We evaluate all the methods with the FRCNN model [26] using

the RoI warping layer [2] on the PASCAL VOC 2007 object-detection dataset [5] that

consists of 20 classes. Both training and validation sets (total 5,011 images) are used

as the unlabeled image pool, and the test set (4,952 images) is used for testing. All the

experimental settings are the same as the experiments on the PASCAL 2012 dataset as

mentioned Section 4.1.

Results: Fig. 5 (b) and (f) show the mAP curve and relative saving of labeled images

for different active learning methods. In terms of average saving, LS+C and LT/C have

81.9% and 45.2% relative improvement over the baseline method C. Table 2 shows the

AP for each method on the PASCAL 2007 test set after 3 rounds of active learning. The

proposed LS+C and LT/C are better than the baseline classification-only method (C) in

terms of mAP.

It is interesting to see that LS+C method has the same behavior as shown in the

experiments on the PASCAL 2012 dataset. Namely, LS+C also outperforms the baseline

model C on difficult categories. As the setting in experiments on the PASCAL 2012

dataset, categories with AP lower than 40% in passive learning (R) are considered as

difficult categories. For those 4 difficult categories, the average improvement in AP of

LS+C over C is 3.94%, while the average improvement is only 0.95% (the green bar in

Fig. 6b) for the other 16 categories.
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Table 2: Average precision for each method on PASCAL 2007 test set after 3 rounds

of active learning (number of labeled images in the training set is 1,100). The other

experimental settings are the same as shown in Table 1.

Method boat* bottle* chair* plant* mAP

R 40.0 33.6 34.5 25.9 57.3

C 36.8 34.4 34.0 24.9 57.8

LS+C 40.2 38.7 39.6 27.7 59.4

LT/C 41.1 38.4 36.4 28.0 58.6

4.3 FRCNN on MS COCO

Experimental Setup: For the MS COCO object-detection dataset [19], we evaluate three

methods: passive learning (R), the baseline method using classification only (C), and the

proposed LS+C. Our experiments still use the FRCNN model [26] with the RoI warping

layer [2]. Compared to the PASCAL datasets, the MS COCO has more categories (80)

and more images (80k for training and 40k for validation). Our experiments use the

training set as the unlabeled image pool, and the validation set for testing.

The numbers shown in this section are averages over 3 trails for each method. All

trials start from the same baseline object detectors, which are trained with 5,000 images

selected from the unlabeled image pool. After then, each active learning algorithm is

executed in 4 rounds. In each round, we select 1,000 images, add these images to the

existing training set, and train a new model. Each model is trained with 12 epoches. We

followed the same training parameters in [2] for MS COCO, but we reduced the number

of GPUs from 8 to 1 in order to run more comprehensive experiments with limited GPU

resources. The consequence is that our mini-batch size is essentially reduced too.

Results: Fig. 5 (c) and (g) show the mAP curve and the relative saving of labeled images

for the testing methods. Fig. 5 (c) shows that classification-only method (C) does not

have improvement over passive learning (R), which is not similar to the observations

for the PASCAL 2012 in Section 4.1 and the PASCAL 2007 in Section 4.2. By incor-

porating the localization information, LS+C method can achieve 5% relative saving in

the amount of annotation compared with passive learning, as shown in Fig. 5 (g).

4.4 SSD on PASCAL 2007

Experimental Setup: Here we test our algorithm on a different object detector: the sin-

gle shot multibox detector (SSD) [20]. The SSD is a model without an intermediate

region-proposal stage, which is not suitable for the localization-tightness based meth-

ods. We test the SSD on the PASCAL 2007 dataset where the training and validation

sets (total 5,011 images) are used as the unlabeled image pool, and the test set (4,952

images) is used for testing. Input images are reiszed to 300×300.

Similar to the experimental settings in Section 4.1 and 4.2, the numbers shown in

this section are averages over 5 trails.All trials start from the same baseline object detec-

tors which are trained with 500 images selected from the unlabeled image pool. After
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Table 3: Overlapping ratio between 200 images chosen by different active learning

methods on the PASCAL 2012 and 2007 datasets after the first round. Each number

represents the average over 5 trials.
PASCAL 2012 PASCAL 2007

C 3.5% 4.1%

LS 4.0% 2.7% 4.2% 3.5%

LS+C 4.4% 34.7% 34.6% 4.3% 34.0% 39.7%

LT/C 5.0% 5.9% 2.4% 5.2% 5.6% 5.9% 4.5% 5.7%

Method R C LS LS+C R C LS LS+C

then, each active learning algorithm is executed in 15 rounds. A difference from previ-

ous experiments is that each model is trained with 40,000 iterations, not a fixed number

of epochs. In our experiments, the SSD takes more iterations to converge. Consequently,

when the number of labeled images in the training set is small, a fixed number of epochs

means training with fewer number of iterations and the SSD cannot converge.

Results: Fig. 5 (d) and (h) show the mAP curve and the relative saving of labeled

images for the testing methods. Fig. 5 (d) shows that both active learning method (C

and LS+C) have improvements over passive learning (R). Fig. 5 (h) shows that in order

to achieve the same performance of passive learning with a training set consists of 2,300

to 3,500 labeled images, the proposed method (LS+C) can reduce the amount of image

for annoation (12 - 22%) more than the baseline active learning method (C) (6 - 15%).

In terms of average saving, LS+C is 29.0% better than the baseline method C.

5 Discussion

Estimate of Localization Tightness: Our experiment shows that

if the ground truth of bounding box is known, localization tight-

ness can achieve best accuracies, but the benefit degrades when

using the estimated tightness instead. To analyze the impact of

the estimate, after we trained the FRCNN-based object detector

with 500 images of PASCAL2012 training set, we collected the

ground-truth-based tightness and the estimated values of all de-

tected boxes in the 5,215 test images. Figure in the right shows

a scatter plot where the coordinates of each point represents

the two scores of a detected box. As this scatter plot shows an

upper-triangular distribution, it implies that our estimate is most accurate when the pro-

posals can tightly match the final detection boxes. Otherwise, it could be very different

from the ground-truth value. This could partially explain why using the estimated can-

not achieve the same performance as the ground-truth-based tightness.

Relation among the metrics: As both proposed metrics LS+C and LT/C show improve-

ment than random sampling and classification-only active learning, we also evaluate
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whether the selected images of both metrics are similar or different. We measured the

overlapping ratio between images chosen by different active learning methods, as listed

in Table 3. It clearly shows that the three metrics (C, LS, LT/C) not just select very

different images from random sampling, but the overlapping among them are also low.

This indicates that these three active learning metrics select very different types of im-

ages. We also tested combining the three metrics into a single metric, which neverthe-

less did not outperform LS+C. More detail discussions can be seen in the supplementary

materials.

Computation Speed: The computation overhead of our evaluation metrics is small,

which adds 21% of time to the forward propagation through the FRCNN model. The

calculation of localization stability SI is slowest, as it needs to run the detector multiple

times. Since these metrics are automatic to calculate, nevertheless, using our approach

to reduce the number of images to annotate is still cost-efficient, as one bounding box

needs 20 seconds to draw in average [32], especially that we can reduce 20 - 25% of

images to annotate.

6 Conclusion

In this paper, we present an active learning algorithm for object detection. When select-

ing unlabeled images for annotation to train a new object detector, our algorithm con-

siders both the classification and localization results of the unlabeled images. With two

metrics to quantitatively evaluate the localization uncertainty, our experiments show

that by considering the localization uncertainty, our active learning algorithm can out-

perform existing active learning with the classification outputs alone. As a result, we

can train object detectors to achieve the same accuracy with fewer annotated images.
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This document includes the data and analysis of the proposed methods that are not

covered in the main paper due to the spcae limitation. We first define the abbreviation

for all methods as following:

Abbreviation Method

R Random

C Classification

LS Localization Stability

LS+C Localization Stability and Classification

LT/C Localization Tightness and Classification

LT/C(GT) Localization Tightness and Classification

with Ground Truth

3in1 Localization Stability, Localization

Tightness, and Classification

This abbreviation is used in all the text, figures, and tables in this document.

1 Design of Localization-Tightness Metric

Given the measurement of localization tightness, we need to design a metric to utilize

it for active learning. The most intuitive way is to use the localization tightness alone

to decide the score for each box. However, in our experiments it does not help for

selecting samples to annotate. We further analyze it by showing the images selected by

different methods as shown in Fig. 1. When using only localization tightness as the cue

to calculate the score of each detected box for active learning, it tends to find images

(Fig. 1, first row) that have tiny objects (e.g., airplane, bird), which are not chosen that

often by other methods (Fig. 1, second row). However, these classes are easier ones

that the detector already does well so that the overall performance of using localization

tightness alone is worse than other metrics.

Based on the observations in Sec. 3.2 in the main paper, we would like to find images

contain boxes that have disagreement in classification and localization results. When

designing a metric using localization tightness, there are two important qeustions: ”How

to define the score for an image with detected boxes?” and ”How to define the score for

a detected box?” For the first question, two methods have been tested: using the lowest

score of all boxes (min(.)), and using a weighted sum of all boxes (wsum(.)), where the

weight is Pmax of each box. For the second question, different metrics have been tested

as following, where P (Pmax(B) in the main paper) is the highest probability out of
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Fig. 1: First row: Example images selected for annotation by the method using infor-

mation from localization only to evaluate the score of each box. Second row: Example

images selected for annotation by the method using classification uncertainty only (C).

K categories of box B, and T (T (B) in the main paper) is the localization tightness of

box B. For a set of unlabeled images, the following methods choose images with lower

scores to annotate in active learning.

min(|T+P-1|) This metric is the one (LT/C) we used in the main paper. It selects im-

ages with boxes that have disagreement between classification and localization re-

sults. It also picks images contain boxes that are not very certain in both classifica-

tion and localization results.

min(-|P-T|) Different from LT/C, this metric only selects images with boxes that have

disagreement between classification and localization results. It does not select boxes

that are not very certain in both two outputs.

wsum(|T+P-1|) This method uses the same metric as LT/C to evaluate the score of

each box. However, instead of using the highest score out of all boxes as the score

of an imgae, it uses a weighted sum across all boxes.

wsum(T) This method uses only the information from localization outputs when de-

ciding the score of each box. Images with boxes that have low localization tightness

will be chosen by this method.

Fig. 2 shows the mean average precision (mAP) curves of different metrics using

localization tightness, and the experimental setup is the same as mentioned in Sec. 4.2

in the main paper. The proposed LT/C outperforms the rest metrics clearly at the first

half of the experiment. Among the second half, LT/C is still the best among all metrics,

but the gap between LT/C and the others becomes smaller.

The difference between LT+C and max(|P-T|) is selecting images with boxes that

are both uncertain in classification and localization outputs. We hypothesize that images

with uncertainty in both outputs are more informative, which make LT/C better than
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Fig. 2: Mean average precision curve of different metrics of localization tightness on

PASCAL 2007 detection dataset. Each point in the plot is an average of 5 trials.

max(|P-T|). Also, given the same metric for calculating the score of a detected box,

LT/C and wsum(|T+P-1|) use different strategy to define the score of an image. The

overlapping ratio of images sampled by these two methods is only 17.9% (an average

over 5 trials), which implies that how to define the score of an image greatly affects the

sampling process.

2 Discussion of Extreme Cases

There could be extreme cases that the proposed methods may not be helpful. For in-

stance, if perfect candidate windows are available (LT/C), or feature extractors are re-

silient to Gaussian noise (LS+C).

If we have very precise candidate windows, which means that we need only the

classification part and it is not a detection problem anymore. While this might be pos-

sible for few special object classes (e.g. human faces), to our knowledge, there is no

perfect region proposal algorithms that can work for all type of objects. As shown in

our experiments, even state-of-the-art object detectors can still incorrectly localize ob-

jects. Furthermore, when perfect candidates are available, the localization tightness will

always be 1, and our LT/C degenerates to classification uncertainty method (C), which

can still work for active learning.
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Fig. 3: Top-1 classification accuracy of different neural network models when input

images are corrupted by Gaussian noise on PASCAL 2012 validation dataset.

Also, we have tested the resiliency to Gaussian noise of state-of-the-art feature ex-

tractors (AlexNet, VGG16, ResNet101). Classification task on the validation set of Ima-

geNet (ILSVRC2012) is used as the testbed. The results demonstrate that none of these

state-of-the-art feature extractors is resilient to noise. Moreover, if the feature extractor

is robust to noise, the localization stability will always be 1, and our LS+C degenerates

to classification uncertainty method (C), which can still work for active learning.

We have tested the resiliency to Gaussian noise of state-of-the-art feature extractors

(AlexNet, VGG16, ResNet101). Classification task on the validation set of ImageNet

(ILSVRC2012) is used as the testbed. Pre-trained models are used as the classifier and

input images are corrupted by Gaussian noise of different levels. Fig. 3 shows the top-1

classification accuracy under different standard deviation of Gaussian noise. With the

largest standard deviation, the accuracy can drop 23-37%. It demonstrates that none of

these state-of-the-art feature extractors is resilient to noise. Goodfellow et. al [1] also

hypothesized that NNs with non-linear modules (e.g., sigmoid) mainly work in linear

region, could be vulnerable to local perturbation such as Gaussian noise.

3 Full Experimental Results

In this section, the full results from the experiments of active learning methods on the

PASCAL and MS COCO datasets are presented. These results are not covered in the

main paper due to the easiness of reading and space constraint.

Results of Using Localization Stability Only: As an ablation experiment, results for the

method using localization stability only (LS) are added into the plot of mAP curves and

the table of classwise APs. Table 1 and Table 2 show the average precision for each

method after 3 rounds of active learning on the PSACAL 2012 validation and PASCAL
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Fig. 4: Mean average precision curve of different active learning methods on the PAS-

CAL 2012 detection dataset. Each point in the plot is an average of 5 trials. The error

bars represent the minimum and maximum values out of 5 trials at each point. This is a

full version (LS and 3in1 added) of Fig. 5a in the main paper.

2007 testing set. Fig. 4 and Fig. 5 show the mAP curves of each active learning method

on the PASCAL 2012 and 2007 datasets. Each point in the plot is an average of 5 tri-

als. Also, error bars that represent the minimum and maximum values out of 5 trials

are added at each point to show the distribution of 5 trials. Fig. 6a and Fig. 6b show

the relative saving in labeled images of each active learning method on the PASCAL

2012 and 2007 datasets. As shown in Fig. 6a and Fig. 6b, LS outperforms the random

sampling for the most cases. Also, combining the localization stability with the classifi-

cation uncertainty (LS+C) works better than using either only the localization stability

(LS) or classification uncertainty (C).

Results of Using 3 Cues: In order to see that if the localization-uncertainty measure-

ments have complementary information, we further combine all cues for selecting in-

formative images. As images with high classification uncertainty, low localization sta-

bility, and low localization tightness should be selected for annotation, the score of the

i-th image (Ii) image is defined as follows: UC(Ii)− λlsSI(Ii)− λltTI(Ii) where λls

and λlt are set to 1 across all the experiments in this paper.
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method aero bike bird boat* bottle* bus car cat chair* cow table*

R 71.1 61.5 54.7 28.4 32.0 68.1 57.9 75.4 25.8 44.2 36.4

C 70.7 62.9 54.7 25.5 30.8 66.1 56.2 78.1 26.4 54.5 36.7

LS 75.1 61.3 57.6 34.7 35.1 65.1 58.2 75.4 29.3 43.9 38.5

LS+C 73.9 63.7 56.9 29.6 35.2 66.5 58.5 77.9 31.3 50.8 40.7

LT/C 69.8 64.6 54.6 29.5 33.8 70.3 59.7 75.5 29.5 46.3 41.8

3in1 72.9 63.8 52.7 29.5 33.6 66.4 57.2 76.0 31.5 48.5 41.6

method dog horse mbike persn plant* sheep sofa train tv mAP

R 73.0 61.9 67.3 68.1 21.6 51.9 41.0 65.5 51.7 52.9

C 76.9 68.3 67.7 67.4 22.5 57.7 40.8 63.6 52.5 54.0

LS 70.7 57.5 66.1 68.5 23.0 56.1 40.3 64.2 53.6 53.7

LS+C 73.8 65.4 66.9 68.4 24.8 58.0 44.9 64.2 53.9 55.3

LT/C 73.0 62.5 69.0 70.8 23.2 56.5 42.8 64.3 55.9 54.7

3in1 72.2 62.6 67.6 68.8 24.5 57.6 43.6 63.0 57.1 54.5

Table 1: Average precision for each method on the PASCAL 2012 validation set after 3

rounds of active learning (the number of labeled images in the training set is 1,100). This

is a full version (LS and 3in1 added) of Table 1 in the main paper. All the experimental

settings are the same with Table 1 in the main paper.

method aero bike bird boat* bottle* bus car cat chair* cow table*

R 61.6 67.2 54.1 40.0 33.6 64.5 73.0 73.9 34.5 60.8 52.2

C 56.9 68.0 54.9 36.8 34.4 68.1 71.7 75.5 34.0 68.6 51.0

LS 64.4 63.9 56.3 45.1 38.0 65.5 73.7 71.2 38.6 62.7 57.0

LS+C 61.5 64.4 55.8 40.2 38.7 66.3 73.8 74.7 39.6 68.0 56.3

LT/C 57.6 69.7 52.9 41.1 38.4 69.7 74.4 71.8 36.4 61.2 58.1

3in1 57.6 65.1 53.3 37.1 39.0 68.0 74.6 73.9 39.8 64.9 58.5

method dog horse mbike persn plant* sheep sofa train tv mAP

R 69.3 74.7 66.6 67.1 25.9 52.1 54.2 66.1 54.9 57.3

C 71.4 74.7 65.2 65.9 24.9 60.0 53.9 63.0 57.4 57.8

LS 67.6 69.0 64.6 67.1 29.6 56.2 57.3 68.6 53.6 58.5

LS+C 71.5 73.8 67.2 66.7 27.7 61.3 57.0 65.6 57.4 59.4

LT/C 69.5 74.3 66.2 67.8 28.0 55.5 56.3 65.5 58.2 58.6

3in1 70.4 73.7 67.3 67.3 27.4 59.9 58.0 65.1 59.2 59.0

Table 2: Average precision for each method on the PASCAL 2007 testing set after 3

rounds of active learning (the number of labeled images in the training set is 1,100). This

is a full version (LS and 3in1 added) of Table 2 in the main paper. All the experimental

settings are the same with Table 2 in the main paper.
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Fig. 5: Mean average precision curve of different active learning methods on the PAS-

CAL 2007 detection dataset. Each point in the plot is an average of 5 trials. The error

bars represent the minimum and maximum values out of 5 trials at each point. This is a

full version (LS and 3in1 added) of Fig. 7a in the main paper.

On PASCAL 2012, combining all cues together does not work better than either

LS+C or LT/C (Fig. 6a). On PASCAL 2007, 3in1 is compatible with LS+C, and better

than LT/C (Fig. 6b). It seems that localization-uncertainty measurements do not have

complementary information. We further analyze the overlapping ratio between images

chosen by different active learning methods in Table 3 and Table 4. When we compare

the overlapping ratio between 3in1 and three other metrics (C, LS, LT/C), both C and

LS have an overlapping ratio around 30%, but LT/C has only about 10%. This implies

that among the three cues, LT/C provides the least information in 3in1 method. We

notice that the images chosen by 3in1 method are highly overlapped with LS+C (over

60%), but 3in1 does not outperform LS+C. Our hypothesis is that the images (about

one third of total images) chosen differently by 3in1 and LS+C make this difference in

performance.

mAP Plots with Error Bars: In the original mAP plots of the FRCNN on the MS COCO

dataset (Fig. 8a in the main paper) and the SSD on the PASCAL 2007 dataset (Fig. 9a

in the main paper), only the average of multiple trials is plotted. Here we add the error

bars that represent the minimum and maximum values of multiple trials to the plot. This
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(a) PASCAL 2012
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(b) PASCAL 2007

Fig. 6: Relative saving of labeled images for different active learning methods on the

(a) PASCAL 2012 validation dataset and (b) PASCAL 2007 testing set. (a) and (b) are

full versions (LS and 3in1 added) of Fig. 5b and Fig. 7b in the main paper.

Table 3: Overlapping ratio between 200 images chosen by different active learning

methods on the PASCAL 2012 dataset after the first round of active learning. Each

number shown in the table is an average over 5 trials.

C 3.5%

LS 4.0% 2.7%

LS+C 4.4% 34.7% 34.6%

LT/C 5.0% 5.9% 2.4% 5.2%

3in1 4.6% 30.4% 25.7% 62.4% 8.8%

Method R C LS LS+C LT/C

shows the distribution of the result from different trials. Fig. 7 and Fig. 8 show the mAP

curves of the FRCNN on the MS COCO dataset and the SSD on the PASCAL 2007

dataset. Three methods (R, C, and LS+C) are tested in these two experiments.

4 Visualization of The Selection Process

The most popular metric used for measuring the performance of an object detector is

mAP. We also use this metric to evaluate the performance of different active learning

methods. If one active learning method selects more informative images to label and

add them into the training set, the detector trained on this set will have a higher mAP.

Besides this final numerical result, we are curious about what images are chosen in the

selection process by different active learning methods, and how these chosen images

are related to the average precision.

In order to visualize the selection process, we first visualize the PASCAL 2012

training set [2] by using t-Distributed Stochastic Neighbor Embedding (t-SNE) [3].
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Table 4: Overlapping ratio between 200 images chosen by different active learning

methods on the PASCAL 2007 dataset after the first round of active learning. Each

number shown in the table is an average over 5 trials.

C 4.1%

LS 4.2% 3.5%

LS+C 4.3% 34.0% 39.7%

LT/C 5.6% 5.9% 4.5% 5.7%

3in1 3.9% 30.5% 32.0% 65.3% 12.0%

Method R C LS LS+C LT/C

After knowing the distibution of the PASCAL 2012 training set, we further visualize

the chosen images in the selection process by different active learning methods.

Visualization of the PASCAL 2012 Dataset: We first visualize the PASCAL 2012 train-

ing set (5,717 images) by using t-SNE with VGG16 model [4]. t-SNE is a technique

for dimensionality reduction that is tailored for visualizing high-dimensional datasets.

Features extracted from the conv5 3 layer are used as the high-dimensional vector for

each image in the PASCAL 2012 training set. The visualization of the PASCAL 2012

training set by embedding each image to a point on the 2D plane is shown in Fig. 9.

Each data point in Fig. 9 represents one image in the dataset. Images with objects from

only one class are represented by markers other than dots. Note that there might be

objects belong to different classes shown in one image. Red dots (>1cls) are used for

representing those images. For each class, there is a certain region that images locate at.

For example, images of aeroplanes (orange plus signs) are located at the top-right part,

and images of cats (green squares) are located at the bottom-center part.

For those images have objects from muliple classes, we cannot tell what classes

are included in each of them from Fig. 9. Therefore, another visualization is shown

in Fig. 13 by considering whether one image has objects from a certain class or not.

For example, each orange plus sign in Fig. 13a represents an image which has at least

one aeroplane in it, and each black dot represents an image that has no aeroplane in

it. Given Fig. 9 and Fig. 13, we now have a better understanding about the distribution

of the dataset, and the relationship between different classes. For example, in the left

part of the scatter plot in Fig. 9, we notice that there are many images that have objects

belong to multiple classes (red dots). From Fig. 13, we know that these images may

contain people, chairs, tables, sofas, bottles, plants, and TVs. Actually, these images

are regular scenes in a living room, just like the 4 images shown in Fig. 9. With these

information, we can further analyze the selection process of different active learning

methods.

Visualization of Different Active Learning Methods: We would like to visualize the

selection process of different active learning methods. The experimental settings are

the same with Sec. 4.1 in the main paper. For the analysis and visualization in this

section, we only use one trial instead of using the average of 5 trials for the easiness

of reading. The baseline FRCNN detector [5] is trained on a training set of 500 labeled
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Fig. 7: Mean average precision curve of different active learning methods on the MS

COCO validation set. Each point in the plot is an average of 3 trials. The error bars

represent the minimum and maximum values out of 3 trials at each point. This is a full

version of Fig. 9a in the main paper.

images, and then each active learning algorithm is executed for 3 rounds. In each round,

we select 200 images, add these images to the existing training set. After 3 rounds, each

method has selected 600 images for annotation, and a set with 1,100 labeled images is

used to train the detector.

Table 5 shows the average precision for each method on the PSACAL 2012 valida-

tion set after 3 rounds of active learning. As defined in the main paper, catergories with

AP lower than 40% in passive learning (R) are defined as difficult categories. These

difficult classes are marked by an asterisk in Table 5. We further analyze the selection

result of different methods by a visualization as shown in Fig. 12. There are total 5,217

images (500 images in the initial training set of this trial are not included) in each graph.

600 images selected for annotation by each active learning method are represented by

green asterisks, and the rest 4,617 images that have not been chosen are represented by

black dots.

We have two major observations from the visualzation results on the PASCAL 2012

dataset. First, the random sampling (R) method selects images for annotation across

all categories, no matter it is a difficult class or an easy class. Compared to the other

methods, lots of images of cats and cars are selected by R (blue rectangles in Fig. 12a
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Fig. 8: Mean average precision curve of different active learning methods with SSD on

the PASCAL 2007 testing set. Each point in the plot is an average of 5 trials. The error

bars represent the minimum and maximum values out of 5 trials at each point. This is a

full version of Fig. 10a in the main paper.

and Fig. 14a). However, these classes are relatively easy so the room for improvements

is not that large. Also, the selected images are not informative so that even many images

are selected in these classes, there is no large improvement over the other methods.

Second, as mentioned in Sec. 4.1 in the main paper, the proposed method LS+C

outperforms the baseline method C especially in the difficult categories. There is a 10×
difference between difficult and non-difficult categories in the improvement of LS+C

over C as shown in Fig. 6a in the main paper. These 5 difficult categories are: boat,

bottle, chair, table, and plant. Fig. 13 shows that all difficult categories but boat locate

at the left part of the 2D plane. These categories also are the ones show in scenes of a

living room (Fig. 9), as mentioned in the previous section. By visual inspection, the red

rectangles in Fig. 12c and Fig. 12b show that the proposed LS+C tends to select more

images for annotation in these difficult classes than the baseline method C. Quantitative

results are shown in Fig. 10. The proposed LS+C selects images that contain objects

belong to difficult classes much more than the baseline method C. By selecting more

images for annoation, the proposed LS+C gets more improvement in these difficult

classes. In contrast, for easy classes (catergories with AP higher than 70% in passive
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Fig. 9: t-SNE embeddings of images on the PASCAL 2012 training set. VGG16 is used

for generating high-dimensional vectors of images that used for the embedding. Each

data point in the scatter plot is an image. “>1cls” represents an image that has objects

belong to different classes. Images marked by only one class means that all the objects

in the image belong to the same class. Images on the left are examples contain objects

belong to difficult classes. As defined in Table 5 ,the difficult classes are boat, bottle,

chair, table, and plant.

learning) like cat and dog, the baseline method C selects more images than the proposed

LS+C as shown in Fig. 11. These observations indicate that C focuses on non-difficult

categories to get an overall improvement in mAP, but does not perform well in difficult

categories.
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method aero bike bird boat* bottle* bus car cat chair* cow table*

R 68.3 61.5 54.2 27.8 30.4 68.2 58.2 76.3 28.4 44.8 31.1

C 72.8 66.6 50.8 28.5 34.8 64.3 54.3 77.5 27.2 53.2 36.3

LS+C 68.1 68.0 52.0 34.2 34.9 70.0 59.9 74.4 30.3 44.2 42.1

LT/C 74.8 64.8 60.1 28.7 36.4 63.9 58.1 79.7 31.0 51.1 38.1

method dog horse mbike persn plant* sheep sofa train tv mAP

R 73.7 64.1 67.9 66.7 21.9 52.4 41.7 64.8 55.5 52.9

C 79.0 70.4 66.5 69.0 21.9 59.6 38.8 60.6 54.5 54.3

LS+C 73.6 63.3 69.7 71.7 28.5 60.2 40.6 64.4 59.0 55.5

LT/C 72.9 66.0 66.9 67.2 23.7 56.4 50.4 64.3 54.6 55.5

Table 5: Average precision for each method on the PASCAL 2012 validation set after

3 rounds of active learning (the number of labeled images in the training set is 1,100).

Each number shown in the table is the result of one trial (different from Table 1 in

the main paper which shows the average over 5 trials) and displayed in percentage.

Numbers in bold are the best results per column, and underlined numbers are the second

best results. Catergories with AP lower than 40% in passive learning (R) are defined as

difficult categories and marked by an asterisk.

5. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with

region proposal networks. In: Advances in Neural Information Processing Systems (NIPS).

(2015)



14 C-C. Kao et al.

boat* bottle* chair* table* plant*
0  

50 

100

150

200

250

300

# 
of

 s
el

ec
te

d 
im

ag
es

 

 

R
C
LS+C
LT/C

Fig. 10: The number of selected images that contain objects belong to difficult classes

by different active learning methods.
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Fig. 11: The number of selected images that contain objects belong to non-difficult

classes by different active learning methods.
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Fig. 12: The visualization of selection results by different active learning methods.

Green asterisks (sel) are the images selected for annotation by each active learning

method, and black dots (unsel) are the images that have not been selected. A detailed

version of this graph with class-wise information is shown in Fig. 14.
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Fig. 13: t-SNE embeddings of images for each category on the PASCAL 2012 training

set. Different from Fig. 9, each colored point in the graphs represents an image that

includes at least one object belongs to the target class. For example, each orange plus

sign in (a) represents an image which has at least one aeroplane in it.
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Fig. 14: The visualization of selection results by different active learning methods. Dif-

ferent from Fig. 12, each colored marker not only represents a selected image, but also

indicates the class that objects contained in the image belong to.
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