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Abstract
Model-Based Reinforcement Learning (MBRL) is gaining much interest in the robot learning
community; in MBRL, the model serves as a representation which is largely task-invariant,
and thus can facilitate transfer of knowledge across multiple tasks in the same domain. Learn-
ing reliable models for physical systems, however, remains a challenging problem. This paper
summarizes recent semiparametric and derivative-free modelling techniques, and presents
some key points for a new methodology to formulate derivative-free semiparametric Bayesian
models with applications to robot learning. The modeling technique is demonstrated using
a real robotic system, and is shown to consistently perform better than other state-ofthe-art
techniques.
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Abstract

Model-Based Reinforcement Learning (MBRL) is gaining much interest in the
robot learning community; in MBRL, the model serves as a representation which is
largely task-invariant, and thus can facilitate transfer of knowledge across multiple
tasks in the same domain. Learning reliable models for physical systems, however,
remains a challenging problem. This paper summarizes recent semiparametric
and derivative-free modelling techniques, and presents some key points for a new
methodology to formulate derivative-free semiparametric Bayesian models with
applications to robot learning. The modeling technique is demonstrated using a
real robotic system, and is shown to consistently perform better than other state-of-
the-art techniques.

1 Motivation and Introduction

Model-Based Reinforcement Learning is increasingly gaining attention, due to the ability of learned
models to efficiently compress information in the data that can also be transferred across multiple
tasks [1, 2, 3, 4]. However, learning accurate global models for long-term predictions from limited
measured data is a challenging problem, and even more so in use cases encountered in robotics where
models should account for causal constraints between variables, non-linearities such as non-viscous
friction, contacts etc. Oftentimes, models are built with derivative variables as inputs [1, 5] (e.g.
velocities, accelerations); the latter can often be difficult or impossible to measure, and ad-hoc filters
are used to estimate these derivatives are used. By doing so, often delays and non-ideal noise rejection
are introduced during the modelling phase, which can negatively affect the modelling effort, or even
cause it to fail altogether.
Contributions. The purpose of this work is to present a brief overview and analysis of some recently
introduced derivative-free Bayesian models for learning inverse dynamics of robotic systems [6],
extend them for learning forward dynamics and hopefully lead to discussion. Moreover, inspired by
the recent success of semiparametric models in robot dynamics learning [7, 8, 9], which combine
existing physics knowledge with a data-driven component, we propose a new methodology to describe
physical models in a derivative-free fashion, and thus combine semiparametric models and derivative-
free techniques. The effectiveness of this technique is demonstrated by the accuracy in long-term
predictions, and in controlling a real Furuta pendulum system in an MBRL setting.

1.1 Problem Formulation

Consider a robotic system with ndof degrees of freedom (DoF) and state vector x. From first-
principle physical laws, it can be argued that the state vector x consists of positions and their
derivatives (velocities and accelerations) for all joints of the robot. Then, the forward dynamics
of the robot xk+1 = f(xk,uk) at time instant k is the state evolution map given the control input
uk, whereas the inverse dynamics uk = g(xk+1,xk) provides control inputs following a specific
trajectory of the robot. In this paper, we shall consider Bayesian models that combine data-driven
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techniques and physics-based prior structure, called semiparametric models. The generic form of the
models under consideration is

y = f(x) + ε (1)

where x ∈ Rm are the input variables, y ∈ R are the outputs, ε ∼ N (0, σ2Im). The inputs x and the
outputs y are left in generic form, because we are interested in learning both the forward as well as
inverse dynamic models, which have different input and output variables.
Moreover, we are interested in the choice of the input variables x. Indeed, in many robotic systems,
velocities and accelerations cannot be sensed directly by the robot, and instead they need to be
estimated by numerical differentiation using pre-processing filters on the position measurements. It
is well known that applying filter operations to noisy data might lead to an increasing amount of
error and to fictitious delays in the derivative signals. In this work, we investigate how to derive
semiparametric Bayesian models on the past history of measurements, without the need to compute
the derivatives of the measured state variables (and thus, in a derivative-free fashion).

2 Model Learning

In this Section, we first briefly review Bayesian model classes used to learn the inverse and forward
dynamics of a robot. Then, we review the possibilities for learning derivative-free nonparametric
models that the authors already proposed in previous work. Finally, we propose new guidelines in or-
der to make also the physical models and therefore also the physical component of the semiparametric
models derivative-free.

The model function f(·) in (1) is modeled a priori as a Gaussian process with zero mean and a covari-
ance function also called the kernel function k(xi, xj) = cov [f(xi), f(xj)]. The characterization of
the kernel function is what will define and differentiate the following models.

Physically inspired kernels. The physical model of a system is derived by first principles, and the
model information might be used to identify a feature space over which the evolution of the system
is linear. More precisely, assume that model (1) can be written in the form f(x) = φ(x)Tw, where
φ(x) : Rm → Rq is a known nonlinear function obtained by first principles that maps the input vector
x in the physically inspired features space and w is the vector of unknown parameters. Modelling the
unknown parameter with a Gaussian distribution a priori, p(w) ∼ N (0,ΣPI) with ΣPI ∈ Rq×q the
covariance matrix, leads to the expression of the physically inspired kernel (PI)

k(xi, xj) = φ(xi)
TΣPIφ(xj) (2)

The kernel defined in (2) is a linear kernel in the features φ(·). For later convenience, we define also
a homogeneous (without the bias constant) polynomial kernel in the feature space

kppoly(φ(xi), φ(xj)) =
(
φ(xi)

TΣPIφ(xj)
)p

(3)

which is a general case of the linear kernel.

Nonparametric kernel. Following the Gaussian process regression framework [10], the structure of
the kernel has to be chosen by the user according to their beliefs about the process to be estimated. A
common option is the Radial Basis Function kernel (RBF), kNP (xi, xj) = kRBF (xi, xj).

Semiparametric kernel. This approach combines the physically-inspired and the nonparametric
kernels. Several semiparametric kernels have been proposed [7, 9], and here we follow the method
that considers the kernel function to be the sum of the covariances:

k(xi, xj) = φ(xi)
TΣPIφ(xj) + kNP (xi, xj). (4)

The semiparametric model takes advantage of the global property of the parametric model as well as
of the flexibility of the nonparametric model. The advantage of using this semiparametric (SP) kernel
over kNP and kPI has been shown in [7, 9] for inverse dynamics modelling, and in [11] for forward
dynamics modeling. The reader is referred to these papers and the literature referred to therein.

2.1 Derivative-Free Semiparametric Models

The robot dynamics (both inverse and forward) computed from physical first principles are functions
of joint positions, velocities, and accelerations. However, it is often the case that joint velocities
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and accelerations cannot be measured by the robot sensors, and computing them by numerical
differentiation might severely hamper the final solution. This is a well known and highly discussed
problem, see e.g., [12, 13, 14, 15, 16] and it is usually partially addressed by ad-hoc filter design.
However, this requires users’ knowledge and experience in tuning the filters’ parameters, and still
introduces fictitious delays. Alternatively, the past measurements of the positions can be considered.
So we define

xk− := [ q1
>

k− . . . q
n>dof
k− ]> ∈ R(M+1)ndof , qik− := [ qik q

i
k−1 . . . q

i
k−M ]> ∈ RM+1, (5)

to be the vector of the past joint positions and the vector of the past of the i-th joint position,
respectively, in the time window [t−M, t], where M , sufficiently large, has been fixed. Postulate that

the output yk can be written as a non-linear function of a “features vector” ξk := [ ξ1
>

k . . . ξ
n>dof
k ]>,

defined as a linear function of past measurements qik− for i = [1 . . . ndof ]

ξi
>

k = Rqi
>

k− , where R ∈ Rk×(M+1). (6)

Thus, f(·) can be defined as a Gaussian process with kernel function k(ξi, ξj) = kNP (ξi, ξj).
The rows of the matrix R may compute an approximation of the derivatives of qik. We may thus
say that the approach considered in this section generalizes the standard case. This technique was
recently introduced in [6], where the authors discussed three types of parametrization of the feature
matrix R which plays a crucial role. The discussed options are that the matrix R can be diagonal
or low rank or explicitly parametrize the velocity and acceleration. The reader is referred to [6] for
details and a more detailed summary is presented in Appendix 4.

This derivative-free technique works only for the NP estimator, and cannot be applied directly to
the physics-based model, because the basis functions φ(·) are functions of the physical quantities
position, velocity, and acceleration. In order to handle this limitation we propose a set of guidelines
to design a kernel-based model completely derivative-free.
The new methodology and its effectiveness is explained by modelling the forward dynamics of a
benchmark robotic system in control theory, the Furuta Pendulum (FP), [17, 18]. The FP is an
underactuated system known to have highly nonlinear dynamics. In particular, it is composed of two
arms: the base arm, which is constrained by an actuated revolute joint to perform circular movements
in a plane parallel to the ground, and the pendulum arm, which rotates around the principal axis of the
base arm. The base arm and the pendulum arm angles are denoted by α and θ. Further details of the
FP system, explanation of its complex dynamic and of the delays present in this system are explained
in Section 5. When neglecting the behaviors causing delays (see Sections 5), the expression of the
discretized forward dynamics ∆θk+1

= θk+1 − θk is approximated by the physical linear model

∆θk+1
=
[
−α̈ cos(θ) α̇2 sin(2θ) θ̇ sin(θ)

]
w′ = φθ̈(α̈, α̇, θ̇, θ)

Tw′. (7)

The last equation provides an approximated model of the FP evolution as function of xk =[
θk, θ̇k, θ̈k, αk, α̇k, α̈k

]
. However, model (7) does not account for the presence of the unknown

delay and other unmodeled long-term effects dependent on the past history of the state. To overcome
these problematic aspects, the state is defined in a derivative-free fashion xk− := [α>k− θ

>
k− ]>, and

we propose to define the PI kernel through a combination of polynomial kernels inspired by the
forward physical model (7). While the resulting kernel will be shown for the specific model (7), we
present here a set of general guidelines that can be applied to derive a free-derivative PI kernel robust
to delay for a wide range of given physical models. The guidelines to derive a robust PI kernel are:

• Each and every position, velocity, or acceleration term in φθ̈(·) is replaced by a distinct polynomial
kernel kppoly(·, ·) of degree p, where p is equal to the degree of the original term;

• The input of the kernel is either αk− or θk− , depending on whether kppoly(·, ·) is substituting a
term that is a function of θ or α;
• If a state variable appears into the model transformed by a function g(·), e.g., sin(θk−), the input to
kppoly(·, ·) becomes the variable transformed by the same function g(·), e.g., kppoly(g(θk−), g(θk−)).

Following these guidelines, the expression of the physically inspired kernel for model (7) is

kPI(xi− ,xj−) := k1poly(αi− , αj−)k1poly(cos(θi−), cos(θj−)) + k1poly(θi− , θj−)

+ k1poly(sin(θi−), sin(θj−)) + k2poly(αi− , αj−)k1poly(sin(2αi−), sin(2αj−)) (8)
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In this way, a large set of suitable basis function is defined, which GP regression can use to capture
the dynamics of the system, even the ones that depend on velocity and accelerations.
Finally, the derivative-free semiprametric kernel can be defined as:

kSP (xi− ,xj−) = kPI(xi− ,xj−) + kNP (ξi, ξj). (9)
The estimator obtained with this kernel,fSP , is now compared with the other derivative-free models
fNP , fPI , and a standard NP model with inputs position, velocity, and acceleration fder. The detailed
explanation of the experiments is out of the scope of this paper. Figure 1 represents the performance
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Figure 1: Bar-plot with the nRMSE of fder, fNP ,
fPI and fSP on two test datasets Dsin,Dtrw.
Dsin: nRMSE = [0.091, 0.085, 0.084, 0.083]
Dtrw: nRMSE = [0.174, 0.305, 0.102, 0.085]
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Figure 2: Performance of the derivative-free mod-
els fNP , fPI and fSP at k-steps ahead in terms
of RMSE, RMSEk, with relative confidence in-
tervals.

in prediction on validation data: in the top sub-figure, the data, Dsin, are of the same kind as the
training data, and in the bottom sub-figure, the data, Dtrw, have different trajectories. The model
fSP outperforms the others, and also exhibits almost identical performance in the two cases. In
Figure 2, the performance for k-steps ahead, the model is evolving in open loop, are presented for
the derivative-free models in Dtrw. Accurate performance is achieved by fSP for 100steps ahead,
outperforming the other methods. The accuracy of the model is confirmed since we were able to swing
up the FP with an open-loop controller obtained in an MBRL setting as described in Appendix 5.1.

3 Discussion

In this paper, we summarized the recent results for semiparametric and derivative-free Bayesian
models. Moreover, we presented a new general methodology to describe physical dynamical models
in a derivative-free kernel fashion, which leads to the definintion of a new model class of Derivative-
Free Semiparametric Bayesian (DFSB) models.
Semiparametric Bayesian models (which, roughly speaking, are nonparametric models equipped also
with basis functions given by the physics), have been shown to achieve accurate performance and
outperform physical and nonparametric models in several situations. First, while modelling both
inverse dynamics [7, 9] and forward dynamics in [11]. Second, in both cases when the physical
model was poorly or highly performing in [7] and in this work, respectively. Third, in prediction of
n-steps ahead even if the cost function was designed only for 1-step ahead prediction. Derivative-free
models have also been shown to be efficient in all these cases combining the results of [6] and the
one obtained in this paper. Moreover, since we are considering the past history of the measurements,
the method is robust to system delays, and can autonomously select which temporal instants are
most relevant. These characteristics make the DFSB models a promising highly accurate and robust
method for robot learning.
The downside of these models is that they might be harder to train, because of their complexity and a
higher number of hyperparameters to estimate. Therefore, a larger training data set might be required.
This effect is mitigated by the fact that semiparametric models are more data efficient than their
nonparametric counterparts, as shown for example in [11].
The design of the matrix R offers the possibility of future variations, and adaptability to different
applications. For example, the rows can be parameterized as band-pass filters in order to detect delays
in the system, and use only the appropriate temporal lags. Moreover, to be robust to highly noisy
data, this work can be extended to heteroscedastic noise models.
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4 APPENDIX: Derivative-free features structure

A detailed description on the possible structures of R can be found in [6], and is briefly summarized
here.
Derivative-free features. The simplest choice is to take R = IM+1, that is, the feature vector
coincides with the M past measured joint positions. As an alternative, it is possible to choose

R = diag (r1, . . . , rM+1) , with ri ∈ R, i = 1, ..,M + 1. (10)

That is, the feature vector is a weighted version of the past measured joint positions.

Derivative-free features with reduced rank. Alternatively, R can be fully parameterized with a
number of features k smaller than M + 1. For instance, the physics suggests that the right number of
features should be equal to 3 (position, velocity, acceleration). The role of the features is to compress
the useful information available in xk− so as to render the learning procedure more robust.

R = [r1, . . . , rk]
>
, ‖ri‖ = 1, where k < M, ri ∈ RM+1 (11)

These features include all the possible linear and causal numerical differentiation and filtering opera-
tions. The price of this generality is a large number of hyperparameters (k − 1)(M + 1) to estimate.

Structured derivative-free input locations with reduced rank. Matrix R can be parameterized
to explicitly estimate the physical quantities, with k = 3 features: the first is composed of the
measurement variables q(t) (e.g. the position) while the other two rows will attempt to estimate
explicitly velocities and accelerations. Since the velocities and accelerations can be computed by a
first order backward difference and by a second order backward difference, respectively, both filtered
by a first order low pass filter, that is

q̇i(t) ≈
1− z−1

Ts

1

1− β1z−1
qi(t), q̈i(t) ≈

1− 2z−1 + z−2

T 2
s

1

1− β2z−1
qi(t)

where z−1 is the backward shift operator, Ts > 0 is the sampling time and 0 < β1, β2 < 1 represent
the poles of the filters. We resort to a partial fraction decomposition to rewrite the above expressions
as a function of q(s−), that is:

q̇i(t) ≈ α1qi(t) +

M∑
t=1

α1β
t−1
1 (β1 − 1)qi(s− t)

q̈i(t) ≈ α2qi(t) + α2(β2 − 2)qi(s− 1) +

M∑
t=2

α2β
t−2
2 (β2

2 − 2β2 + 1)qi(s− t)

where α1 = 1/Ts and α2 = 1/T 2
s . Here, we exploited the fact that a (stable) low-pass filter can be

approximated by a finite impulse response (FIR) filter with length M , where the latter is chosen to be
sufficiently large. Accordingly, we have

R =

 1 0 . . . . . . 0
α1 α1(β1 − 1) . . . α1β

t−1
1 (β1 − 1) . . .

α2 α2(β2 − 2) . . . α2β
t−2
2 (β2

2 − 2β2 + 1) . . .

 .
A nice property of this characterization is that the number of hyperparameters in R is small
[α1, α2, β1, β2] ∈ R4, independently of the length of the past temporal lags M , which can be
arbitrarily chosen.

5 APPENDIX: Furuta Pendulum

In this Section we provide a brief description of the FP and the setup adopted in the experiments.

A symbolic description of the FP is reported in Figure 4, where we refer to “Arm-1” and “Arm-2”
as the base arm and the pendulum arm respectively. Mechanically, the FP is a normal gravitational
pendulum of length L2 (Arm-2 in Figure 4), suspended from the end of a turntable arm (Arm-1 in
Figure 4). The pendulum arm is attached with a perpendicular frictionless bearing to the base arm, at
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Figure 3: The Furuta Pendulum held in the wrist
joint of the robotic arm by the (white) 3D printed
gripper at the swing-up position.

X

Y

Z

m1

Arm-1
α

X ′

Y ′

m2

Arm-2
θ

Figure 4: A schematic diagram of the FP with
various system parameters and state variables.
Arm-1 has length L1 and mass m1, and Arm-
2 has length L2 and mass m2. The center of
mass for the two arms are at l1 and l2.

distance L1 from the center of the base arm’s actuation source. The torque actuation axis is vertical,
so the actuation arm sweeps a flat horizontal plane, while the direction of the pendulum rotation axis
is always aligned with the turntable arm.

In [19], the authors derived an accurate physical model of the FP using the Lagrangian approach.
Let mi, li, and Ji be respectively the mass, the center of mass and the inertia of the i-th arm, with
i = 1, 2, while α and θ are the variables pointing out the angles of the two arms. The froward
dynamics equation of the pendulum are:

θ̈ =
−α̈m2L1l2 cos(θ) + 1

2 α̇
2Ĵ2 sin(2θ) + b2θ̇ + gm2l2 sin(θ)

Ĵ2

=
[
−α̈ cos(θ) α̇2 sin(2θ) θ̇ sin(θ)

]
w = φθ̈(α̈, α̇, θ̇, θ)

Tw, (12)

where Ĵ1 = J1 +m1l
2
1 +m2L

2
1 and Ĵ2 = J2 +m2l

2
2.

Let ∆θk+1
= θk+1 − θk. Assuming that θ̈k is constant over all the sampling interval time δt, the

∆θk+1
equation is:

∆θk+1
= θ̇kδt +

δ2t
2
θ̈k = θ̇kδt +

δ2t
2
φθ̈(α̈k, α̇k, θ̇k, θk)Tw = φθ̈(α̈k, α̇k, θ̇k, θk)Tw′. (13)

In the setup adopted, the source of actuation is the wrist joint of an industrial robotic arm (the MELFA
RV-4FL, see Figure 3). This robot can only be controlled in a position-control mode, by sending
a sequence of desired set-points. Since the pendulum inertia is considerably lower than the one of
the robot joint, it is reasonable to assume that the α dynamics evolves independently from the one
of θ. More precisely, we noticed that, in order to guarantee repeatability, the inner controller of the
MELFA robot controls the evolution of α in deterministic fashion based on the sequence of set-points.
Therefore, there we know the forward dynamic of this variable exactly and only the forward dynamic
of θ needs to be estimated.

Moreover, the FP is held by a 3D-printed gripper, and is not rigidly fixed to the wrist joint of the robot.
This results in significant interplay between the gripper and the FP base link leading to vibration
of the base arm along with the rotational motion. More importantly, the base arm of the FP is not
rigid, and has significant elasticity. This results in significant delay in actuation of the pendulum arm.
These factors make the dynamics of the FP presented in this paper more involved when compared to
the one in Equations (13).
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5.1 Control using iLQG

We present some results of implementing the iLQG [20] controller on the real FP. The learned SP
model was linearized using numerical differentiation and used for trajectory optimization using iLQG.
The cost structure imposed for input saturation was able to contain the input within the allowable
control volume and thus, feasible trajectories were obtained during the optimization process. The
trajectories obtained by the iLQG algorithm were implemented in an open-loop fashion on the real
system, and the results are shown in Figure 5. The FP is able to swing up with near-zero velocity to
the goal position; however, as expected, the open-loop control sequence was not able to stabilize it.
In Figure 5, we obtained an accurate agreement between the trajectories on θ obtained from the iLQG
control sequence using the SP model and the real robot, which shows the long-horizon predictive
accuracy of the learned model. Notice that the models might be less accurate around the unstable
equilibrium point, because of the lack of data which are harder to collect for training purposes. At
this point, the authors would like to point out that previous results on using GP-based MBRL were
not able to swing-up a simpler class of inverted pendulum (cart-pole system) as the learned models
were not accurate for long-term prediction [21]. Due to the high control rate (140 Hz) for our FP, we
were not able to implement the iLQG in a model-predictive control (MPC) fashion which could also
stabilize the FP at the unstable equilibrium point. In-depth research of these topics has been left as
future research.
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Figure 5: Performance of the trained iLQG trajectory on the swing-up control of the Furuta pendulum.
The controller can swing up the pendulum and the model prediction works for about 0.7 s which is
equal to 100 time steps at a control rate of 140 Hz.
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