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Abstract

This paper presents adversarial training and decoding methods for neural con-
versation models that can generate natural responses given dialog contexts. In
our prior work, we built several end-to-end conversation systems for the 6th Dia-
log System Technology Challenges (DSTC6) Twitter help-desk dialog task. These
systems included novel extensions of sequence adversarial training, example-based
response extraction, and Minimum Bayes-Risk based system combination. In
DSTC6, our systems achieved the best performance in most objective measures
such as BLEU and METEOR scores and decent performance in a subjective
measure based on human rating. In this paper, we provide a complete set of
our experiments for DSTC6 and further extend the training and decoding strate-
gies more focusing on improving the subjective measure, where we combine re-
sponses of three adversarial models. Experimental results demonstrate that the
extended methods improve the human rating score and outperform the best score
in DSTC6.

keywords: dialog system, conversation model, sequence-to-sequence model, sen-
tence generation

1 Introduction

Dialog system technology [1, 2, 3] has been widely used in many applications. Generally,
a dialog system consists of a pipeline of data processing modules, including automatic
speech recognition (ASR), spoken language understanding (SLU), dialog management
(DM), sentence generation (SG), and speech synthesis. The SLU module predicts the
user’s intention from the user’s utterance [4, 5], usually by converting text or ASR
result to a semantic representation consisting of a sequence of concept tags or a set
of slot-value pairs. The DM module chooses the next system action/response based
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on the current state and the user’s intention. The SG module generates system reply
sentences corresponding to the selected reply policy.

Recently, dialog systems have greatly improved because the accuracy of each module
has been enhanced by machine learning techniques. However, there are still some
problems with using the pipeline of modules architecture: The SLU, DM, and SG
modules each require their own set of manually labeled training data. The DM and SG
modules often rely on hand-crafted rules. In addition, such dialog systems are often
not good at flexible interaction outside predefined scenarios, because intention labeling
schemes are limited by the scenario design. For all of these reasons, conventional dialog
systems are expensive to implement.

To solve these problems, end-to-end dialog systems are gathering attention in the
research field. The end-to-end approach utilizes only paired input and output sentences
to train the dialog model without relying on pre-designed data processing modules or
intermediate internal data representations such as concept tags and slot-value pairs.
End-to-end systems can be trained to directly map a user’s utterance to a system re-
sponse sentence and/or action. This significantly reduces the data preparation and
system development cost. Recently, several types of sequence-to-sequence models have
been applied to end-to-end dialog systems, and it has been shown that they can be
trained in a completely data-driven manner. The end-to-end approach also has a po-
tential to handle flexible conversation between the user and the system by training the
model with large conversational data [6, 7].

In this paper, we propose an end-to-end dialog system based on several sequence-
to-sequence modeling and decoding techniques, and evaluate the performance with the
6th dialog system technology challenges (DSTC6) [8] end-to-end conversation modeling
track [9]. DSTC was originally a series of dialog state tracking challenges [10], where
the task was to predict a set of slot-value pairs for each utterance or segment in a dialog
[11]. From the 6th challenge, the focus of DSTC has been expanded to broader areas
of dialog system technology. The goal of the end-to-end conversation modeling track
task is to generate system sentences in response to each user input in a given context.
In this task, the training and test data consists of un-annotated text dialogs which are
relatively inexpensive to collect for real tasks.

Our DSTC6 system was designed to improve the response quality for both objective
and subjective evaluation metrics. The reason we took this approach is not only to
record good numbers in the challenge but also we thought that improving the perfor-
mance in the both measures was quite important to build better dialog systems. The
objective measures such as BLEU and METEOR scores focus on a similarity between
the real human response and the system response while the subjective measures focus on
naturalness and appropriateness of the system response based on humans’ preference.
Although subjective measures usually give higher scores for real human’s responses,
they sometimes give low scores when a human operator could not meet a user’s request
due to some reason. In contrast, when a system solved user’s problem in the response,
the score tends to be high even though it rarely happens in the real service. Objective
measures sometimes give lower scores even for appropriate responses due to the lack
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of references covering various appropriate responses. Thus, the both measures are not
perfect but complementary to each other. Hence it is reasonable to improve the system
to have higher scores in the both measures.

Our proposed system has several key features to improve objective and subjective
scores. We employ multiple conversation models, a long short-term memory (LSTM)
encoder decoder, a bidirectional LSTM (BLSTM) encoder decoder, and a hierarchical
recurrent encoder decoder (HRED). The responses given by these models are combined
by a minimum Bayes risk (MBR)-based system combination technique to improve ob-
jective scores. On the other hand, sequence adversarial training and an example-based
method are used to improve subjective human rating scores. Furthermore, we extend
the reward function for sequence adversarial training to further improve the both scores.
Experimental results on the Twitter help-desk dialog task show that the combination
of these techniques effectively improves the performance in all the evaluation metrics
for the end-to-end conversation modeling track of DSTC6.

This paper is an extended version of our system description paper [12] presented
in the DSTC6 workshop, and includes new results that complete the evaluation of our
proposed system. The contribution of the paper can be summarized as follows.

1. Thorough evaluation of three different neural conversation models using a common
task,

2. Application of sequence adversarial training and extension of its objective function
to improve both objective and subjective evaluation metrics,

3. MBR-based system combination of multiple neural conversation models, which
has not been applied to neural conversation systems, and

4. Example-based response selection using an embedding-based context similarity.

5. Demonstrate our final system based on system combination of adversarially trained
models achieves the best human rating score while keeping high objective scores.

2 System Architecture

Figure 1 shows the architecture of our DSTC6 end-to-end conversation system. In the
training phase (the upper part of the figure), sequence-to-sequence models are first
trained with the Cross-Entropy (CE) criterion using the training corpus, where the the
system has three models LSTM, BLSTM and HRED. Furthermore, sequence adversarial
training is performed for the models to generate better sentences.

In the generation phase (the lower part of figure), we employ model-based sentence
generation and example-based response selection. For system response, either generated
or example response is selected according to a reliability of the example. We also apply a
system combination technique to enhance the response sentence by combining multiple
hypotheses generated by different models.
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Figure 1: System architecture. The upper part corresponds to the model training phase,
where we first define the model structure of LSTM, BLSTM, and HRED, then apply
cross entropy (CE) training to each of the models using the training corpus, optionally
we further apply adversarial training, and finally obtain the trained models. The lower
part corresponds to the generation phase, where we generate response sentences from
the trained models and apply system combination. We also use example-based response
selection if a similar context is found in the training corpus.

Details of each module are described in the following sections. Section 3 presents
conversation models and training algorithms used in the training phase of the system.
Section 4 explains response generation techniques used in the generation phase.

3 Conversation Model Training

3.1 Neural conversation models

The neural conversation model [6] is designed as an encoder decoder network using
recurrent neural networks (RNNs). Let X and Y be input and output sequences,
respectively. The model is used to compute posterior probability distribution P (Y |X).
For conversation modeling, X is word sequence x1, . . . , xT representing all previous
sentences in a conversation, and Y is word sequence y1, . . . , yM corresponding to a
system response sentence. X contains all of the previous turns of the conversation,
concatenated in sequence, separated by markers that indicate to the model not only
that a new turn has started, but which speaker said that sentence.

The encoder decoder network is used to compute P (Y |X) [6], where the encoder

4



x1 x2 x3 <eos> y1 y2 y3 y4 

y1 y2 y3 y4 <eos> 

Context 
(words of previous sentences) 

Response 
(words of reply) 

h1,1,c1,1 h1,2,c1,2 h1,3,c1,3

h2,1,c2,1 h2,2,c2,2 h2,3,c2,3

s1,1, r1,1 s1,2, r1,2 s1,3, r1,3

s2,1, r2,1 s2,2, r2,2 s2,3, r2,3

s1,4, r1,4 s1,5, r1,5

s2,4, r2,4 s2,5, r2,5

Figure 2: LSTM-based encoder decoder [6]. The encoder (on the left-hand side) embeds
contextual information, i.e., words of previous sentences, into state vectors, and the
decoder (on the right-hand side) predicts the response, i.e., words of reply, from the
encoder’s last state. In this example, the encoder and the decoder have two LSTM
layers, respectively.

first converts X to H a set of hidden vectors representing a contextual information,
and the decoder generates system response Y word by word referring to H, i.e.,

H = Encoder(X) (1)

ym ∼ Decoder(y1, . . . , ym−1, H). (2)

Since the decoder network provides a probability distribution of the next label as

P (·|y1, . . . , ym−1, X) , Decoder(y1, . . . , ym−1, H), (3)

we can compute P (Y |X) using the probabilistic chain rule:

P (Y |X) =
M∏
m=1

P (ym|y1, . . . , ym−1, X). (4)

We employ three types of encoder decoder networks, a LSTM encoder decoder
(Fig. 2), a BLSTM encoder decoder (Fig. 3), and a HRED (Fig. 4). When using an
encoder decoder network, each word of X and Y is converted to a word vector using
word embedding layers included in the network. In this work, we put a linear layer
before recurrent layers in each of the encoder and decoder networks, and a word is
converted as

x′t = Linear(xt; θ
E
enc) (5)

y′m = Linear(ym; θEdec), (6)

where Linear(·; θE) denotes a linear transformation with a set of parameters θE for the
encoder or the decoder, and we assume xt and ym are represented as one-hot vectors.
The word embedding layers are jointly trained with the encoder decoder network. Note
that these word embedding layers are not explicitly depicted in Figs. 2–4).
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B

h2,1
B ,c2,1

B h2,2
B ,c2,2

B h2,3
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B

<eos> y1 y2 y3 y4 

y1 y2 y3 y4 <eos> 

Response 
(words of reply) 

s1,1, r1,1 s1,2, r1,2 s1,3, r1,3

s2,1, r2,1 s2,2, r2,2 s2,3, r2,3

s1,4, r1,4 s1,5, r1,5

s2,4, r2,4 s2,5, r2,5

Figure 3: BLSTM-based encoder decoder. The encoder (on the left-hand side) embeds
contextual information using forward and backward LSTM layers, where the rightmost
states of the forward layers and the leftmost states of the backward layers are concate-
nated and fed to the decoder (on the right-hand side). In this example, the encoder
and the decoder have two LSTM layers, respectively.

3.1.1 LSTM encoder decoder

Given a LSTM encoder decoder of L layers, the encoding process (on the left hand side
of Fig. 2) outputs hidden state hl,t and cell state cl,t for l = 1, . . . , L and t = 1, . . . , T
as:

hl,t, cl,t = LSTM (hl−1,t, hl,t−1, cl,t−1; θenc,l) (7)

where LSTM(·; θenc,l) is a LSTM function with a set of parameters θenc,l for the l-th
LSTM layer of the encoder. We initialize activation vectors such that h0,t = x′t, hl,0 = 0
and cl,0 = 0. Since the last hidden and cell states are given to the decoder network, the
encoder function is defined as

H = Encoder(X) , {hl,T , cl,T |l = 1, . . . , L} . (8)

The decoding process (right hand side in Fig. 2) computes hidden state sl,m and cell
state rl,m for l = 1, . . . , L and m = 1, . . . ,M of the decoder as:

sl,m, rl,m = LSTM (sl−1,m, sl,m−1, rl,m−1; θdec,l) , (9)

where θdec,l is a set of decoder parameters for the l-th LSTM layer of the decoder. The
decoder states at m = 0 are initialized with H such that

sl,0 = hl,T , rl,0 = cl,T for hl,T , cl,T ∈ H, l = 1, . . . , L. (10)

We also initialize activation vectors such that s0,m = y′m−1, y
′
0 = y′M = Linear(<eos>; θEdec),

where <eos> is a special symbol representing the end of sequence.
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W ,c2,3

W

h1,1
S ,c1,1

S h1,2
S ,c1,2

S

Figure 4: Hierarchical recurrent encoder decoder (HRED) [13]. The hierarchical encoder
(on the left-hand side) has word-level and sentence-level layers. In the word-level layers,
sentence embedding vectors are obtained at each sentence end, which are then fed to
the sentence-level layer. The last hidden state of the sentence-level layer is fed to all the
decoder states (on the right-hand side). Note that connections represented in dashed
lines are not included in the original HRED.

The decoder function that produces the word probability distribution is defined as

Decoder(y1, . . . , ym−1, H) , Softmax
(
Linear(sL,m; θOdec)

)
, (11)

where each hidden state sL,m is converted to the distribution using the linear transfor-
mation followed by the softmax function. θOdec denotes a set of parameters for the linear
transformation including a transformation matrix and a bias vector.

3.1.2 BLSTM encoder decoder

A BLSTM encoder decoder has bidirectional LSTM layers in the encoder and unidirec-
tional LSTM layers in the decoder, where the encoder and the decoder have L layers,
respectively. As shown in Fig. 3, the last hidden and cell states of the forward layers
and the first hidden and cell states of the backward layers are concatenated and fed to
a LSTM decoder. The BLSTM encoder is used to obtain hidden and cell states as:

hFl,t, c
F
l,t = LSTM

(
hl−1,t, h

F
l,t−1, c

F
l,t−1; θ

F
enc,l

)
(12)

hBl,t, c
B
l,t = LSTM

(
hl−1,t, h

B
l,t+1, c

B
l,t+1; θ

B
enc,l

)
(13)

hl,t =
(
hFl,t, h

B
l,t

)
, (14)

where hFl,0, c
F
l,0, h

B
l,T+1 and cBl,T+1 are initialized with zero vectors. θFenc,l and θBenc,l are sets

of parameters of the l-th forward and backward LSTM layers in the BLSTM encoder,
respectively. At each layer, the forward and backward state vectors are concatenated
by Eq. (14) and fed to the upper layer.

Since the last forward states and the first backward states are given to the decoder
network, the BLSTM encoder function is defined as

H = Encoder(X) ,
{
hFl,T , c

F
l,T , h

B
l,1, c

B
l,1|l = 1, . . . , L

}
. (15)
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The decoder states at m = 0 are initialized with H such that

sl,0 =
(
hFl,T , h

B
l,1

)
, rl,0 =

(
cFl,T , c

B
l,1

)
for hFl,T , c

F
l,T , h

B
l,1, c

B
l,1 ∈ H, l = 1, . . . , L. (16)

Given the initial states, the decoder can predict Y in the same way as the LSTM
encoder decoder according to Eqs. (9) and (11).

3.1.3 Hierarchical recurrent encoder decoder

A HRED [13] has a hierarchical structure of word-level and sentence-level propagation
processes as shown in Fig. 4. In the word-level layer of the hierarchical encoder, a
sentence embedding vector is obtained at each sentence end, which is then fed to the
sentence-level layer. The last hidden state of the sentence-level layer is fed to all the
decoder states as an entire contextual information. In our system, the initial encoder
state of each word-level layer is also given from the last state of the previous sentence,
and the initial decoder state is given from the last encoder state of the word-level
layer. These connections are depicted with dashed lines in the figure, because they are
not included in the original HRED [13]. But, in our preliminary experiments, these
connections yielded slightly better BLEU and METEOR scores. An HRED network
can capture sentence-level state transitions in the dialog, which is potentially effective
to predict the next response when it has longer contextual information.

Suppose a HRED has an L-layer word-level encoder, a K-layer sentence-level en-
coder, and an L-layer decoder, and input word sequence X consists of U sentences.
Sentence chunks can be obtained automatically using a set of predefined sentence-end
markers such as independent period, question, exclamation, and carriage return char-
acters.

With the word-level encoder, X is encoded to a sequence of word-level hidden states
hWl,t and cell states cWl,t as:

hWl,t , c
W
l,t = LSTM

(
hWl−1,t, h

W
l,t−1, c

W
l,t−1; θ

W
enc,l

)
(17)

where θWenc,l is a set of parameters for the l-th LSTM layer. We initialize activation
vectors such that hW0,t = x′t, h

W
l,0 = 0 and cWl,0 = 0. The hidden state sequence on top of

word-level layers, hL,t, is then fed to the sentence-level encoder to obtain sentence-level
hidden states hSk,τ and cell states cSk,τ for k = 1, . . . , K and τ = 1, . . . , U as

hSk,τ , c
S
k,τ = LSTM

(
hSk−1,τ , h

S
k,τ−1, c

S
k,τ−1; θ

S
enc,k

)
(18)

where θSenc,k is a set of parameters for the k-th LSTM layer of the sentence-level encoder.
We initialize activation vectors such that hS0,τ = hWL,widx(τ), h

S
k,0 = 0 and cSk,0 = 0, where

widx(τ) converts sentence position index τ to the word position index corresponding
to the end of the τ -th sentence. In our HRED, the last hidden and cell states of the
word-level layers and the last hidden state on top of the sentence-level layer are given
to the decoder network. Thus, the encoder function is defined as

H = Encoder(X) ,
{
hWl,T , c

W
l,T , h

S
K,U |l = 1, . . . , L

}
. (19)
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The decoder states at m = 0 are initialized with H such that

sl,0 = hWl,T , rl,0 = cWl,T for hWl,T , c
W
l,T ∈ H, l = 1, . . . , L (20)

and sentence-level hidden vector hSK,U is fed to the decoder network together with input
vectors y′m, i.e., we assume s0,m = (y′m, h

S
K,U) for m = 1, . . . ,M in Eq. (9).

3.2 Model training strategies

Neural conversation models are usually trained to minimize cross entropy (CE) loss

LCE(θ) = − logP (Y |X; θ) (21)

for a set of paired context and response sentences (X, Y ), where θ denotes the set of
model parameters.

In our system, we also apply adversarial training [14] to the conversation models
to generate more human-like sentences. In the adversarial training, a generative model
and a discriminator are jointly trained, where the discriminator is trained to classify
system-generated and human-generated sentences as a binary classification problem,
and the generative model is trained to generate sentences so that they are judged as
human-generated sentences by the discriminator.

Adversarial training was originally proposed for image generation tasks. It has
also been applied to text generation tasks such as sentence generation [15], machine
translation [16], image captioning [17], and open-domain dialog generation [18].

To train the models, we use a policy gradient optimization based on the RE-
INFORCE algorithm [19]. First, the generative model, i.e., conversation model, is
trained with the cross entropy criterion. The discriminator is also trained using human-
generated (positive) samples and machine-generated (negative) samples.

In the REINFORCE algorithm, the reward is given as the probability that the sen-
tence is generated by human, which is computed by the discriminator. The generative
model is trained to generate sentences to obtain higher rewards, which means that gen-
erated sentences will become more human-like sentences. The objective function for
training the generative model is

JADV (θ) = EY∼PG(Y |X;θ)[PD(+1|{X, Y })], (22)

and its gradient is computed as

∇JADV (θ) ≈[PD(+1|{X, Y })− b({X, Y })]

∇
∑
t

logPG(yt|X, y1, . . . , yt−1; θ), (23)

where PG(Y |X; θ) is the probability distribution on Y given X computed by the gen-
erative model, and PD(+1|{X, Y }) is the probability that Y is generated by a human
(rather than by a machine) in response to X, which is given by the discriminator.
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Algorithm 1 Sequence Adversarial Training
1: procedure SequenceAdversarialTraining(TrainCorpus, θG, θD)
2: for i = 1, . . . , N Iterations do
3: for j = 1, . . . , N DSteps do
4: Sample (X,Y ′) from TrainCorpus
5: Sample Y ∼ PG(·|X; θG)
6: Update θD using (X,Y ′) as positive examples and (X,Y ) as negative examples
7: end for
8: for k = 1, . . . , N GSteps do
9: Sample (X,Y ′) from TrainCorpus

10: Sample Y ∼ PG(·|X; θG)
11: Update θG to increase PD(+1|{X,Y }; θD) + λSim(Y, Y ′)
12: end for
13: Update θG using (X,Y ′) for teacher forcing
14: end for
15: end procedure

b({X, Y }) is the baseline value [19]. The generative model and the discriminator are
alternately updated through the training iterations. We also added a teacher forcing
step, i.e., updating with the cross-entropy criterion for the generative model as in [18].

Moreover, we extend the reward function to regularize the generative model as

JADV S(θ) = EY∼PG(Y |X;θ) [PD(+1|{X, Y }) + λSim(Y, Y ′)] , (24)

where we incorporate a similarity measure between the generated sentence Y and the
reference (ground truth) sentence Y ′ in the reward function. We use a similarity func-
tion Sim(Y, Y ′) with scaling factor λ, which is a cosine similarity between average
word embedding vectors of the sentences. We used the same embedding model as the
example-based method in Section 4.3.

The similarity term hopefully avoids generating semantically mismatched sentences
even though they are characteristic of human generated sentences. The teacher forcing
step may afford a similar regularization effect to the model. However, it relies on the
cross entropy loss, i.e., the model is strongly affected by the distribution of the training
corpus, and the generated sentences become more likely to be machine generated. Ac-
cordingly, the similarity term can improve the sentence quality in a different way from
the teacher forcing.

We summarize the training procedure in Algorithm 1, where θG and θD are sets of
parameters of a generative model and a discriminator, which have been pretrained using
the cross entropy criterion before adversarial training. N Iterations is the number
of training iterations. N DSteps and N GSteps are the numbers of generation and
discrimination steps in each iteration.
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4 Response Generation

4.1 Basic method

Given a conversation model P (Y |X; θ) and dialog context X, the system response is
obtained as the most likely hypothesis Ŷ :

Ŷ = arg max
Y ∈V+

P (Y |X; θ) (25)

= arg max
Y ∈V+

MY∏
m=1

P (ym|y1, . . . , ym−1, X; θ), (26)

where V+ denotes a set of sequences of one or more words in system vocabulary V , and
MY indicates the length of Y . To find Ŷ efficiently, a beam search technique is usually
used, since Eq. (26) is computationally intractable to consider all possible Y . The
beam search method can also generate n-best hypotheses. The generated hypotheses
are used for system combination described in the next section (Section 4.2).

4.2 System combination

System combination is a technique to combine multiple hypotheses. Each component
system generates sentence hypotheses based on a single model, and the hypotheses of
multiple systems are combined to generate a better response.

To perform system combination, we apply a minimum Bayes-risk (MBR) decod-
ing [20, 21], which can improve the sentence quality by focusing on a specific evaluation
metric.

In MBR decoding, the decoding objective is defined as

Ŷ = arg max
Y ∈V∗

∑
Y ′∈V∗

P (Y ′|X)E(Y ′, Y ), (27)

where E(Y ′, Y ) denotes an evaluation metric assuming Y ′ is a reference (ground-truth)
and Y is a hypothesis (generated description). The summation on the right-hand side
calculates the expected value of the evaluation metric over P (Y ′|X), and the MBR
decoder finds hypothesis Ŷ that maximizes (or minimizes) the expected evaluation
metric. Since it is intractable to enumerate all possible word sequences in vocabulary
V , we usually limit them to the n-best hypotheses generated by a standard decoder.
Although in theory the probability distribution P (Y ′|X) should be the true distribution,
we instead compute it using the encoder-decoder model since the true distribution is
unknown.

In this approach, any evaluation metric can be used. If we use BLEU [22] score, the
metric can be computed as

E(Y ′, Y ) = exp

(
N∑
n=1

log
pn(Y ′, Y )

N

)
× γ(Y ′, Y ), (28)
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where N is the order of the BLEU score (usually N = 4), and pn(Y ′, Y ) is the precision
of n-grams in hypothesis Y . The penalty term, γ(Y ′, Y ) = 1 if len(Y ′) < len(Y )
and exp(1 − len(Y ′)/ len(Y )) otherwise, penalizes hypotheses Y that are shorter than
reference Y ′.

For system combination, multiple n-best lists obtained by the different systems
are first concatenated into one list, where the posterior probability of each hypothesis
is rescaled so that the sum of the probabilities equals one in the concatenated list.
Then, the MBR decoding is performed to select the best hypothesis according to Eq.
(27). Since the evaluation metric usually indicates a similarity between two sentences,
hypotheses that are similar to each other receive higher expected scores and one with
the highest score is selected as the final output.

4.3 Example-based response selection

We also use an example-based method. When the system finds a similar context in a
training corpus, it outputs the response corresponding to the context. Suppose dialogs
in the training corpus are represented as following format:

(X ′i, Y
′
i ), i = 1, ..., N (29)

where X ′i is the sequence of all previous sentences in dialog i, Y ′i is the system response,
and N is the total number of dialogs in the corpus. Given previous sentences X as an
input, the similarity between X and X ′i is computed for each training dialog, where a
cosine similarity is used. Then reference Y ′i corresponding to the highest similarity is
regarded as system output Ŷ , i.e.,

Ŷ = Y ′
î

(30)

î = arg max
i=1,...,N

Sim(X,X ′i). (31)

When computing the similarity, word vectors obtained by word2vec [23] is applied
to feature extraction. Firstly a training corpus is used to obtain a word2vec model.
Secondly, word vectors in the input sequence are averaged to obtain the final feature
vector. The similarity is computed as

Sim(X,X ′) = CosineSimilarity(Embed(X),Embed(X ′)), (32)

where

Embed(X) =

∑
x∈X word2vec(x)∣∣∑
x∈X word2vec(x)

∣∣ , (33)

and word2vec(·) converts word x to its vector representation.
The example-based response is combined with other sentence generated sentences as

shown in Figure 1. If the highest similarity score in Eq. (31) is larger than a predefined
threshold, Y ′

î
is used for the system output, otherwise the generated sentence is used.
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5 Related Work

There is a lot of prior work done for end-to-end conversation modeling and training
[6, 13, 24, 18, 25]. A neural conversation model was proposed by [6], where LSTM-
based sequence-to-sequence models were trained with a large amount of conversational
text corpus. Since the examples of generated sentences looked reasonable, this ap-
proach gained attention in the research field. However, this model is basically trained
with cross entropy loss, i.e., maximum likelihood criterion, and therefore the system
responses tend to be very common sentences in the corpus, which often degrade subjec-
tive evaluation scores. To solve this problem, diversity-promoting objective functions
have been proposed [24, 18, 25]. Our system employs an adversarial training approach
of [18] since it outperformed the maximum mutual information (MMI) approach [25] in
pair-wise human judgment evaluation [18]. However, these diversity-promoting func-
tions only focus on improving subjective evaluation scores. In this paper, we extend
the objective function to improve both subjective and objective evaluation scores by in-
corporating a semantic similarity measure between the reference and system responses
as a regularization term.

Our system also has system combination module. Although the system combina-
tion technique has previously been applied to speech recognition [26, 27] and machine
translation [28], it has not yet been used for dialog response generation using multiple
neural conversation models (to the best of our knowledge). To perform system combi-
nation, we apply a minimum Bayes-risk (MBR) decoding [20, 21], which can improve
the sentence quality by focusing on a specific objective evaluation metric. Furthermore,
system combination of adversarially trained models is a novel approach, where we aim
at selecting a response with a high objective score from human-like diversified responses
generated by the trained models for improving the both subjective and objective scores.

The example-based methods are also popular in dialog systems [29, 30] since the
system can respond with a real example of natural human response in a dialog cor-
pus. However, it is quite expensive to prepare a sufficient number of examples, which
cover various users’ utterances and the corresponding responses. Our system takes the
example-based response only when a very similar context is found in the corpus. Oth-
erwise, it uses the response from the neural conversation model. This architecture is
not seen in other systems.

6 Experiments

6.1 Conditions

We evaluated our proposed system with the DSTC6 Twitter dialog task. Training,
development and test sets were collected from Twitter sites related to customer services.
Table 1 shows the size of each data set.

In order to be able to predict responses occurring partway through a dialog, we
expanded the training and development sets by truncating each dialog after each system
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Table 1: Twitter data
train dev. test

#dialog 888,201 107,506 2,000
#turn 2,157,389 262,228 5,266
#word 40,073,697 4,900,743 99,389

#dialog (expanded) 1,043,640 126,643 -
#turn (expanded) 2,592,255 317,146 -
#word (expanded) 50,106,092 6,182,080 -

Table 2: Model size
encoder decoder

#layer #sent-layer #cell #layer #cell

LSTM 2 - 128 2 128
BLSTM 2 - 128 2 256
HRED 2 1 128 2 128

response, and adding the truncated dialogs to the data sets. In each dialog, all turns
except the last response were concatenated into one sequence to form input sequence
X, with meta symbols <U> and <S> inserted at the beginning of each turn to explicitly
utilize turn switching information. The last response was used as output sequence Y .

We built three types of models, LSTM, BLSTM, and HRED for response generation
using the expanded training set. We employed an ADAM optimizer [31] with the cross-
entropy criterion and iterated the training process up to 20 epochs. For each of the
encoder-decoder model types, we selected the model with the lowest perplexity on the
expanded development set. We also decided the model size based on the BLEU score
for the development set, which resulted in Table 2.

We further applied adversarial training for each model, where we built a discrim-
inator as an LSTM-based sequence classifier, which takes input sequence {X, Y } and
returns probability PD(+1|{X, Y }). We applied a linear layer on top of the final hidden
state of the LSTM, and the single output value is converted to the probability using a
sigmoid function. The discriminator had two layers and 128 hidden units (cells) in each
layer. After pretraining, one generative model update and five discriminator updates
were alternately performed as in [18]. In preliminary experiments, adversarial training
was unstable for LSTM encoder decoder and HRED with the LSTM discriminator. We
only show the results for the BLSTM encoder decoder.

For example-based response selection, we trained a word2vec model using the ex-
panded training set. The dimension of word vectors was 200. The similarity threshold
to use the examples instead of the model-based responses was set to 0.9. We chose this
threshold so that the BLEU score did not degrade on the development set.

For system combination, we combined three system outputs from the LSTM, BLSTM,
and HRED networks. Each system generated 20-best results. The networks we used
here were trained with the cross entropy criterion. We did not use the networks trained
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Table 3: Evaluation results with word-overlap based metrics for 11 references.
Methods BLEU4 METEOR ROUGE L CIDEr

Baseline 0.1619 0.2041 0.3598 0.0825

LSTM 0.2166 0.2147 0.3928 0.1069
BLSTM 0.2051 0.2139 0.3876 0.1077
HRED 0.1978 0.2106 0.3892 0.1035
3-System Combination 0.2205 0.2210 0.4102 0.1279

LSTM+EG 0.2118 0.2140 0.3953 0.1060
BLSTM/ADV 0.1532 0.1833 0.3469 0.0800
BLSTM/ADV+EG 0.1504 0.1826 0.3446 0.0803
BLSTM/ADV+CSR+EG 0.1851 0.2040 0.3748 0.0965

with the adversarial method or the example-based method, since the aim of system
combination was to improve objective scores.

6.2 Results submitted to DSTC6

The evaluation results of our models, training and decoding methods are summarized in
Tables 3, 4 and 5. Table 3 shows the objective scores measured by word-overlap based
metrics, BLEU4, METEOR, ROUGE L, and CIDEr, while Table 4 shows the objective
scores measured by word-embedding based metrics, SkipThoughts Cosine Similarity,
Embedding Average Cosine Similarity, Vector Extrema Cosine Similarity, and Greedy
Matching scores. We used nlg-eval1 [32] to compute the objective scores. We prepared
11 references consisted of one true response and human-generated 10 responses for each
dialog context. All the references were provided by the challenge organizers. The word-
embedding-based scores were computed using the embedding models trained with the
BookCorpus dataset [33]. Table 5 shows the subjective evaluation results based on
human rating conducted by the challenge organizers, where each response was rated by
10 human subjects given the dialog context.

Since the evaluation was done using a crowd-sourcing service, Amazon Mechanical
Turk (AMT), the 10 human subjects (Turkers) could be different for each response.
The human ratings were collected for each system response and the reference using 5
point Likert scale, where the subjects rated each response by 5 level scores, Very good
(5), Good (4), Acceptable (3), Poor (2), and Very poor (1). Before rating, the subjects
were instructed to consider naturalness, informativeness, and appropriateness of the
response for the given context. The details are described in [8].

The baseline results were obtained with an LSTM-based encoder decoder in [34],
but this is a simplified version of [6], in which back-propagation is performed only up
to the previous turn from the current turn, although the state information is taken over
throughout the dialog. We used the default parameters, i.e., #layer=2 and #cell=512
for the baseline system. ‘EG’ and ‘ADV’ denote example-based response selection and

1https://github.com/Maluuba/nlg-eval
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Table 4: Evaluation results with embedding based metrics for 11 references.
Methods Skip Embedding Vector Greedy

Thought Average Extrema Matching

Baseline 0.6380 0.9132 0.6073 0.7590

LSTM 0.6824 0.9187 0.6343 0.7719
BLSTM 0.6757 0.9185 0.6268 0.7700
HRED 0.6859 0.9221 0.6315 0.7729
3-System Combination 0.6636 0.9251 0.6449 0.7802

LSTM+EG 0.7075 0.9271 0.6371 0.7747
BLSTM/ADV 0.6463 0.9077 0.5999 0.7544
BLSTM/ADV+EG 0.6451 0.9070 0.5990 0.7534
BLSTM/ADV+CSR+EG 0.6706 0.9116 0.6155 0.7613

Table 5: Evaluation results with 5-level human ratings.
Methods Human Rating

Baseline 3.3638

3-System Combination 3.4332

LSTM+EG 3.3894
BLSTM/ADV 3.4381
BLSTM/ADV+EG 3.4453
BLSTM/ADV+CSR+EG 3.4777

Reference 3.7245

adversarial training. ‘CSR’ means we used the cosine similarity reward in addition to
the discriminator scores as in Eq. (24).

The results demonstrate substantial improvement by using system combination in
most objective measures, where we used the BLEU1 metric for MBR decoding2. These
objective scores were also better than other systems’ scores officially submitted to
DSTC6.

On the other hand, such objective scores degraded slightly by example-based re-
sponse selection and significantly by adversarial training. Since our aim of using these
techniques was to improve the subjective measure rather than the objective measures,
we expected these results to some extent. However, if we add the cosine similarity to
the reward function, we can mitigate the degradation of objective scores by adversarial
training.

Regarding the subjective evaluation, as we expected, the example-based response se-
lection and adversarial training improved the human rating score. Table 5 shows a slight
improvement from ‘BLSTM/ADV’ (3.4381) to ‘BLSTM /AVG+EG’ (3.4453) by the
example-based method and a further gain by adding the cosine similarity reward for ad-

2We conducted preliminary experiments to compare BLEU1 to BLEU4, METEOR, and Embedding
Average Cosine Similarity for MBR decoding, and BLEU1 was the best for most objective measures
for the development set.
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versarial training, which achieved the best performance with BLSTM/ADV+CSR+EG
(3.4777) using our official DSTC6 system.

Although we should also investigate the impact of CSR without EG, it is difficult to
do the experiments again with the same human subjects. However, the impact of EG is
very limited, because we used 0.9 as the threshold for the similarity, and the examples
were used only for 6% of dialogs in the test set. Therefore, we think the comparison
is still effective. We set the threshold as small as possible within the range where the
objective scores do not decrease.

System combination also improved the human rating score, which can be observed
by comparing the scores of ‘LSTM+EG’ (3.3894) and ‘3-System Combination’ (3.4332)
even though the models for system combination were not trained by adversarial training
or combined with the example-based method. Accordingly, an approach to further
improve the human rating score is to combine the responses from different adversarial
models. The next section will investigate this possibility.

6.3 System combination results on adversarial models

We further conducted system combination of LSTM, BLSTM, and HRED trained with
the adversarial method. In adversarial training, a LSTM-based discriminator consis-
tently used, but it was downsized to the half, i.e., 64 cells for each layer in LSTM and
HRED since the training procedure was unstable when we used the 128 cells. This could
be because the discriminator was too strong against the generative models, which had
almost the same complexity as the generative ones. The LSTM, BLSTM and HRED
models were retrained with the adversarial plus cosine similarity objective in Eq. (24).

Tables 6 and 7 show objective scores based on word-overlapping and word-embedding
metrics. New results on LSTM indicate that adversarial training does not necessarily
degrade the objective scores as comparing the results of ‘LSTM+EG’ with those of
‘LSTM/ADV+CSR+EG’. This could be due to the regularization effect by the sim-
ilarity term. Similar to the results in Tables 3 and 4, system combination of three
adversarial models yielded a certain gain even for the objective measures. For refer-
ence, we also show the objective scores of [25]’s system, which achieved the best human
rating score in DSTC6, and the best score of the other systems in each metric [8].
Since [25]’s system was designed to improve subjective scores, it did not provide high
objective scores.

Table 8 shows human rating scores for the baseline and system combination, where
the system combination of adversarially trained models improved the rating score as
well as the objective scores. We also compare our system with the best system in terms
of human rating score in the official evaluation of DSTC6 [25]. Finally, our system
achieved a higher score than that of the best system. Note that since we conducted the
subjective evaluation with different human raters for these new experiments, the scores
are not the same as those reported in the official results [8].
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Table 6: Evaluation results on adversarial system combination with word-overlap based
metrics for 11 references.

Methods BLEU4 METEOR ROUGE L CIDEr

Baseline 0.1619 0.2041 0.3598 0.0825
3-System Combination 0.2205 0.2210 0.4102 0.1279

LSTM+EG 0.2118 0.2140 0.3953 0.1060
LSTM/ADV+CSR+EG∗ 0.2190 0.2026 0.3888 0.1187
BLSTM/ADV+CSR+EG 0.1851 0.2040 0.3748 0.0965
HRED/ADV+CSR+EG∗ 0.1821 0.2003 0.3794 0.0945
3-System Comb./ADV+CSR+EG∗ 0.2199 0.2207 0.3982 0.1204

[25] 0.1575 0.1918 0.3658 0.1112

Best of other systems 0.1779 0.2085 0.3829 0.1112
∗New results after DSTC6 workshop.

Table 7: Evaluation results on adversarial system combination with embedding based
metrics for 11 references.

Methods Skip Embedding Vector Greedy
Thought Average Extrema Matching

Baseline 0.6380 0.9132 0.6073 0.7590
3-System Combination 0.6636 0.9251 0.6449 0.7802

LSTM+EG 0.7075 0.9271 0.6371 0.7747
LSTM/ADV+CSR+EG∗ 0.6782 0.9043 0.6363 0.7673
BLSTM/ADV+CSR+EG 0.6706 0.9116 0.6155 0.7613
HRED/ADV+CSR+EG∗ 0.6815 0.9211 0.6355 0.7681
3-System Comb./ADV+CSR+EG∗ 0.7046 0.9285 0.6433 0.7797

[25] 0.6457 0.9076 0.6075 0.7528

Best of other systems 0.6529 0.9132 0.6106 0.7683
∗New results after DSTC6 workshop.

6.4 Verification of evaluation results

We conducted statistical tests to verify the objective and subjective evaluation results
obtained in the above experiments. We used a two-sample z-test for the difference of
objective scores and Welch’s t-test for the difference of human rating scores.

Table 9 compares BLEU4 and METEOR scores before and after adding the co-
sine similarity reward (CSR) in adversarial training. p-values for the difference of the
scores were nearly equal to zero. This means that the improvements are statistically
significant, and demonstrates the effectiveness of CSR to retain high objective scores
in adversarial training. We also had significant improvements in the other objective
measures as shown in Tables 3 and 4.

Table 10 shows human rating scores and p-values for the baseline and BLSTM/ADV
systems. Compared with the baseline, adversarial training and CSR provided significant
improvements with p < 0.05. We can also see that CSR further improved the human
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Table 8: Evaluation results on adversarial system combination with 5-level human
ratings. Note that rating scores do not match those in Table 5 because human raters
are different from those who performed the rating for the official DSTC6 evaluation.

Methods Human Rating

Baseline 3.2145
3-System Combination 3.3169
3-System Comb./ADV+CSR+EG∗ 3.5126

[25] 3.4871

Reference 3.6929
∗New results after DSTC6 workshop.

Table 9: Statistical test p-values on the BLEU4 and METEOR improvements from the
BLSTM/ADV+EG system. Bold numbers indicate p < 0.05.

Methods BLEU4 p-value METEOR p-value

BLSTM/ADV+EG 0.1504 - 0.1826 -
BLSTM/ADV+CSR+EG 0.1851 ≈ 0 0.2040 ≈ 0

rating score although the difference is not significant (p = 0.097).
Table 11 verifies the efficacy of system combination in objective measures (BLEU4

and METEOR). We can see that the system combination yielded a significant improve-
ment (p = 0.0354 for BLEU4 and p = 0.0007 for METEOR) from our best single
system (LSTM). We also confirmed that system combination of adversarially trained
models had high objective scores competitive to or better than the best single system
(p = 0.0749 for BLEU4 and p = 0.0012 for METEOR).

Furthermore, we show p-values on human rating scores of system combination in
Table 12. According to the p-values, our final system is significantly better than the
original system combination, although the score gain from [25] is not statistically sig-
nificant (p = 0.2152 > 0.05). Accordingly, we can say that our final system achieved
top-level performance in both subjective and objective evaluation metrics for this neural
conversation task.

6.5 Response examples

We show some examples of responses that our system generated. The first example
in Table 13 shows the impact of adversarial training and the cosine similarity-based
reward (CSR). The LSTM-based model generated irrelevant phrase “please dm us

your order number”, which is observed very frequently in the training data but it is
inappropriate in this context. When using adversarial training (BLSTM/ADV+EG),
the response became more relevant to the context3. Although the human rating score
increased from 2.8 to 4.0, the BLEU4 score degraded from 0.5 to 0.22. But it was

3Since the BLSTM without adversarial training generated the same response as the LSTM for this
context, the performance difference would not cause the difference of model architecture.
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Table 10: Statistical test p-values on human rating scores in Table 5. The p-values were
computed on the improvements from the baseline and BLSTM/ADV. Bold numbers
indicate p < 0.05.

Methods Human Rating p-value for baseline p-value for BLSTM/ADV

LSTM+EG 3.3638 0.3195 -
BLSTM/ADV 3.4381 0.0028 -
BLSTM/ADV+EG 3.4453 0.0011 0.7636
BLSTM/ADV+CSR+EG 3.4777 ≈ 0 0.0970

Table 11: Statistical test p-values on the BLEU4 and METEOR improvements from
the best single system. Bold numbers indicate p < 0.05.

Methods BLEU4 p-value METEOR p-value

Best single system (LSTM) 0.2166 - 0.2147 -
3-System Combination 0.2205 0.0354 0.2210 0.0007
3-System Comb./ADV+CSR+EG 0.2199 0.0749 0.2207 0.0012

recovered to 0.51 by adding the CSR, where the responses with and without CSR are
similar, but more common phrases are used by CSR. The adversarial training with CSR
provided higher scores in the both metrics.

The second example in Table 14 shows similar effects on the response quality.
BLSTM/ADV+EG generated a fancy response with “♥” marks, while BLSTM/ADV+CSR+EG
generated more conservative response even though their meanings are not different. Ad-
versarial training actually increases this kind of responses, but CSR can usually suppress
them.

The third example in Table 15 shows the impact of system combination. With
system combination, the objective score, e.g. BLEU4, can be improved. But it is
difficult to correct irrelevant responses if all the models generated irrelevant responses
that are similar to each other. In Table 15, the response of 3-System Combination is
almost the same as that of LSTM+EG although the BLEU4 score slightly improved.
Finally, system combination of adversarially trained models, i.e., 3-System Combina-
tion/ADV+CSR+EG, generated a better response with 3.4 human rating score while
retaining the BLEU4 score of standard system combination.

7 Conclusion

We proposed a neural conversation system for the 6th Dialog System Technology Chal-
lenge (DSTC6). Our system consists of several conversation models such as a long
short-term memory (LSTM), a bidirectional LSTM (BLSTM) encoder decoder, and
hierarchical recurrent encoder decoder (HRED), advanced training modules such as
sequence adversarial training, and decoding techniques based on system combination
by minimum Bayes Risk (MBR) decoding and example-based response selection. In
our experimental results on a Twitter help-desk dialog task, adversarial training and
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Table 12: Statistical test p-values on human rating scores of system combination in
Table 8.

Methods Human
Rating

p-value for 3-System
Combination

p-value for [25]

3-System Combination 3.3169 - -
3-System Comb./ADV+CSR+EG 3.5126 ≈ 0 0.2152
[25] 3.4871 ≈ 0 -

Table 13: Example responses (1).
Context U: starting our holiday with a 3hr delay isn ’t gr8

.. hope you make sure there are some refreshments

at barcelo fuertaventura

Systems Response BLEU4 Human
Rating

LSTM+EG hi <USER> , i ’m sorry to hear this .

please dm us your order number so we

can look into this for you . thank

you .

0.50 2.8

BLSTM
/ADV+EG

sorry to hear about this <USER> ,

can you dm us with further details so

that we can look into this for you ?

0.22 4.0

BLSTM
/ADV+CSR+EG

hi <USER> , i ’m sorry to hear this .

can you please dm us your details so

we can look into this for you ?

0.51 3.9

Reference hi <USER> , i am sorry to hear this .

our team are hard at work to ensure

this departs as quickly as possible

1.00 4.0

example-based response selection improved human rating score while system combina-
tion with MBR decoding improved both objective and subjective measures including
BLEU, METEOR and human rating scores. Furthermore, our system yielded the best
scores in most objective evaluation metrics and a better score than that of the best
system in terms of human rating evaluation. Although the difference of human rating
scores between the best system and our final system was not statistically significant, we
demonstrated that our final system achieved top-level performance in both subjective
and objective evaluation metrics by applying the proposed techniques.
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Table 15: Example responses (3).
Context U: when is @ikeacanada opening in dartmouth crossing
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Systems Response BLEU4 Human
Rating

LSTM+EG hi <USER> , we ’re sorry to hear this

. please dm us your contact info

so we can look into this for you .

thank you .

0.11 1.7
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nation
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