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Abstract—This work investigates energy-optimal motion plan-
ning for a class of multi-axis motion systems where the system
dynamics are linear time-invariant and decoupled in each axis.
Solving the problem in a reliable and efficient manner remains
challenging owing to the presence of various constraints on con-
trol and state, non-convexity in the cost function, and obstacles.
This work shows how the cost function can be convexified by
taking into account the system dynamics, while decomposing
decision variables to obtain a convex representation of colli-
sion avoidance constraints. With the convexified cost function
and constraints, the original problem is decomposed into two
quadratic programming (QP) problems. An alternating quadratic
programming (AQP) algorithm is proposed to solve both QP
problems alternatingly and iteratively until convergence. Requir-
ing an initial feasible trajectory as a guess, AQP necessarily
converges to an energy-efficient solution which is homotopic to
the initial guess. Under certain circumstances, AQP is guaranteed
to produce a local optimum. Simulation demonstrates that AQP is
computationally efficient and reliable while claiming comparable
energy saving as the Mixed-Integer QP approach.

Notes to Practitioners—This paper presents an energy-optimal
motion planning algorithm that can be easily implemented on
a class of multi-axis motion systems. Main advantages of the
proposed algorithm are: 1) it produces a trajectory resulting in
lower but comparable energy efficiency as the global optimum;
2) it is guaranteed to provide an energy-efficient and constraint-
compliant trajectory, and thus is reliable; 3) it requires a low
computational load and can be deployed on a wide range of
applications; and 4) its implementation is straightforward to any
engineer with basic knowledge of numerical methods.

Index Terms—Motion planning, minimum energy, obstacle
avoidance, quadratic programming, constrained optimization

I. INTRODUCTION

THIS paper focuses on energy-optimal collision-free mo-
tion planning for multi-axis motion systems with linear

time-invariant (LTI) dynamics. The dynamics in each axis are
decoupled from the rest axes, whereas the motion is coupled
with other axes through non-convex collision avoidance con-
straints and a cost function. The system motion is additionally
subject to convex constraints such as speed, acceleration, and

Y. Zhao is with Halliburton Energy Service, 3000 N Sam Houston Pkwy
E, Houston, TX 77032, USA. email: yiming.zhao@ieee.org

Y. Wang is with Mitsubishi Electric Research Laboratories, 201 Broadway,
Cambridge, MA 02139, USA. email: yebinwang@ieee.org

M. C. Zhou is with Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102, USA. email:
zhou@njit.edu

J. Wu is with the Department of Automation, Shanghai Jiao Tong Univer-
sity, Shanghai 200240, China. email: jingwu@sjtu.edu.cn

control constraints. Examples of such systems include multi-
stage positioning machines, chip mounting machines, and
drilling machines.

The energy-optimal collision-free motion planning can be
found in extensive applications, to name a few, machines,
mobile robots, and manipulators. Prevalent approaches to
tackle this problem can be categorized into decomposition-
based [1] and kinodynamic approaches [2]. For the decom-
position approach, a path planner takes into account geo-
metric conditions of the environment and robot to generate
a collision-free and energy-efficient path [1], [3], [4]; and a
motion planner determines a dynamically feasible and energy-
efficient motion along the path. The energy-efficient path
planning usually resorts to graph-based search algorithms,
e.g. A* and its variants [5], [6]. The graph is typically
constructed by connecting collision-free grids, lattices, or
random nodes, which represent collision-free configurations
of the robot. The grids are obtained by decomposing the
configuration space, whereas lattices and random nodes can
be generated by sampling the configuration space or control
input space. Well-established sampling-based algorithms for
graph construction include probabilistic roadmap [7], rapid-
exploring random tree (RRT) [8], etc. Interested readers are
referred to [9] for more information. The motion along a
given path can be determined by applying, for instance,
the minimum principle [10], [11], dynamic programming
[12], and numerical optimization [13]–[15]. The minimum
principle is merely applicable to low order systems with
simple constraints, whereas numerical optimization can deal
with more general systems and constraints. For the numerical
optimization approach, energy-efficient motion planning for a
given path ends up with solving a non-convex optimization
problem, which suffers a high computational load and lack
of convergence guarantee. Compared with kinodynamic plan-
ning, the decomposition approach is relatively computationally
efficient, albeit plagued by sub-optimality. Meanwhile, since
the geometric path may not satisfy the system dynamics,
the dynamically feasible motion might deviate from it and
collide with obstacles [3]. This limitation is apparent when
the system dynamics are nonholonomic. In order to avoid non-
convex collision avoidance constraints in the motion planning
stage, existing work largely focus on the determination of
the velocity profile and thus achieve computational efficiency;
however little work exploits the freedom of finely tuning the
geometric path to improve energy efficiency.
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Determining the path and motion simultaneously, kinody-
namic planning addresses limitations of the decomposition
approach at the expenses of a higher computational cost.
A core question underlying kinodynamic planning is how
to construct a dynamically feasible path between any two
nodes in the configuration or system state space. This is
non-trivial for systems with nonlinear dynamics or numerous
constraints, because it corresponds to solve a boundary value
problem. This hurdle can be effectively overcome by sampling
the control input space, by which the construction of the
dynamically feasible path boils down to solving an initial
value problem [16]. Such a treatment however incurs the
loss of algorithmic completeness [17]. Alternatively, many
studies exploit the numerical optimization approach [18], [19],
which is usually more tractable than those based on classical
optimal control theory, e.g. [20]. Owing to non-convexity in
dynamics and constraints, this approach results in solving non-
convex optimization problems, which rarely has guaranteed
convergence and optimality. As a common practice, integer
variables are introduced such that for fixed values of the
integer variables, collision avoidance constraints are greatly
simplified or even convex. Such a scheme yields, for instance,
a Mixed-Integer Linear Programming (MILP) [21] and a
Mixed-Integer Quadratic Programming (MIQP) [22]. Although
an MILP or MIQP problem can be solved for the globally
optimal solution, its computation time grows exponentially
along with the number of obstacles and the computation
becomes prohibitive.

It is worth mentioning that time-optimal motion planning
has been intensively studied via similar approaches. Work
[23], [24] considers time-optimal velocity planning along a
given path by utilizing optimal control theory; [25] follows
the numerical optimization approach and demonstrates that
time-optimal motion planning for a wide range of mechanical
systems can be formulated as a convex programming problem.
Key limitation of work [25] is two-fold: the mechanical
systems should not include viscous friction; the cost function
has to be either time, or copper loss, or their combination.
Work [2] performs kinodynamic time-optimal motion plan-
ning by constructing and searching a directed graph which
approximates the state space of the robot. Given a finite set of
control actions and the robot’s initial state, the directed graph
is recursively constructed by applying control actions for a
fixed time interval to the robot dynamics; and then the breadth
first search is conducted until a path, rooted in the initial state,
extends to a state close enough to the goal state. Having the
directed graph induced by a finite set of control actions is
plausible for the time-optimal problem, because the optimal
control admits bang-bang actions exactly captured by the finite
set. With this fact, the kinodynamic planning converges to the
optimal solution as the time interval goes to zero. Nevertheless
a fixed time interval results in a finite discretization of the
state space consisting of position and velocity state variables;
and the resultant motion is not only sub-optimal, but also ε-far
from the goal state [2]. Turning to the energy-optimal problem,
its optimal control is continuous. Although the idea in [2]
can be generalized to the energy-optimal problem, one cannot
establish the asymptotic optimality even with an infinitesimal

time interval. This is consistent with observation in [26] where
the asymptotic optimality of the RRT* algorithm is established
under the condition of optimal steering. Additionally, kino-
dynamic planning by assuming a finite set of control actions
necessarily leads to motions with discontinuous control, which
is undesirable for possible excitation of vibration. Hence, it
is advantageous to smooth such motions in a post-processing
stage.

This work exploits the numerical optimization approach to
solve the energy-optimal motion planning problem and mainly
addresses two challenges: lack of convergence guarantee and
proof of local optimality. With an initial feasible trajectory
being a prerequisite, this work concentrates on the motion
planning stage of the decomposition approach. An alternating
programming approach is followed to utilize the design free-
dom in path as well as velocity, and thus ameliorate energy
efficiency of the resultant solution. Main contributions of this
work are: 1) show how a cost function characterizing the
copper losses and mechanical work of electric motors can
be convexified by taking into account the system dynamics;
2) offer an Alternating Programming approach to refine a
dynamically feasible trajectory to improve energy efficiency;
3) identify a class of energy-optimal motion planning prob-
lems, for which the convergence of the proposed alternating
programming algorithm can be established, and the resultant
solution is locally optimal. More specifically, this work first
convexifies the cost function, by which the motion planning
problem admits MIQP formulation. Additionally, we circum-
vent the non-convexity of collision avoidance constraints by
decomposing decision variables into multiple sets, where each
set corresponds to one individual axis. Taking advantage of
the decoupled nature of system dynamics, constraints, and the
cost function, we decompose the motion planning problem
into multiple Quadratic Programming (QP) subproblems. An
Alternating Quadratic Programming (AQP) algorithm is pro-
posed to perform motion planning by solving subproblems
alternatively and iteratively.

As a continuation and completion of [27], this work estab-
lishes the convergence of the AQP algorithm. Furthermore,
when the boundary of a non-convex collision-free region
satisfies certain conditions, AQP always yields a locally opti-
mal solution. Comparing AQP and MIQP through simulation,
AQP can determine a solution resulting comparable energy
efficiency as the solution of MIQP but require much less
computation time. It is noteworthy that AQP can be viewed
as a special case of alternating convex programming, which
has been applied to medical image processing [28] and joint
optimization of communication and control systems [29]. This
work is related to [10], where a single-axis motion system
moves in an obstacle-free environment. Requiring a dynami-
cally feasible trajectory as its input, the proposed alternating
programming module can be cascaded with existing work, e.g.
[2], to further improve energy efficiency.

This paper is structured as follows. Section II introduces
the system and energy-optimal collision-free motion planning
problems. Section III presents the convexification of a cost
function, decomposition of the motion planning problem, and
AQP. The convergence of AQP and optimality of its solution



3

are analyzed in Section IV. Numerical validation are provided
in Section V. Section VI concludes this paper.

II. PROBLEM FORMULATION

This paper presents results based on a multi-axis motion
system having two translational degree of freedoms (DoFs).
This causes no loss of generality because the proposed work
can be easily extended to systems with more DoFs.

A. System Dynamics

Assume that a two-DoF multi-axis motion system has the
following LTI dynamics

ẋ = vx (1)
ẏ = vy (2)
v̇x = −dxvx + bxux (3)
v̇y = −dyvy + byuy, (4)

where x, y ∈ R denote the displacements in the x and y axis,
respectively; vx, vy ∈ R the speeds along the x and y axis,
respectively; ux, uy are the control inputs; dx, dy > 0 are
viscous friction coefficients; and bx, by > 0 are constants.
Note that parameters in (3) and (4) are normalized by system
masses, and the motion system can have distinct masses
in different axes. The system starts from an initial position
(x0, y0) at time t = 0 with initial speeds (vx0

, vy0
), and

moves to a final position (xf , yf ) at time t = tf with final
speeds (vxf

, vyf
). The nonlinear Coulomb friction effect is

neglected in exchange for improved computation efficiency
and guaranteed convergence of the algorithm later proposed.
This simplification is adopted in literature, e.g. [30]–[32], and
plausible for high performance machines where the Coulomb
force is typically much smaller than actuator forces.

B. Continuous-Time Problem

The energy consumption of system (1)-(4) is characterized
by the following quadratic cost function

J(vx, ux, vy, uy) = Jx(vx, ux) + Jy(vy, uy)

=

∫ tf

0

(
Rxu

2
x +Kxvxux +Ryu

2
y +Kyvyuy

)
dt,

(5)

where Rxu
2
x and Ryu

2
y correspond to copper losses, and

Kxvxux and Kyvyuy mechanical work. Constants Rx, Ry ,
Kx, and Ky are positive. Similar cost functions have been
used in the literature to approximate the energy consumption
of servo systems [10], [11].

Representation of obstacles is an important aspect of a
motion planning problem formulation. Regular shapes such
as polytopes, cylinders, and spheres are often used to de-
scribe obstacles [21], [33], [34], or alternatively, the feasible
(obstacle-free) region or volume for system’s motion [35].
This paper adopts the feasible region formulation, and assumes
that a time-invariant obstacle-free region is represented by a
closed compact set D ⊂ R2. With the system being a point
mass, D can be readily represented by using boundaries of
obstacles. Otherwise, one can inflate obstacles to account for
the system geometry, and reduce the system to a point mass.

The inflation may cause loss of optimality or even feasibility,
which is however out of the scope of this work. For simplicity,
the system is assumed a point mass.

Problem 1 (Continuous-Time Energy-Optimal Motion Plan-
ning): Given the system (1)-(4), a final time tf , the initial and
final states

(x(0), vx(0), y(0), vy(0)) = (x0, vx0
, y0, vy0

) ∈ D
(x(tf ), vx(tf ), y(tf ), vy(tf )) = (xf , vxf

, yf , vyf
) ∈ D,

(6)

and an obstacle-free compact set D ⊂ R2, find ux, uy ∈
PC[0, tf ]1 which minimize the cost function (5). While along
the system trajectory, both the system state and control satisfy:

1) dynamic constraints (1) to (4),
2) boundary conditions (6),
3) speed constraints

vxmin
≤ vx(t) ≤ vxmax

vymin
≤ vy(t) ≤ vymax

, t ∈ [0, tf ],
(7)

where vxmin
, vxmax

, vymin
, vymax

are constants,
4) control constraints

uxmin ≤ ux(t) ≤ uxmax

uymin ≤ uy(t) ≤ uymax , t ∈ [0, tf ],
(8)

where uxmin
, uxmax

, uymin
, uymax

are constants
5) collision-avoidance constraints

(x(t), y(t)) ∈ D, t ∈ [0, tf ]. (9)

Without collision-avoidance constraints, feasibility of Prob-
lem 1 can be investigated by applying classic optimal control
theory. On the contrary, one resorts to complete algorithms
to detect feasibility [9]. For simplicity, we assume that Prob-
lem 1 is feasible, and tackle challenges arising from the non-
convexity of the cost function (5) and the domain D. In
order to guarantee convergence of the proposed algorithm,
we further impose the following restriction: the cost function,
constraints, and the system dynamics can be decoupled for
different translational motions. As a result, when collision
avoidance constraints (9) are absent, Problem 1 can be equiv-
alently solved by performing motion planning for the x and y
subsystems separately. The motion planning problem for each
subsystem (subproblem) can be solved efficiently by using
numerical optimization. In the presence of obstacles, however,
subproblems are coupled via collision avoidance constraints
(9). In the following, a numerical optimization method is
developed to efficiently handle such a case.

C. Discretized Problem

Both the cost function and system dynamics are discretized
on a grid in the time domain by using the trapezoidal in-
tegration rule. Let the time grid (possibly non-uniform) be
{ti}Ni=0 with ti ∈ [t0, tf ] and N being the number of grids.
Note t0 = 0 and tN = tf . Also, let ∆i = ti − ti−1 for any
i = 1, . . . , N . The state and control variables are discretized
on the grid {ti}Ni=0 as follows: for i = 0, . . . , N ,

xi = x(ti), vxi
= vx(ti), yi = y(ti), vyi

= vy(ti),

1PC([0, tf ]) is the functional space consisting of all piecewise-continuous
functions defined over [0, tf ].
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and for i = 1, . . . , N ,

uxi = ux(
ti + ti−1

2
), uyi = uy(

ti + ti−1
2

).

For notational convenience, let

X = [x0, x1, . . . , xN ]T

Vx = [vx0
, vx1

, . . . , vxN
]T

Ux = [ux1
, ux2

, . . . , uxN
]T

Y = [y0, y1, . . . , yN ]T

Vy = [vy0
, vy1

, . . . , vyN
]T

Uy = [uy1
, uy2

, . . . , uyN
]T

X = [V T
x , U

T
x ]T

Y = [V T
y , U

T
y ]T .

The cost function J is discretized as
J(X ,Y) = Jx(X ) + Jy(Y)

=

N∑
i=1

∆i

(
RxU

2
xi

+
Kx

2
(Vxi−1 + Vxi)Uxi

)
+

N∑
i=1

∆i

(
RyU

2
yi

+
Ky

2
(Vyi−1 + Vyi)Uyi

)
.

(10)

System dynamics (1)-(4) are enforced between neighboring
grid points by the following linear equations

Xi −Xi−1 = ∆i(Vxi + Vxi−1) (11)
Yi − Yi−1 = ∆i(Vyi + Vyi−1) (12)

Vxi
− Vxi−1

∆i
= −dx

2
(Vxi

+ Vxi−1
) + bxUxi

(13)

Vyi
− Vyi−1

∆i
= −dy

2
(Vyi

+ Vyi−1
) + byUyi

, (14)

where (·)i denotes the ith component of a vector for i =
1, 2, . . . , N . The discretized speed and control constraints are

vxmin1N+1 ≤ Vx ≤ vxmax1N+1 (15)
vymin1N+1 ≤ Vy ≤ vymax1N+1 (16)

uxmin1N ≤ Ux ≤ uxmax1N (17)
uymin1N ≤ Uy ≤ uymax1N , (18)

where all elements of 1k ∈ Rk are 1. The other constraints
include initial and final conditions

X1 = x0, XN+1 = xf (19)
Y1 = y0, YN+1 = yf (20)
Vx1 = vx0 , VxN

= vxf
(21)

Vy1 = vy0 , VyN
= vyf

, (22)

and collision-avoidance constraints

(Xi, Yi) ∈ D, i = 1, . . . , N + 1. (23)

In order to reduce the number of decision variables, we
eliminate parameters Xi and Yi from boundary conditions
(19)-(20) and collision-avoidance constraints (23) using (11)
and (12), and obtain the following equivalent conditions:

1

2

N∑
i=1

∆i

(
Vxi + Vxi−1

)
= xf − x0 (24)

1

2

N∑
i=1

∆i

(
Vyi

+ Vyi−1

)
= yf − y0 (25)

(
1

2

k∑
i=1

∆i

(
Vxi + Vxi−1

)
,

1

2

k∑
i=1

∆i

(
Vyi + Vyi−1

))
+(x0, y0) ∈ D, k = 1, . . . , N − 1.

(26)

The collision avoidance constraints are not enforced at the
first and the last nodes since the initial and final conditions are
necessarily feasible. For notational convenience, let equality
constraints (13), (21), and (24) be represented by Fx(X ) = 0;
and let equality constraints (14), (22), and (25) be represented
by Fy(Y) = 0. Similarly, let Cx(X ) ≤ 0 denote (15) and (17),
and Cy(Y) ≤ 0 denote (16) and (18). Problem 1 is discretized
into the following compact form.

Problem 2 (Numerical Energy-Optimal Motion Planning):

min J(X ,Y)

subject to Fx(X ) = 0, Cx(X ) ≤ 0 (27)
Fy(Y) = 0, Cy(Y) ≤ 0 (28)

D(X ,Y) ∈ DN−1, (29)

where D(X ,Y) ∈ DN−1 denotes the collision-avoidance
constraint (26) for nodes with indices 1, . . . , N − 1.

Remark 2.1: Both the cost function J(X ,Y) given by (10)
and constraints (29) are non-convex, whereas constraints (27)
and (28) are linear.

III. CONVEXIFICATION AND AQP ALGORITHM

A. Convexification of a Cost Function

The convexity of the cost function and the feasible region
plays a crucial role in the convergence proof and computation
efficiency. The cost function (5) is non-convex in vx, ux, vy
and uy . However, as shown below, insights can be obtained
by analyzing the convexity of (5) on the manifold confined
by system dynamics (3) and (4), such that Problem 1 can
be solved with better computational efficiency and numerical
reliability.

Multiplying both sides of (3) by vx, we have:

vxv̇x = −dxv2x + bxuxvx. (30)

Re-arranging (30) and integrating both sides on [0, tf ] give∫ tf

0

Kxuxvx dt

=

∫ tf

0

Kx

bx

(
vxv̇x + dxv

2
x

)
dt

=
Kx

bx

(∫ tf

0

vxv̇x dt+

∫ tf

0

dxv
2
x dt

)
=
Kx

bx

(∫ tf

0

1

2
dv2x +

∫ tf

0

dxv
2
x dt

)
=
Kx

bx

(
v2x(tf )− v2x(0)

2
+ dx

∫ tf

0

v2x dt

)
=
dxKx

bx

∫ tf

0

v2x dt+ cx,
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where cx is a constant determined by the boundary conditions.
Similarly, mechanical work due to a motion in y direction can
be written as∫ tf

0

Kyuyvy dt =
dyKy

by

∫ tf

0

v2y dt+ cy.

Let Qx = dxKx/bx, and Qy = dyKy/by . Then (5) can be
rewritten as∫ tf

0

(
Rxu

2
x +Qxv

2
x +Ryu

2
y +Qyv

2
y

)
dt+ cx + cy.

Since cx and cy are constants, it is equivalent to minimize the
following cost function instead of (5):

J̃(vx, ux, vy, uy) = J̃x(vx, ux) + J̃y(vy, uy)

=

∫ tf

0

(
Rxu

2
x +Qxv

2
x +Ryu

2
y +Qyv

2
y

)
dt,

(31)

which is convex in vx, ux, vy , and uy . Definitions of J̃x and
J̃y are obvious from (31). The cost function J̃ is discretized
by using the trapezoidal integration rule as

J̃(X ,Y) = J̃x(X ) + J̃y(Y)

=

N∑
i=1

∆i

(
RxU

2
xi

+
Qx

2
V 2
xi−1

+
Qx

2
V 2
xi

)
+

N∑
i=1

∆i

(
RyU

2
yi

+
Qy

2
V 2
yi−1

+
Qy

2
V 2
yi

)
.

(32)

B. Decoupling of Collision Avoidance Constraints

With the convexified cost function (32), Problem 2 is still
afflicted by the non-convexity of collision-avoidance con-
straints (29), which can be relieved by the decoupled structure
of constraints and the cost function. Suppose that Xc and
Yc satisfy D(Xc,Yc) ∈ DN−1. Because motions in x and
y directions are decoupled, we may fix the motion in y, and
plan the motion in the x direction to minimize the cost function
(32) while ensuring constraints, or vice versa.

For example, consider a motion from (x0, y0) to (xf , yf ).
As shown in Fig. 1, the system trajectory, projected onto the
x−y plane, is represented by the black dotted curve. The green
empty circles on the trajectory correspond to system positions
at time instants {ti}Ni=1. It is clear that D is non-convex. With
the y−motion (represented by Yc) fixed, the green circles can
only move in the x direction, and the range of the movement is
determined by D(X ,Yc) ⊂ DN−1. Specifically, let (xi, yi) be
the node of the current motion (Xc,Yc) corresponding to time
instance ti, then collision avoidance is ensured at node i as
long as xi ∈ [XLi

, XUi
], where [XLi

, XUi
] is the largest inter-

val such that [XLi
, XUi

]×yi ⊂ D. Let Dx : R2N+1 → RN−1

denote the function mapping from X to the vector of x coor-
dinates of nodes with indices 1, . . . , N − 1, which is given by
the left-hand-side of (26), and let XL = [XL1

, . . . , XLN−1
]T ,

and XU = [XU1
, . . . , XUN−1

]T . Since the motion in the
y direction is fixed, the energy consumption J̃(Yc) remains
constant and constraints in y axis hold. Therefore the energy
efficiency of the system motion with fixed y-motion can be
improved by planning motion in the x direction, i.e., solving
the following subproblem.

x

y

(x0, y0)

(xi, yi)

(xf , yf)

XLi
XUi

Fig. 1: Fixed motion in the y direction (gray region are obstacles)

Problem 3 (Energy-Optimal Motion Planning in x Axis):

min J̃x(X )

subject to Fx(X ) = 0, Cx(X ) ≤ 0,

XL ≤ Dx(X ;x0) ≤ XU .

By fixing the motion in x direction, the motion in y direction
can be optimized by solving the following subproblem.

Problem 4 (Energy-Optimal Motion Planning in y Axis):

min J̃y(Y)

subject to Fy(Y) = 0, Cy(Y) ≤ 0,

YL ≤ Dy(Y; y0) ≤ YU .

Both Dx(X ;x0) and Dy(Y; y0) are linear mappings, and
thus Problems 3-4 are convex.

C. Quadratic Program Matrices

As shown in (32), cost functions J̃x(X ) and J̃y(Y) are
quadratic in X and Y , respectively, and constraints in Prob-
lems 3-4 are linear. Therefore, Problems 3-4 are quadratic
programs, which can be solved efficiently using standard QP
solvers. In particular, Problem 3 is reformulated as below:

min J̃x = X THxX
subject to AX ≤ bx, ExX = dx,

(33)

where

Hx =

[
1
2QxHxv 0

0 Rx∆

]
,

and Hxv = diag([∆1,∆1+∆2, . . . ,∆N−1+∆N ,∆N ]), ∆ =
diag([∆1, . . . ,∆N ]). Matrices A,bx,Ex, and dx are given by
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A =



IN+1 0
−IN+1 0

0 IN
0 −IN

M1

...
MN−1
−M1

...
−MN−1


, bx =


vxmax1

(N+1)×1

−vxmin
1(N+1)×1

uxmax1
N×1

−uxmin
1N×1

XU − x0
−XL + x0

 ,

where Mk = 1
2 [∆1,∆1+∆2, . . . ,∆k−1+∆k,∆k,0

1×(2N−k)]

for k = 1, . . . , N . Ex = [Ex
T
1 ,Ex

T
2 ,M

T
N ]T , dx =

[01×N , vx0
, vxf

, xf − x0]T , and

Ex1 =

 px1
+ 2 px1

− 2 · · · 0
...

. . . . . .
...

0 · · · pxN
+ 2 pxN

− 2

2bx∆

 ,
Ex2 =

[
1 · · · 0
0 · · · 1

02×N
]
,

with pxi
= dx∆i. Similarly, Problem 4 can also be formulated

as a QP problem:

min J̃y = YTHyY
subject to AY ≤ by, EyY = dy.

(34)

The matrices in (34) are similar to those in (33), hence are
omitted for brevity.

D. AQP Algorithm

By solving Problems 3-4 alternatively, the energy efficiency
of the trajectory can be improved while all constraints hold.
We have the following algorithm to solve Problem 2.

Algorithm 1 (AQP Algorithm)
1) Given a feasible solution (x0(t), y0(t)), t ∈ [0, tf ] to

Problem 1, choose a time grid {ti}Ni=0, and obtain a set
of X0 and Y0. Let i = 0 and Yc = Y0.

2) Let i = i + 1. Determine XL and XU ∈ R(N−1) such
that Bx = {X |XL ≤ X ≤ XU} is the largest set
satisfying

a) Xi−1 ∈ Bx
b) D(X ,Yi−1) ⊂ D(N−1), ∀X ∈ Bx.

Solve the QP problem (33) for X ∗. Let Xi = X ∗, and
Xc = X ∗.

3) Determine YL and YU ∈ R(N−1) such that By =
{Y|YL ≤ Y ≤ YU} is the largest set satisfying

a) Yi−1 ∈ By
b) D(Xc,Y) ⊂ D(N−1),∀Y ∈ By .

Solve the QP problem (34) for Y∗. Let Yi = Y∗, and
Yc = Y∗.

4) Repeat Steps 2) and 3) until the solution converges.
Retrieve the state and control histories from X ∗ and Y∗.

Remark 3.1: Solving a dynamically feasible trajectory
(x0(t), y0(t)) for Problem 1 is NP-hard. A plethora of work
have been devoted to this problem and developed complete

or probabilistic complete planning algorithms, which return
feasible solutions, if any, or failure [9]. This work focuses on
a class of multi-axis motion systems, e.g. industrial machines,
where the geometric layout of obstacles are static. Hence
the search of a feasible path or trajectory could be greatly
simplified and omitted here. Interested readers may refer
to [36]–[38] for details.

Remark 3.2: The initial guess (x0(t), y0(t)) or (X0,Y0) is
used to establish bounds XL and XU in Step 2). Meanwhile,
it has to be dynamically feasible and collision-free, i.e., satisfy
constraints (27), (28) and (29), in order to guarantee conver-
gence and feasibility of AQP. Numerical study demonstrates
that when (27) and (28) are not satisfied by X0 and Y0, the
AQP may still recover feasibility and converge, albeit without
guarantee.

A dynamically feasible and collision-free trajectory
uniquely determines feasible domains Dx and Dy , which
might be a subset of the original feasible region. Searching
within the same homotopy class of solutions as the initial
guess, Algorithm 1 may achieve global optimality, if the global
optimal solution is homotopic to the initial guess. Algorithm
1 certainly does not yield the global optimal solution, if it
is not homotopic to the initial guess. As shown in Fig. 1,
when the red dotted line is used as an initial trajectory, the
planning result would be different from the black dotted case.
However, given the convexity of two subproblems, this method
is appealing in terms of reliability and computational efficiency
for practical applications as compared to solving a non-convex
optimization problem blindly and the MIQP, respectively. As
long as a good initial trajectory is used, the proposed method
can improve energy efficiency with guaranteed feasibility.

E. Local Grid Refinement

Since solutions to Problem 2 are discrete, collision avoid-
ance constraints are enforced only at a finite number of
locations corresponding to the system position at each time
instance ti ∈ {ti}Ni=0. Inter-collision may occur between
adjacent grid points, as shown in Fig. 2. Rather than intro-
ducing conservatism into the planning result by expanding
the boundary of the obstacle, we exploit a grid refinement
method to reduce inter-collision by increasing the time grid
resolution around where inter-collision occurs. The local re-
finement approach clearly makes more efficient use of the
discretization points than uniformly adding more grid points
along the trajectory.

Specifically, between each pair of adjacent time grid points
ti and ti+1, inter-collision is first detected by interpolating
(x(ti), y(ti)) and (x(ti+1), y(ti+1)) on a fine uniform grid
with a predefined spatial resolution on [ti, ti+1] using a cubic
curve. If any of interpolated points violates collision avoidance
constraints, a local grid refinement procedure is applied to
improve the time grid resolution in these segments of tra-
jectories intruding the obstacles. The basic idea of the local
grid refinement is to add at least one extra collision-free point
on the time interval with collision. In numerical simulations,
three collision-free points are added to each piece of trajectory
with collision. As illustrated in Fig. 2, since the boundaries
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are zig-zag, the first extra point (xm, ym) is added to the
corner of the obstacle, while the other two points are added
at the mid-points between (x(ti), y(ti)) and (xm, ym), and
between (xm, ym) and (x(ti+1), y(ti+1)), respectively. The
time instances associated with the new points are computed
based on the length of the path connecting these points and
the associated time instances are computed using a constant
speed assumption. The new trajectory is obtained by replacing
the segment of the old trajectory between (x(ti), y(ti)) and
(x(ti+1), y(ti+1)) using the new segment passing through the
three new points, as shown as the blue dotted line in Fig. 2.

(xi+1, yi+1)

(xi, yi)
(xm, ym)

Fig. 2: Local grid refinement.

Numerical simulations show that when the local time grid
refinement method is applied after Step 3) of Algorithm 1,
most occurrences of inter-collision can be circumvented after
2 or 3 iterations. The local grid refinement however cannot
completely avoid inter-collision. To maintain absolute obstacle
clearance, one commonly used practice is imposing safety
margins on obstacles.

IV. CONVERGENCE AND OPTIMALITY ANALYSIS

Throughout this section, we assume that the QP solver
used in Algorithm 1 always returns the optimal (necessarily
feasible) solution when such a solution exists. This assumption
is valid, given the mature theory and solvers for QP problems.
The following two propositions show that the AQP retains the
feasibility of the solution as long as it is started properly, and
monotonically improves the energy efficiency of the solution.

Proposition 1: Let Xi and Yi be the motion planning results
given by the ith iteration of Algorithm 1. Suppose (X0,Y0) is
feasible for Problem 2, then (Xi,Yi) is feasible for all i ≥ 1.

Proof: The proposition is shown by induction. Suppose
that (Xi−1,Yi−1) is feasible for Problem 2. It follows that
constraints (27)-(29) are satisfied. Therefore, we have XL ≤
Dx(Xi−1;Yi−1, x0) ≤ XU , i.e., Xi−1 satisfies the collision
avoidance constraints in Problem 3. The other constraints on
X in Problem 3 are the same as (27) of Problem 2, and are
automatically satisfied by Xi−1. Therefore, the QP problem in
Step 2) of Algorithm 1 has at least one feasible solution Xi−1,
hence Xi, which is the solution given by the QP problem in
Step 2), must be feasible.

Similarly, Yi−1 satisfies constraints of Problem 4 and is
feasible. Step 3) of Algorithm 1 always yields a feasible
solution Yi. One verifies that (Xi,Yi) satisfies constraints of
Problem 2, thereby establishing the feasibility of (Xi,Yi).

Proposition 2: Let Xi and Yi be the motion planning
results by the ith iteration of Algorithm 1, then J̃(Xi,Yi)
decreases monotonically as i increases. Furthermore, the se-
quence {J̃(Xi,Yi)} converges as i→∞.

Proof: Without loss of generality, assume that Algo-
rithm 1 starts from a feasible initial trajectory. The energy
cost of the motion planning result after the ith iteration is
given by J̃(Xi,Yi). In Step 2) of the (i + 1)th iteration, the
optimal solution Xi+1 of the QP Problem 3 minimizes the
cost function J̃x. Therefore, J̃x(Xi+1) ≤ J̃x(X ) for any X
feasible for this problem. It follows that J̃x(Xi+1) ≤ J̃x(Xi)
since Xi is a feasible solution to this subproblem as shown in
the proof of Proposition 1, and Xi+1 is the optimal solution.
This further implies that J̃(Xi+1,Yi) = J̃x(Xi+1)+ J̃y(Yi) ≤
J̃x(X ) + J̃y(Yi) = J̃(Xi,Yi). Repeating the same argument
for step 3 in the (i+ 1)th iteration, we have J̃(Xi+1,Yi+1) ≤
J̃(Xi+1,Yi). Therefore, J̃(Xi+1,Yi+1) ≤ J̃(Xi,Yi), hence
the cost function decreases monotonically. Note that by defi-
nition, J̃ is bounded by zero. Hence the sequence {J̃(Xi,Yi)}
must converge as i→∞.

In general, the convergence of the cost function as shown in
Proposition 2 does not guarantee the convergence of solution
(Xi,Yi). However, due to the strict convexity of the cost func-
tion, and decoupled dynamics and constraints, Algorithm 1
indeed converges as shown next.

Theorem 4.1: The sequence (Xi,Yi) as given by Algo-
rithm 1 converges as i→∞.

Proof: Let ∆Xi = Xi − Xi−1, and ∆Yi = Yi − Yi−1
for any i ∈ N. Then it suffices to show that ‖∆Xi‖ → 0 and
‖∆Yi‖ → 0 as i → ∞. Suppose this is not true, then there
exists δ > 0 such that for any j ∈ N, there exist some k > j,
k ∈ N with either ‖∆Xk‖ > δ or ‖∆Yk‖ > δ, or both. Since
J̃(Xi,Yi) decreases monotonically according to Proposition
2, we may choose j large enough such that J̃(Xk−1,Yk−1)−
J̃(Xk,Yk) < ε for an arbitrarily small positive number ε.

Without loss of generality, assume that ‖∆Xk‖ > δ. Note
that J̃(Xk,Yk−1) = J̃(Xk−1 + ∆Xk,Yk−1) = J̃x(Xk−1 +
∆Xk) + J̃y(Yk−1), and J̃(Xk−1,Yk−1) = J̃x(Xk−1) +
J̃y(Yk−1) by (32). Since J̃(Xk,Yk) ≤ J̃(Xk,Yk−1) ≤
J̃(Xk−1,Yk−1) following Proposition 2, we have

0 ≤ J̃x(Xk−1)− J̃x(Xk−1 + ∆Xk) < ε.

Since J̃x is a quadratic function, the following relation holds
by the Taylor series expansion at Xk−1:

J̃x(Xk−1 + ∆Xk) =J̃x(Xk−1) +∇J̃x(Xk−1)∆Xk

+
1

2
[∆Xk]T∇2J̃x(Xk−1)[∆Xk],

from which we have

− ε < J̃x(Xk−1 + ∆Xk)− J̃x(Xk−1)

= ∇J̃x(Xk−1)∆Xk +
1

2
[∆Xk]T∇2J̃x(Xk−1)[∆Xk] ≤ 0,

(35)

where ∇J̃x(Xk−1) and ∇2J̃x(Xk−1) are the Jacobian and
Hessian matrices, respectively. Because all constraints of the
QP problem solved in the second step of Algorithm 1 are
convex, and both Xk−1 and Xk−1+∆Xk are feasible solutions
according to Proposition 1, it follows that Xk−1+ 1

2∆Xk is also
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a feasible solution to this QP problem. Because Xk−1 + ∆Xk

is the optimal solution, we have J̃x(Xk−1 + 1
2∆Xk) ≥

J̃x(Xk−1 + ∆Xk) > J̃x(Xk−1)− ε. Meanwhile, the following
is true due to the convexity of J̃x and the optimality of
Xk−1 + ∆Xk:

J̃x(Xk−1 +
1

2
∆Xk) ≤ 1

2
J̃x(Xk−1 + ∆Xk) +

1

2
J̃x(Xk−1)

≤ J̃x(Xk−1).

Therefore the following is true

−ε < J̃x(Xk−1 +
1

2
∆Xk)− J̃x(Xk−1) ≤ 0.

Taking the Taylor series expansion of J̃x(Xk−1 + 1
2∆Xk) at

Xk−1, the above expression can be written as

−8ε<4∇J̃x(Xk−1)∆Xk+[∆Xk]T∇2J̃x(Xk−1)[∆Xk]≤0. (36)

Because ε is arbitrarily small, (35)-(36) hold at the same
time only if [∆Xk]T∇2J̃x(Xk−1)[∆Xk] = 0. However, since
∇2J̃x(Xk−1) is strictly positive definite, we have ∆Xk = 0,
which is a contradiction to ‖∆Xk‖ > δ. Proof is complete.

Theorem 4.2: Suppose that Algorithm 1 converges to a
feasible solution (X ∗,Y∗). Assume that the boundary of
the collision-free region D is composed of piecewise linear
segments which are parallel to either the x or y axis. Then
(X ∗,Y∗) is a locally optimal solution to Problem 2.

Proof: First, consider the case when the nodes corre-
sponding to (X ∗,Y∗) do not coincide with any corner (non-
differentiable) points of the feasible region. In such a case, the
collision-avoidance constraints for (X ∗,Y∗) are decoupled in
its neighborhood, since at any node lying on the boundary of
D, the collision avoidance constraint is either a bound on the
x-coordinate of the node only, or on the y-coordinate of the
node only. Furthermore, the collision avoidance constraint is
differentiable.

For convenience, denote the constraints in Problem 2 as

cn(X ,Y) = 0, n ∈ E
cn(X ,Y) ≤ 0, n ∈ I,

where E and I are the index sets of equality, and inequality
constraints in Problem 2, respectively. Similarly, let Ex and
Ix denote the index sets of equality and inequality constraints
in Problem 3, and let Ey and Iy denote the index sets of
equality and inequality constraints in Problem 4. Because the
constraints are decoupled for the x and y motions, we have
E = Ex

⋃
Ey , Ex

⋂
Ey = ∅, I = Ix

⋃
Iy , and Ix

⋂
Iy = ∅,

i.e., if a constraint is active in Problem 2, then it is also active
in either Problem 3, or Problem 4, but not both.

Since (X ∗,Y∗) is a convergent solution of Algorithm 1, it is
also the solution in the second and third step of Algorithm 1.
Specifically, with the fixed y-motion given by Y∗, X ∗ is
the optimal solution to Problem 3. Hence, the Karush-Kuhn-
Tucker (KKT) conditions for Problem 3 are satisfied by X ∗:

∇xLx(X ∗, λ∗x) = 0 (37)
cn(X ∗,Y∗) = 0, n ∈ Ex (38)
cn(X ∗,Y∗) ≤ 0, n ∈ Ix (39)

λx
∗
n ≤ 0, n ∈ Ix, (40)

λx
∗
ncn(X ∗,Y∗) = 0, n ∈ Ix

⋃
Ex, (41)

where

Lx(X , λx) = J̃x(X ) +
∑

n∈Ex
⋃
Ix

λxncn(X ,Y∗). (42)

The KKT conditions for Problem 4 are satisfied by Y∗:

∇yLy(Y∗, λ∗y) = 0 (43)

cn(X ∗,Y∗) = 0, n ∈ Ey (44)
cn(X ∗,Y∗) ≤ 0, n ∈ Iy (45)

λy
∗
n ≤ 0, n ∈ Iy (46)

λy
∗
ncn(X ∗,Y∗) = 0, n ∈ Iy

⋃
Ey, (47)

where

Ly(Y, λy) = J̃y(Y) +
∑

n∈Ey
⋃
Iy

λyncn(X ∗,Y). (48)

The Lagrangian for Problem 2 is given by

L(X ,Y, λ) = J̃(X ,Y) +
∑

n∈E
⋃
I

λncn(X ,Y∗). (49)

Let
λ∗n =

{
λx
∗
n, n ∈ (Ex

⋃
Ix)

λy
∗
n, n ∈ (Ey

⋃
Iy) ,

According to the definition of the cost function (32), we have

∇xJ̃(X ∗,Y∗) = ∇xJ̃x(X ∗)
∇yJ̃(X ∗,Y∗) = ∇yJ̃y(Y∗).

Besides, since the collision-avoidance constraints are com-
posed of linear segments parallel to either the x or y axis,
the collision avoidance constraint on (X ,Y) at (X ∗,Y∗) is
equivalent to either bounds on X or bounds on Y . Then it can
be verified that

∇L(X ∗,Y∗, λ∗) = [∇xLx(X ∗, λ∗x),∇yLy(Y∗, λ∗y)] = 0.

Furthermore, it can also be verified that the other KKT
conditions at (X ∗,Y∗) for Problem 2 also hold according to
(38) to (41), and (44) to (47). The procedure is straightfor-
ward, and the details are omitted for brevity. Hence, the first
order optimality condition is satisfied at (X ∗,Y∗). Because
J̃ is strictly convex, the second order condition also holds.
Therefore (X ∗,Y∗) is at least a local optimal solution.

Now consider the case when one of the nodes, say, the ith

node in the trajectory corresponding to (X ∗,Y∗) coincides
with a corner point P of the feasible region D.

Because the collision-avoidance constraint is not differen-
tiable at P , the previous proof does not apply directly. We
can decompose the feasible region around P as a union of
two subregions, as illustrated in Fig. 3. When restricting the
node in each of the subregions, it follows from the first part
of the proof that (X ∗,Y∗) is optimal. Hence, (X ∗,Y∗) is
optimal when the node lies in the union of the two subregions,
i.e., (X ∗,Y∗) is optimal for the original problem. When there
are multiple points on the corner of D, then by decomposing
the feasible neighborhood of (X ∗,Y∗) in a similar way, and
consider all combinations of the feasible region, the optimality
of (X ∗,Y∗) can be proved.
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P P P

Fig. 3: Feasible region decomposition.

According to Theorem 4.2, the proposed AQP algorithm
outputs an optimal solution when the boundary of the
collision-free region is a concatenation of zigzag lines parallel
to the x or y axis. As shown in Fig. 4 below, obstacles with
complex boundaries in the 2D plane can be approximated by
union of rectangles, yielding the zig-zag type of boundary
required by Theorem 4.2. The approximation error can be
driven small by increasing the number of rectangles as well
as the grid size N , at the expense of computational efficiency.
Obstacles in the 3D space can be approximated similarly using
rectangular boxes.

1 FOR INTERNAL USE ONLY 

Fig. 4: Approximation to obstacle with arbitrary shape

V. EXAMPLES

This section performs simulation study to validate the en-
ergy efficiency of the solution result from AQP, by comparing
with results from solving an MIQP problem. Computational ef-
ficiency and effectiveness of the proposed algorithm is further
verified by applying to more complex examples. In simulation,
the parameters in the system dynamics and cost function
are given by: dx,y = 14.03, bx,y = 3781.9, Rx,y = 5.06,
Qx,y = 1.01E − 3, vx,ymax

= −vx,ymin
= 314.16rad/s, and

ux,ymax
= −ux,ymin

= 3.

A. Optimality

The non-convex region D can be approximated and decom-
posed into a finite number of polygons described by linear
constraints. By associating each polygon with a binary variable
indicating whether the trajectory is inside this polygon, the
collision avoidance constraints in Problem 2 can be formulated
as mixed-integer linear constraints. Therefore Problem 2 can
be solved by MIQP solvers. When its solutions converge, the
MIQP solver produces the global optimal solution.

The test case shown in Figure 5 presents a cornering
problem typical for the motion planning of CNC machines
and robots. The gray region is the obstacle. The final time tf ,
initial position (x0, y0), final position (xf , yf ), clearance `x
and `y are specified differently in a total of 9 test cases. Both
initial and final speeds are zero. In both algorithms, Problem

(xf , yf)

(x0, y0)ℓy

ℓx

(xs, ys)

Fig. 5: Test case geometry setup for AQP and MIQP trajectory
planning comparison

TABLE I: Performance comparison of the AQP and MIQP

Case # Energy saving∗ CPU time (s)
AQP MIQP AQP MIQP

1 35.2% 40.3% 0.1202 57.65
2 21.9% 28.4% 0.1067 212.89
3 55.3% 58.5% 0.0961 98.08
4 61.3% 63.0% 0.1006 150.73
5 77.4% 78.3% 0.0873 59.67
6 53.5% 57.0% 0.0847 163.60
7 32.2% 38.7% 0.1047 166.66
8 33.6% 41.5% 0.1050 62.28
9 35.0% 41.7% 0.1031 75.96

Average 45.0% 49.7% 0.1009 116.4
*relative to heuristic trajectory with trapezoidal speed profiles

1 is discretized on a uniform time grid of 60 points. The local
grid refinement algorithm is not used such that AQP maintains
the same time grid resolution as MIQP for fair comparison.

The initial guess trajectory for starting the AQP is
generated based on a trapezoidal speed profile. Specifi-
cally, the initial guess comprises two segments of posi-
tion transition trajectories, with the first segment between
(x0, y0) and (xs, ys), and the second segment between
(xs, ys) and (xf , yf ). The net travel distances of two seg-
ments are L1 =

√
(xs − x0)2 + (ys − y0)2 and L2 =√

(xs − xf )2 + (ys − yf )2, and the corresponding travel time
is specified as tfL1/(L1 + L2) and tfL2/(L1 + L2), respec-
tively. Subsequently, a collision free trajectory satisfying all
constraints is obtained by assigning trapezoidal speed profiles
for x motion and y motion independently to produce desired
position transition from (x0, y0) to (xf , yf ). Simulation results
are shown in Table I. The AQP-based motion planning can
achieve lower but comparable energy efficiency as MIQP,
albeit at a significantly lower computation load.

B. Computation Efficiency

The AQP is applied to solve more complex collision-
free trajectory planning problems, which are computationally
prohibitive for the MIQP approach. The system motion is
contained by tunnels depicted as white space in Fig. 6 and
Fig. 8, in which the gray region represents obstacles. The
initial guesses of AQP are generated by first calculating the
minimum time trajectories connecting the corner points in
these figures with zero initial and final speeds, then relaxing
the travel time by a certain factor greater than 1 to help with
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energy-saving. The energy-efficient paths, shown in Fig. 6 and
Fig. 8, are generated by AQP using two different scenarios,
where the solid blue curves correspond to problem data used
in [27], and the dash red curves correspond to problem data
in this paper. Due to more restrictive control inputs in this
work, the dash red are smoother than the solid blue, for
both cases. The energy-efficient trajectories satisfy collision
avoidance constraints. From the resultant speed and control
trajectories, one can readily verify that the speed and control
constraints are satisfied for both cases. Figs. 7 and 9 plot the
speed profiles which verify the velocity constraint. Combining
the speed profiles and path figures, one can observe that an
energy-efficient trajectory leads to energy saving by avoiding
stops, though increasing the length of the corresponding path.
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Fig. 6: Energy-efficient paths, case 1.
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Fig. 7: Speed profile, case 1.

In order to better ensure collision avoidance between grid
points, the grid refinement scheme in Section III-E is applied
to adaptively refine the time grid when collision occurs be-
tween neighboring grid points. The behavior of the local grid
refinement technique is shown in Figure 10, which depicts
trajectories near position [40, 40] from 3 consecutive iterations
when applying the AQP and grid refinement algorithms for
case 2.
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Fig. 8: Energy-efficient paths, case 2.
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Fig. 9: Speed profile, case 2.
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Fig. 10: Grid refinement history, case 2.

TABLE II: Energy consumption comparison.

Jx Jy J Energy saving TCPU (s)
Case 1 Heuristic 86.5 59.3 145.8 0 –

AQP 51.1 26.4 77.5 46.8% 0.69
Case 2 Heuristic 32.9 30.8 63.7 0 –

AQP 23.8 18.0 31.8 50.1% 2.91
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Table II compares the energy consumption of trajectories
shown in Figs. 6 and 8. The AQP-based motion planning
is capable of substantially reducing the energy consumption
in both x and y directions. Given an optimization problem
and a numerical solver, the computation time depends on
the property of the cost function, e.g. conditionedness of
the Jacobian and Hessian, and the problem scale, which is
precisely captured by the grid size N . For case 1, N = 148
when the algorithm terminates. For case 2, the final grid size
is N = 254. For both cases AQP stops after three iterations
including two local grid refinements.

VI. CONCLUSION

This paper studied energy-efficient trajectory generation
for multi-axis motion systems with decoupled linear time-
invariant (LTI) dynamics. Resorting to numerical optimiza-
tion, the problem is reduced to non-convex programming
problem, due to the existence of obstacles and the non-
convex cost function. An Alternating Quadratic Programming
(AQP) method was proposed to solve the problem with con-
vergence guarantee. AQP is enabled by the following two
key observations: system dynamics can play a conducive
role to convexify a non-convex cost function; non-convex
obstacles can be abstracted as linear constraints through the
decomposition technique. In the case that the boundaries of
obstacles are parallel to the motion axes, the AQP leads to
a local optimal solution. Compared with the treatment using
integer variables to cope with obstacles, the AQP is, although
sub-optimal, computationally efficient and suitable for more
complex motion planning applications.

Starting with an initial feasible trajectory, AQP merely
searches within the same homotopy class of trajectories for a
solution with improved energy efficiency. In order to achieve
global optimality, AQP needs to work with another module
which provides exhaustive classes of feasible trajectories.
Aiming to secure convergence guarantee and local optimality,
this work imposes restrictive assumptions on system dynamics
and obstacles, which again indicates future work. For instance,
is it possible to relax the requirement that the system dynamics
have to be LTI and decoupled; how to generalize this work
to deal with dynamic obstacles and cooperative trajectory
planning involving multiple agents.

VII. ACKNOWLEDGEMENT

This work was done while the first author was affiliated with
Mitsubishi Electric Research Laboratories. Authors would
like to thank editor and reviewers for valuable comments to
improve this work.

REFERENCES

[1] P. Tokekar, N. Karnad, and V. Isler, “Energy-optimal trajectory planning
for car-like robots,” Autonomous Robots, vol. 37, no. 3, pp. 279–300,
2014. [Online]. Available: http://dx.doi.org/10.1007/s10514-014-9390-3

[2] B. R. Donald and P. Xavier, “Provably good approximation algorithms
for optimal kinodynamic planning: robots with decoupled dynamics
bounds,” Algorithmica, vol. 14, pp. 443–479, 1995.

[3] S. Liu and D. Sun, “Minimizing energy consumption of wheeled mobile
robots via optimal motion planning,” IEEE/ASME Trans. Mechatron.,
vol. 19, no. 2, pp. 401–411, April 2014.

[4] Z. Sun and J. H. Reif, “On finding energy-minimizing paths on terrains,”
IEEE Trans. Robot., vol. 21, no. 1, pp. 102–114, Feb 2005.

[5] A. Stentz, “Optimal and efficient path planning for unknown and
dynamic environments,” Robotics Institute, Carnegie Mellon University,
Tech. Rep. CMU-RI-TR-93-20, 1993.

[6] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,”
Artificial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, Aug.
1996.

[8] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot Res., vol. 20, no. 5, pp. 378–400, 2001.

[9] S. M. LaValle, Planning Algorithms. Cambridge, UK: Cambridge
University Press, 2006.

[10] Y. Wang, K. Ueda, and S. A. Bortoff, “A Hamiltonian approach
to compute an energy efficient trajectory for a servomotor system,”
Automatica, vol. 49, no. 12, pp. 3550–3561, Dec. 2013.

[11] Y. Wang, Y. Zhao, S. A. Bortoff, and K. Ueda, “A real-time energy-
optimal trajectory generation method for a servomotor system,” IEEE
Trans. Ind. Electron., vol. 62, no. 2, pp. 1175–1188, Feb. 2015.

[12] O. Wigstrom, B. Lennartson, A. Vergnano, and C. Breitholtz, “High-
level scheduling of energy optimal trajectories,” IEEE Trans. Autom.
Sci. Eng., vol. 10, no. 1, pp. 57–64, 2013.

[13] Y. Zhao and P. Tsiotras, “Analysis of energy-optimal aircraft landing
operation trajectories,” J. Guid. Control Dynam., vol. 36, no. 3, pp.
833–845, 2013.

[14] T. Chettibi, H. E. Lehtihet, M. Haddad, and S. Hanchi, “Minimum
cost trajectory planning for industrial robots,” European Journal of
Mechanics A: Solids, vol. 23, no. 4, pp. 703–715, 2004.

[15] S. Bjorkenstam, D. Gleeson, R. Bohlin, C. S. Johan, and B. Lennartson,
“Energy efficient and collision free motion of industrial robots using
optimal control,” in Proc. 2013 CASE, 2013, pp. 510–515.

[16] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” Int. J. Robot Res., vol. 28, no. 8,
pp. 933–945, 2009.

[17] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” Int. J. Robot Res.,
vol. 21, no. 3, pp. 233–255, 2002.

[18] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
J. Guid. Control Dynam., vol. 21, no. 2, pp. 193–207, Mar.-Apr. 1998.

[19] G. Elnagar, M. A. Kazemi, and M. Razzaghi, “The pseudospectral
legendre method for discretizing optimal control problems,” IEEE Trans.
Automat. Control, vol. 40, no. 10, pp. 1793–1796, Oct. 1995.

[20] H. Yu, Y. Wang, S. A. Bortoff, and K. Ueda, “Energy-efficient trajec-
tory planning for a mobile agent by using a two-stage decomposition
approach,” in IFAC Proceedings, vol. 47, 2014, pp. 3851–3856.

[21] A. Richards, T. Schouwenaars, J. P. How, and E. Feron, “Spacecraft
trajectory planning with avoidance constraints using mixed-integer linear
programming,” J. Guid. Control Dynam., vol. 25, no. 4, pp. 755–763,
July-August 2002.

[22] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
Proc. 2012 ICRA, St. Paul, MN, May 14-18 2012, pp. 477 – 483.

[23] K. G. Shin and N. D. Mckay, “A dynamic programming approach
to trajectory planning of robotic manipulators,” IEEE Trans. Automat.
Control, vol. AC-31, no. 6, pp. 491–500, Jun. 1986.

[24] S. Singh and M. C. Leu, “Optimal trajectory generation for robotic
manipulators using dynamics programming,” Trans. ASME, J. Dyn. Sys.
Meas. Control, vol. 109, pp. 88–96, Jun. 1987.

[25] D. Verscheure, B. Demeulenaere, J. Swevers, J. D. Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimization
approach,” IEEE Trans. Automat. Control, vol. 54, no. 10, pp. 2318–
2327, Oct. 2009.

[26] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot Res., vol. 30, no. 7, pp. 846–894, 2011.

[27] Y. Zhao, Y. Wang, S. A. Bortoff, and D. Nikovski, “Energy-efficient
collision-free trajectory planning using alternating quadratic program-
ming,” in Proc. 2014 ACC, Portland, OR, Jun. 2014, pp. 1249–1254.
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