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Abstract
Rotor speed estimation for induction motors is a key problem in speed-sensorless motor
drives. This paper performs nonlinear high gain observer design based on the full-order
model of the induction motor. Such an effort appears nontrivial due to the fact that the full-
model at best admits locally a non-triangular observable form (NTOF), and its analytical
representation in the NTOF can not be obtained. This paper proposes an approximate high
gain estimation algorithm, which enjoys a constructive design, ease of tuning, and improved
speed estimation and tracking performance. Experiments demonstrate the effectiveness of
the proposed algorithm
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An approximate high gain observer for
speed-sensorless estimation of induction motors

Abstract—Rotor speed estimation for induction motors is a key
problem in speed-sensorless motor drives. This paper performs
nonlinear high gain observer design based on the full-order
model of the induction motor. Such an effort appears non-
trivial due to the fact that the full-model at best admits locally
a non-triangular observable form (NTOF), and its analytical
representation in the NTOF can not be obtained. This paper
proposes an approximate high gain estimation algorithm, which
enjoys a constructive design, ease of tuning, and improved speed
estimation and tracking performance. Experiments demonstrate
the effectiveness of the proposed algorithm.

Index Terms—Induction motor, speed-sensorless motor drive,
nonlinear state estimation, industrial applications.

I. INTRODUCTION

SPEED regulation of induction motors has evolved from
open-loop variable frequency control to closed-loop vector

control with/without an encoder and their adaptive variants [1],
[2]. Speed-sensorless motor drives, in which the rotor po-
sition/speed is unmeasured, are particularly interesting from
both theoretical and practical perspectives. On one hand, they
are favored due to the improved reliability and the reduced cost
by removing the rotor shaft encoder. On the other hand, the
resultant speed-sensorless control design problem is challeng-
ing due to the absence of the encoder, and thus attracts a lot of
theoretical interests [3]–[5]. Prevailing speed-sensorless motor
drives suffer significant performance degradation from the
elimination of the encoder, and thus their applications remain
limited within fields requiring low or medium performance.
In fact, state estimation, identified as the main bottleneck
to speed regulation performance, has been consistently the
research focus.

Existing approaches, e.g. adaptive or Kalman filter-based,
have limitations such as unnecessarily assuming rotor speed
as a constant parameter or failure to ensure convergence of
estimation error dynamics. Adaptation idea, where the rotor
speed is treated as an unknown parameter to avoid dealing
with nonlinear dynamics, was initially exploited and remains
appealing [6]–[10]. Although the design is simple, adaptation-
based estimation fails to offer satisfactory balance between
estimation bandwidth and robustness to measurement noises.
This motivates designs treating the rotor speed as a state
variable, e.g. [5], [11]–[17] and reference therein. More or
less, these methods are subject to limitations. For instance,
work [11]–[14] rely on a triangular observable form where
the system dynamics have triangular state dependence [18].
Certain nonlinear state-dependent terms in the state equation
are treated as disturbances to ensure that the system dynamics
admit the triangular observable form. Such a treatment nec-
essarily results in a conservative design. Relying on singular

perturbation analysis, work [5] establishes local stability re-
sults.

Focusing on new estimation algorithms with certain guaran-
tee of stability and practical effectiveness, this paper explores
speed-sensorless estimation through nonlinear geometric ob-
server design, which typically entails the system being in
certain normal forms. This paper develops and verifies new
estimation algorithms for speed-sensorless motor drives based
on a non-triangular observable form (NTOF) [19]. Main con-
tributions are: first, we show that the induction motor model
admits the NTOF by a change of state coordinates, and thus
high gain observer design based on the NTOF can be con-
ducted; second, we address, by examining several observers
without involving the closed-form inverse state coordinate,
the implementation issues of the resultant high gain observer;
finally, we verify the effectiveness of the proposed estimation
algorithm by experiments.

The rest of this paper is organized as follows. Problem
formulation is provided in Section II. Section III presents
speed-sensorless estimation algorithms. Experimental results
in Section IV verify that the proposed algorithm is meaningful
and effective in practice. This paper is concluded by Section V.

Notations. Let ζ be a dummy variable. Denote ζ̂ as the
estimate of the variable, ζ∗ as the reference, ζ̃ = ζ − ζ̂ as the
estimation error, and eζ = ζ∗ − ζ̂ as the tracking error. Given
a C∞ vector field f : Rn → Rn, and a C∞ function h : Rn →
R, the function Lfh(ζ) = ∂h(ζ)

∂ζ f is the Lie derivative of h(ζ)

along f . Repeated Lie derivatives are defined as Lkfh(ζ) =

Lf (Lk−1
f h(ζ)), k ≥ 1 with L0

fh(ζ) = h(ζ).

II. PRELIMINARY

In a frame rotating at an angular velocity ω1, the induction
motor model is given by

i̇ds = −γids + ω1iqs + β(αΦdr + ωΦqr) +
uds
σ

i̇qs = −ω1ids − γiqs + β(αΦqr − ωΦdr) +
uqs
σ

Φ̇dr = −αΦdr + (ω1 − ω)Φqr + αLmids

Φ̇qr = −αΦqr − (ω1 − ω)Φdr + αLmiqs

ω̇ = µ(Φdriqs − Φqrids)−
Tl
J

y =
[
ids, iqs

]>
,

(1)

where notation is defined in Table I. The frame with ω1 = 0
is called the stationary frame. Readers are referred to [1], [20]
for details on the motor modeling.

This paper deals with the speed-sensorless state estimation
problem, i.e., to reconstruct the full state of system (1) based
on uds, uqs and y. For linear systems, detectability ensures
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TABLE I: Notations

Notation Description
ids, iqs stator currents in d- and q-axis

Φdr,Φqr rotor fluxes in d- and q-axis
ω rotor angular speed

uds, uqs stator voltages in d- and q-axis
ω1 angular speed of a rotating frame
Φ∗ rotor flux amplitude reference
ω∗ rotor angular speed reference

i∗ds, i
∗
qs references of stator currents in d- and q-axis

Tl load torque
J inertia

Ls, Lm, Lr stator, mutual, and rotor inductances
Rs, Rr stator and rotor resistances

σ
LsLr−L2

m
Lr

α Rr/Lr

β Lm/(σLr)
γ Rs/σ + αβLm

µ 3pLm/(2JLr)
p number of pole pairs

convergent state estimation. For nonlinear systems, uniform
observability, although stronger than detectability, is typically
needed [18]. Detailed observability analysis of system (1) can
be found in [2], [21]. What follows is a brief summary. When
the rotor speed is constant, the induction motor model (1) is
locally observable provided that the rotor flux vector rotates or
its modulus (amplitude) is not constant. For general scenarios,
local observability might not hold at certain operation regions.
In fact, work [21] shows the existence of operation regimes
that the induction motor model (1) is neither observable
nor detectable. Lack of local (uniform) observability poses
fundamental limitation to the state estimation problem. For
simplicity, this paper assumes that the operation conditions
suffice the uniform observability.

Let us briefly recall provable state estimation results to ex-
pose challenges in the pursuit of probable state estimation for
the induction motor. Consider a locally uniformly observable
multi-input and multi-output (MIMO) system represented by

ζ̇ = f(ζ) + g(ζ)u

y = h(ζ),
(2)

where the state ζ ∈ Rn, the control input u ∈ Rm, the
output y ∈ Rp, f, g : Rn → Rn are C∞ vector fields, and
h : Rn → Rp is a vector of C∞ functions. System (2) is lack
of structures. One can perform general observer designs, such
as Thau’s [22], a Linear Matrix Inequality-based extension
[23], and a neural-adaptive variant [24]. These approaches,
although barely imposing restrictions on the system structure,
suffer non-constructive nature or conservative design to certain
extend. Take [24] as an example, where nonlinear terms in the
system dynamics are approximated by a linear combination of
basis functions (implemented as a neural network). A neural-
adaptive observer estimates the system state, and identifies
the weight vector of basis functions. Key idea is to render
the state estimation error dynamics being input-to-state stable
(achieved by following linear observer design), and the pa-
rameter estimation error being uniformly bounded. The state
estimation error is bounded, and the bound depends on the
infinity norms of the approximation error, basis functions, and

the weight vector. By resorting to a high observer gain, the
state estimation error bound can be made arbitrarily small,
while inevitably sacrificing robustness to measurement noises.
Without explicit exploitation of any knowledge of the system
structure, one will expect that the neural-adaptive observer
requires a larger gain than the traditional high gain observer.
It is noteworthy that the proposed neural-adaptive result is
essentially equivalent to a linear observer design where un-
certainties including nonlinear terms being treated as bounded
and non-vanishing disturbances. This paper leverages another
class of convergence-guaranteed nonlinear observer designs,
e.g. exact error linearization [25]–[28], block triangular-based
decentralized observer [29]–[31], high gain observer [18],
[32]–[38], sliding mode observer [12], [39], and switched
observers for triangular systems [40]. Exploiting the system
structure, these approaches are typically more restrictive, but
render less conservative design, better estimation performance,
as well as provably convergent estimation error dynamics. In
order to design such observers, it is necessary to transform
system (2) into certain special structures by a change of
coordinates. For simplicity, this paper considers a change of
state coordinates.

III. OBSERVER DESIGN FOR SPEED-SENSORLESS
ESTIMATION

This section verifies that the induction motor model (1)
admits the NTOF (13) in Appendix and the corresponding
observer design in the new coordinates. Next focus is to
overcome two challenges while implementing the observer:
1) it is not implementable in the new coordinates, because the
inverse state transformation cannot be explicitly derived; 2) its
implementation in the original coordinates involves the inverse
of the observability matrix, which might be ill-conditioned and
run into the numerical issue.

A. Verifying Transformability to the NTOF

A concise representation of system (1) is given as follows

ζ̇ = f(ζ) + g1uds + g2uqs,

where ζ = [ids, iqs,Φdr,Φqr, ω]>, g1 = [1/σ, 0, 0, 0, 0]>,
g2 = [0, 1/σ, 0, 0, 0]>, and f can be determined readily. The
induction motor model (1) cannot be put into the triangular
form defined in [33], We show that system (1) is transformable
to the NTOF by the following change of state coordinates, for
the kth subsystem

xk = φk(ζ) =




hk(ζ)
...

Lλk−1
f hk(ζ)


 , (3)

where λk is observability indices [26], [41]. Local observ-
ability ensures that x = φ(ζ) = [(φ1(ζ))>, . . . , (φp(ζ))>]>

locally defines new coordinates, i.e., φ(ζ) is a local diffeomor-
phism. The observable form is not uniquely defined due to the
non-uniqueness of observability definitions and observability
indices. Readers are referred to [29], [42] for details about
observability and observable forms.
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For system (1) with outputs h1 = ids and h2 = iqs,
observability indices can be taken as (3, 2) and (2, 3). For
illustrative purpose, we take (λ1, λ2) = (3, 2) as an example
and verify that the change of state coordinates, given by

x =
[
h1, Lfh1, L

2
fh1, h2, Lfh2

]>
, (4)

transforms (1) into the NTOF (13). Given (4), the system in
x-coordinates is written as

ẋ = Ax+ ϕ(x, u)

y = Cx,

where A = diag{A1, A2} with A1 ∈ R3×3 and A2 ∈ R2×2,
C = diag{C1, C2} with C1 ∈ R3 and C2 ∈ R2, and

ϕ =
[
(ϕ1)> (ϕ2)>

]>

ϕ1 =
{
Lg1h1(φ−1(x))uds + Lg2h1(φ−1(x))uqs

} ∂

∂x1
1

+
{
Lg1Lfh1(φ−1(x))uds + Lg2Lfh1(φ−1(x))uqs

} ∂

∂x1
2

+
{
L3
fh1(φ−1(x)) + Lg1L

2
fh1(φ−1(x))uds

+Lg2L
2
fh1(φ−1(x))uqs

} ∂

∂x1
3

ϕ2 =
{
Lg1h2(φ−1(x))uds + Lg2h2(φ−1(x))uqs

} ∂

∂x2
1

+
{
L2
fh2(φ−1(x)) + Lg1Lfh2(φ−1(x))uds

+ Lg2Lfh2(φ−1(x))uqs
} ∂

∂x2
2

.

The rest is to verify that ϕ satisfies the triangular condi-
tion (14) in Appendix. As mentioned in Section II, one
considers system (1) in the stationary frame. With this in mind,
it is not difficult to verify that

Lg1h1(φ−1(x)) = 1/σ, Lg2h1(φ−1(x)) = 0

Lg1Lfh1(φ−1(x)) = 0, Lg2Lfh1(φ−1(x)) = 0

Lg1h2(φ−1(x)) = 0, Lg2h2(φ−1(x)) = 1/σ

Lg1Lfh2(φ−1(x)) = 0, Lg2Lfh2(φ−1(x)) = 0.

The terms ϕ1 and ϕ2 are therefore rewritten as follows

ϕ1 =
uds
σ

∂

∂x1
1

+
{
L3
fh1(φ−1(x))

+Lg1L
2
fh1(φ−1(x))uds + Lg2L

2
fh1(φ−1(x))uqs

} ∂

∂x1
3

ϕ2 =
uqs
σ

∂

∂x2
1

+ L2
fh2(φ−1(x))

∂

∂x2
2

.

Evidently, ϕ1
1
, ϕ1

2
and ϕ2

1
satisfy the triangular condition (14).

The rest two components ϕ1
3

and ϕ2
2
, though complicated, are

allowed to have general dependence on x. We therefore verify
that system in coordinates (3) is in the NTOF.

Remark 3.1: One can verify that state coordinates induced
by observability indices λ1 = 2 and λ2 = 3 transform
system (1) into the NTOF as well. The ordering of subsystems
should, however, be adjusted to ensure the triangular condi-
tion (14).

B. Exact Observer Design

Given the observer (15) (in Appendix) for the kth subsys-
tem, an observer can be readily designed for each subsystem
in the x-coordinates. For system (1), we take λ1 = 3, λ2 =
2, p = 2, and have design parameters

θ > 0, δ1 = 1, δ2 = 1

∆1(θ) = diag{1, 1

θ
,

1

θ2
} ∆1(θ) = diag{1, 1

θ
}

S−1
1 C>1 =

[
3, 3, 1

]>
, S−1

2 C>2 =
[
2, 1
]>
.

Substituting the aforementioned design parameters into the kth
subsystem, one can obtain the observer in x-coordinates as
follows

˙̂x1 = A1x̂
1 + ϕ̂1 +G1C1x̃

1

˙̂x2 = A2x̂
2 + ϕ̂2 +G2C2x̃

2

ŷ1 = C1x̂
1

ŷ2 = C2x̂
2,

(5)

where

G1 = θδ1∆−1
1 (θ)S−1

1 C>1

= diag{θ, θ2, θ3}




3
3
1


 =




3θ
3θ2

θ3




G2 = θδ2∆−1
2 (θ)S−1

2 C>2

= diag{θ, θ2}
[
2
1

]
=

[
2θ
θ2

]
.

Without the closed-form inverse state transformation ζ =
φ−1(x), the expression of ϕ(x, u) cannot be obtained. The
observer in x-coordinates (5) needs additional rearrangement
for implementation. Rewrite ϕ(x, u) as a function of (φ(ζ), u).
The x-observer is rearranged as follows

˙̂xk = Akx̂
k + ϕk(φ(ζ̂), u) + θδk∆−1

k (θ)S−1
k C>k Ckx̃

k

ŷk = Ckx̂
k,

(6)

where ϕk(φ(ζ̂), u) are the rows corresponding to the kth
subsystem in ϕ(φ(ζ̂), u) given by

ϕ(φ(ζ̂), u) =
∂φ(ζ̂)

∂ζ̂
(f(ζ̂) + g(ζ̂)u)−Aφ(ζ̂).

As a result, the observer (6) can be implemented as

˙̂x =
∂φ(ζ̂, u)

∂ζ̂
(f(ζ̂) + g(ζ̂)u) + Θ∆−1(θ)S−1C>Cx̃

ŷ = Cx̂,

(7)

where ζ̂ is numerically constructed by solving the following
n nonlinear algebraic equations

x̂ = φ(ζ̂). (8)

Remark 3.2: If the state transformation φ(ζ) is a global
diffeomorphism, ζ̂ can be uniquely solved from (8). Otherwise,
two issues arise. First, the x-coordinates may not be well-
defined where ∂φ(ζ̂,u)

∂ζ̂
is singular, and thus the observer (7) is

invalid. Second, even if the x-coordinates are well-defined,
φ(ζ) is non-convex, indicating that (8) may have multiple
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solutions. Solving (8) for ζ̂ could be easily trapped into to
a local minimum (the state estimate ζ̂ is erroneous).

If the state transformation φ(ζ) is a local diffeomorphism
in a neighborhood of ζ0, its Jacobian ∂x

∂ζ is non-singular in the
neighborhood. One can therefore implement the observer (5)
as follows

˙̂
ζ=f(ζ̂) + g(ζ̂)u+

(
∂x̂

∂ζ̂

)−1

Θ∆−1(θ)S−1C>(y − ŷ)

ŷ=h(ζ̂).

(9)

Compared with the observer (7)-(8), observer (9) costs less
computation by avoiding the calculation of numerical solutions
of nonlinear equations (8). However, the observer (9) also
suffers incorrect state estimation.

C. Approximate Observer Design
To shorten the notation, we introduce Qo = ∂x̂

∂ζ̂
. Implemen-

tation of the observer (9) requires solving the inverse of Qo
in realtime. More accurately, to solve the observer gain Gζ in
ζ-coordinates from the following linear system

Gx = QoGζ , (10)

where Gx = Θ∆−1(θ)S−1C>. Numerical issue arises when
Qo is ill-conditioned, because one cannot easily rely on the
solutions coming out of an ill-conditioned Qo. For instance
the least square solution

Gζ = (Q>o Qo)
−1Q>o Gx

becomes useless. Let cond(Qo) = |Qo|∞|Q−1
o |∞ be the

condition number of Qo. One can expect a loss of roughly
log10(cond(Qo)) decimal places in the accuracy of the solu-
tions.

Next, we discuss how to remedy the aforementioned numer-
ical instability, by using techniques such as pre-conditioning,
scaling, etc. An intuitive pre-conditioning, also called the
Tikhonov regularization, introduces a positive constant h
into (10) and tries to solve

Gζ = (Q>o Qo + hI)−1Q>o Gx.

By introducing h, the Tikhonov regularization reduces the
condition number of Q>o Qo and thus results in improvement
of the solution accuracy.

Alternatively, one can regularize the problem by adding
extra information, for instance the smoothness of Gζ . The
basic idea is that the correct one among all (near) solutions is
characterized by requiring the “smoothness” of some function,
curve or surface constructed from Gζ at a fixed time instant.
Interested readers are referred to [43] for an example of
imposing a smoothness condition on Gζ . As a smooth function
of ζ(t) which is continuous over time, Gζ is continuous over
time as well. This priori however contradicts the fact that an
ill-conditioned Qo typically results in discontinuity of Gζ over
time. During algorithm implementation, one would force that
Gζ be continuous over time. This is viable by, for instance,
introducing a low pass filter on Gζ , or the following scheme

Gζ(k) =

{
solved from (10), if cond(Qo) ≤ c
Gζ(k − 1), otherwise,

where k is the time step, cond(·) is the condition number, and
c is a positive constant.

The aforementioned preconditioning methods concentrate
on (10) and try to resolve the ill-conditionedness of Qo at
a fixed time instant. One can also take an approach from
a systematic perspective, where Qo is treated as a function
of ζ. The idea is to replace the Qo, viewed as a matrix of
functions, with Q̂o, a matrix of approximate functions. Q̂o
is often accomplished intuitively, for instance, by truncating
the Taylor series expansion of Qo, or by eliminating certain
components from Qo on the basis of structural analysis. Note
that it is difficult to analyze how the approximation error, due
to either pre-conditioning or functional approximation, affects
the stability and accuracy of estimation error dynamics.

D. Stability and Robustness

We recite main results in [19] as follows.
Theorem 3.3: [19, Thm. 3.1] Given Assumption A.1, ∀N >

0;∃θ0 > 0;∀θ ≥ θ0;∃λθ > 0, µθ > 0 such that for 1 ≤ k ≤ p

|x(t)− x̂(t)| ≤ λθe−µθt|x(0)− x̂(0)|

for every admissible control u with |u|∞ ≤ N . Moreover, λθ
is a polynomial in θ and limθ→∞ µθ = +∞.

Remark 3.4: Although [19, Thm. 3.1] establishes globally
exponential stability for the estimation error x̃, it does not
necessarily hold for the estimation error ζ̃, because x is not
globally defined. In fact, for the motor model (1), only local
stability result can be obtained in ζ̃: both ζ and ζ̂ should
start from and remain inside an open domain Bx belonging
to a compact domain D where φ(ζ) and its inverse are
diffeomorphic. The convergence of the zero solution of x̃ also
implies that of ζ̃ because

|ζ − ζ̂| = |φ−1(x)− φ−1(x̂)|

≤ |∂φ
−1(ε)

∂ε
|∞|x− x̂|

≤ |∂φ
−1(ε)

∂ε
|∞λθe−µθt|x(0)− x̂(0)|,

where |∂φ
−1(ε)
∂ε |∞ is computed over all ε ∈ Bx.

A speed-sensorless control system should be robust w.r.t.
parametric uncertainties, actuator offsets and noises, and mea-
surement noises. The actuator offsets and noises appear as
additive disturbances da in the motor model. The aforemen-
tioned observer design is relatively robust by showing that the
resultant estimation error dynamics are input to state stable.
The argument is as follows. From the expressions of ϕ1, ϕ2,
the actuator uncertainties da are also additive in x-coordinates,
and thus are globally Lipschitz. According to [44, Lem. 4.6],
the exponential convergence of ζ̃ ensures that ζ̃-dynamics are
input to state stable with respect to disturbances da as long
as the dynamics of ζ is Lipschitz with respect to da. Hence,
the estimation error x̃ may converge to a bounded region
containing the origin. A large tuning parameter θ can reduce
the size of the region and improve the estimation accuracy.

With the presence of parametric uncertainties, the afore-
mentioned observer design could not lead to concrete stability
results. Assuming that true values of model parameters are
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Θ = [α, β, γ, σ, J ]> and Θo is used in the observer, the motor
model is rewritten as

ζ̇ = fo(ζ,Θo) + g1uds + g2uqs + f(ζ,Θ)− fo(ζ,Θo). (11)

Applying the state transformation (3), with f replaced by fo,
to (11) gives

ẋ = Ax+ϕ(x,Θo, u) +
∂x

∂ζ
(f(ζ,Θ)− fo(ζ,Θo))

∣∣∣∣
ζ=φ−1(x)︸ ︷︷ ︸

δf

.

Unless δf bears the same triangular structure as ϕ, the
proposed observer could not guarantee the stability of the re-
sultant estimation error dynamics. This observation implies the
necessity of generalizing the proposed observer to incorporate
parameter adaptation, a potential future work.

Regarding robustness to measurement noises, one can fol-
low the similar argument as in the analysis of actuator
uncertainties, measurement noises enter the estimation error
dynamics additively, and the proposed observer is relative
robust. However, the proposed observer, with the high gain
nature, is susceptible to measurement noises and exhibits
certain tradeoff. On one hand, the observer gain should be
large to reject parametric and actuator uncertainties. On the
other hand, a large observer gain amplifies the impact of
measurement noises on estimation error dynamics.

IV. EXPERIMENTAL VALIDATION

We perform open-loop and closed-loop experiments when
the motor operates below its rated speed. For the open-
loop scenario, the encoder output is used as the feedback
signal, and both the proposed and baseline algorithms run
in open-loop. It demonstrates that the state estimation error
of the proposed algorithm converges much faster than that
corresponding to the baseline. In the closed-loop experiment,
the estimated speed and rotor flux amplitude produced by
the proposed algorithm are fed into the tracking controller,
whereas the baseline remains in open-loop. It shows that
the resultant speed-sensorless motor drive offers good speed
tracking performance.

A. The Testbed

The testbed comprises Matlab/Simulink R©, dSPACE R© ACE
Kit DS1104, a DC-AC inverter, and a Marathon R©three-
phase AC induction motor with an inertial load attached. The
testbed is illustrated by Fig. 1 where the black and the red
arrows represent signal and power flows, respectively. Control
algorithm, including a tracking controller and state estimators,
is implemented and compiled through Matlab/Simulink, and
downloaded to dSPACE for realtime operation. The tracking
controller determines the voltage reference ur(t) based on
measured signals and references, and sends it to the PWM
module in dSPACE; the PWM module controls the DC-AC
inverter to generate three-phase voltages close to ur(t).

The dSPACE executes the data acquisition and real-time
estimation and control tasks. It collects four signals: the
motor position x, and three-phase stator currents ia, ib, ic.

dSPACE
DS1104

DC-AC
inverter

Induction
motor

Matlab
Simulink

VDC

y

Fig. 1: The testbed architecture.

During experiments, the frequencies of both the control loop
and PWM are 4kHz. The encoder has a resolution of 2048
pulses per revolution. The motor has model parameter values:
Rs = 11.05Ω, Rr = 6.11Ω, Ls = Lr = 0.3165H,Lm =
0.2939H,J = 5e− 3kgm2.

B. The Tracking Controller and State Estimator

The tracking controller implements an indirect field oriented
control (IFOC) shown in Fig. 2. Four Proportional and Integral
(PI) controllers PIi, 1 ≤ i ≤ 4 regulate the speed, the rotor
flux amplitude, the q-axis stator current, and the d-axis stator
current, respectively. With signal and notation defined in Fig. 2
and Table I, the control law implemented in the tracking
controller is represented by

i∗ds = KP
Φ eΦ +KI

Φ

∫ t

0

eΦdt

i∗qs = KP
ω eω +KI

ω

∫ t

0

eωdt

u∗ds = KP
idseids +KI

ids

∫ t

0

eidsdt+ udsff

u∗qs = KP
iqseiqs +KI

iqs

∫ t

0

eiqsdt+ uqsff ,

(12)

where udsff = −σω1iqs and uqsff = σ(ω1ids + βω̂Φ̂dr).
ω1 is the rotational speed of the estimated d− q frame where
the d axis is aligned with the estimated rotor flux. For open-
loop experiments, ω1 = ω+αiqs/i

∗
ds, whereas for closed-loop

experiments, ω1 = ω̂ + αîqs/i
∗
ds. Park transformation and its

inverse in Fig. 2 utilize the estimated rotor flux angle ρ, which
is obtained according to the following equation

ρ̇ = ω1, ρ(0) = 0.

All constants in (12) are determined by trial and error to
achieve satisfactory speed tracking performance. Proportional
gains KP

ids and KP
iqs are tuned to achieve 200Hz bandwidth

for two stator current control loops, and KP
Φ and KP

ω are tuned
to achieve 100Hz bandwidth for the speed control loop when
the encoder feedback is used. Integral gains KI

ids,K
I
iqs,K

P
Φ

and KP
ω are taken fairly small because the transient, instead

of the steady state error, is our main concern.
The algorithm in [9] is chosen as the baseline, where the

PI gains for the speed adaptation are tuned by trial and
error to balance fast speed estimation (short transient) and the
harmonics reduction in steady-state operation.

As aforementioned discussions, the matrix Qo might be ill-
conditioned, which necessarily leads to large fluctuations in
the speed estimate. We follow the function approximation idea,
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PI1

∑ ∑
PI2

∑

State
estimator

PI3

∑ ∑
PI4

∑

Inverse
Clarke & Park
transformation

Motor

Clarke & Park
transformation

Φ∗ eΦ i∗ds eids

ia, ib, ic

ids
√

Φ̂2
dr + Φ̂2

qr

ids, iqs

u∗
ds

udsff

u∗
qs

uqsff

ω∗ eω i∗qs eiqs

iqsω̂

ids, iqs

Va, Vb, Vc

Fig. 2: The IFOC block diagram.

and derive Q̂o by exploiting the structure of Qo. Notice that
in the stationary frame, the matrix Qo is periodically time-
varying, and thus makes the numerical stability issue more
challenging. Hence, we rewrite the system (2) in a frame
rotating at ω1 so that at steady state, ids, iqs,Φdr,Φqr are
constants. Then we trim Qo to get Q̂o, which is suitable for re-
altime implementation as well as offers decent state estimation
performance. For the illustration purpose, we express

Qo =




1 0 0 0 0

0 ω1 αβ βω̂ βΦ̂qr
0 1 0 0 0

−ω1 0 −βω̂ αβ −βΦ̂dr
∗ ∗ ∗ ∗ ∗



.

We have two options to approximate Qo. Option 1: we choose
the approximate matrix Q̂o by letting the first four elements
of the last row in Qo be zero, i.e.,

Q̂o =




1 0 0 0 0

0 ω1 αβ βω̂ βΦ̂qr
0 1 0 0 0

−ω1 0 −βω̂ αβ −βΦ̂dr
0 0 0 0 ∗



.

Option 2: the approximate matrix Q̂o is chosen as follows

Q̂o =




1 0 0 0 0
0 ω1 αβ βω̂ 0
0 1 0 0 0
−ω1 0 −βω̂ αβ 0
∗ ∗ ∗ ∗ ∗



.

Both Q̂o is always non-singular, and their inverses can be
solved reliably and efficiently. Option 2 is implemented in the
experiment, and the observer parameter is θ = 5.

C. Experimental Results: Open-loop
The tracking controller uses the measured speed as a

feedback signal for speed control, i.e., both the baseline
and proposed estimation algorithms run in open-loop. With
the knowledge of the rotor speed, the following open-loop
estimator is employed to estimate the rotor flux for flux control

˙̂
Φdr = −αΦ̂dr − ωΦ̂qr + αLmids
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Fig. 3: Speed trajectories when ω∗ jumps among -30rad/sec
and -10rad/sec.

˙̂
Φqr = −αΦ̂qr + ωΦ̂dr + αLmiqs.

We examine how quickly two estimation algorithms respond
to step changes of the reference speed. Extensive tests are
conducted and end up with the same conclusion: the pro-
posed algorithm results in higher speed tracking performance
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than the baseline, given the knowledge of the rotor inertia
and a constant load torque. Figs. 3-5 present results for
cases when the rotor speed is low. Low speed experiment
is particularly interesting because the corresponding speed-
sensorless operation is notoriously hard, thanks to weak ob-
servability, the low signal-to-ratio in sensed signals, and the
distortion/uncertainties in the inverter voltages [45]. This is
also manifested by Figs. 3-5, where the higher the rotor speed
is, the better the baseline performs.

Fig. 3 shows the trajectories of reference speed ω∗, mea-
sured speed ω, and estimated speeds ω̂ by the baseline and
the proposed algorithms. The reference speed contains four
jumps: from -30rad/sec to -20rad/sec at t = 1.85sec, from
-20rad/sec to -10rad/sec at t = 3sec, from -10rad/sec to -
20rad/sec at around t = 5sec, and from -20rad/sec to -
30rad/sec at t = 7sec. Upper plot offers a macroscopic view,
while the bottom plot illustrates transient behavior incurred
by reference steps. One can see that the estimated speed of
the proposed algorithm converges to the neighborhood of the
measured speed much faster that the baseline does. From the
zoomed in plot, one can see that the proposed algorithm can
closely follow the measured speed. In many cases, the transient
lasts about 0.01sec.

Fig. 4 corresponds to the case where the speed reference
jumps between -10rad/sec and 10rad/sec; Fig. 5 corresponds
to the case where the speed reference jumps between 10rad/sec
and 30rad/sec. Even during the low speed, the proposed
algorithm can estimate the speed quickly, although the baseline
performs unsatisfactorily. Apparently, the same conclusion can
be drawn from these cases.

D. Experimental Results: Closed-loop

We close the control loop with the estimated speed ω̂
from the proposed algorithm, and validate the speed tracking
performance. The controller and estimator gains are the same
as the open-loop. The baseline algorithm runs in open-loop.

Fig. 6 elaborates results when the reference speed jumps
between -30rad/sec and -10rad/sec. As shown in the upper
plots of Fig. 6, the measured speed can respond to positive
steps of references quickly. The lower plot verifies that the
speed transient is around 0.01sec. It is noteworthy that the
estimated speed trajectories in the open-loop and the measured
speed in the closed-loop contain harmonics. The harmonics are
largely induced by model mismatches between the estimators
and the true motor, and uncertainties in the output voltages
of the inverter. The model mismatches are elegantly rejected
by the tracking controller, and which render smooth measured
speed in the open-loop and estimated speed in the closed-loop
cases.

Although performing much better at the mid/high speed
range, performance of the baseline is severely degraded dur-
ing low-speed operation. This is consistent with observation
disclosed in abundant literatures, due to low signal-to-noise
ratio in sensed signals, and uncertainties in the output voltages
of the inverter. Baseline, without considering the mechanical
dynamics, benefits from high gains in the speed adaptation law
to achieve fast estimation. This treatment does not cause any
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15

(c) Zoom-in when ω∗ step down

Fig. 4: Speed trajectories when ω∗ jumps among -10rad/sec
and 10rad/sec

problem during mid/high speed operation, where the signal-
to-noise ratio is large. On the other hand, near zero speed,
low gains are preferable to mitigate the large uncertainties
in sensed signals, and necessarily leads to sloppy transient.
Turning to the proposed algorithm, although it is coined as
‘high gain observer’, its gain in fact is not high at all, compared
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Fig. 5: Speed trajectories when ω∗ jumps among 10rad/sec
and 30rad/sec

with the baseline. By utilizing the mechanical dynamics,
the proposed algorithm can still achieve good performance
with relatively low observer gain. As an apparent downside,
the effectiveness of the proposed algorithm is contingent on
the knowledge of the rotor inertia and a constant (maybe
unknown) load torque.

V. CONCLUSION AND FUTURE WORK

This paper proposed and verified an approximate high gain
estimation algorithm for speed-sensorless motor drives. The
proposed algorithm is based on first transforming the motor
model into a non-triangular observable form by a change of
state coordinates, and then performing a high gain observer
design in the new coordinates. Due to the local nature of the
state transformation, only local stability can be obtained for
the estimation error dynamics in the original coordinates. We
provided approximate observers without solving the inverse
state transformation. Experiments demonstrate the potential
effectiveness and advantages of the proposed algorithm: fast
speed estimation transient and ease of tuning. This paper
also reveals a number of issues related to the proposed
approach, for instance, relying on accurate values of model
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Fig. 6: Speed trajectories when ω∗ jumps among -30rad/sec
and -10rad/sec

parameters, non-trivial numerical stability during real-time
implementation, etc. Future work includes further development
of more systematic solutions to address numerical stability,
and generalization of the proposed algorithm to cope with
parametric uncertainties.

APPENDIX A
NON-TRIANGULAR OBSERVABLE FORM AND OBSERVER

DESIGN

Work in [19] assumes that system (2) is transformable to
the following non-triangular observable form by a change of
state coordinates x = φ(ζ)

ẋ = Ax+ ϕ(x, u)

y = Cx,
(13)
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Fig. 7: Speed trajectories when ω∗ jumps among -10rad/sec
and 10rad/sec

where the state x ∈ Rn, and for 1 ≤ k ≤ p,

x =



x1

...
xp


 with xk =



xk1
...
xkλk


 ∈ Rλk

A = diag{A1, · · · , Ap}, Ak =

[
0 Iλk−1

0 0

]
∈ Rλk×λk

C = diag{C1, . . . , Cp}, Ck =
[
1 0

]
∈ Rλk .
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Fig. 8: Speed trajectories when ω∗ jumps among 10rad/sec
and 30rad/sec

Literally, xk denotes the state of the kth subsystem associated
with the kth output yk, and λk, 1 ≤ k ≤ p are the dimensions
of all subsystems. We call λk for 1 ≤ k ≤ p as subsystem
indices, and have

∑p
k=1 λk = n. Note that the vector field

ϕ(x, u) is described as

ϕ =



ϕ1

...
ϕp


 with ϕk =



ϕk1
...

ϕkλk


 ∈ Rλk , 1 ≤ k ≤ p.

Specifically, ϕki has the following structure: for 1 ≤ i ≤ λk−1,

ϕki = ϕki (x1, · · · , xk−1, xk1 , · · · , xki , xk+1
1 , · · · , xp1, u) (14)

and for i = λk

ϕki = ϕkλk(x1, · · · , xp, u).

The non-triangular observable form (13) does not have a
triangular structure as in [33] because ϕkλk is dependent on
all state x. It is actually a special case of the form defined in
[19, Eqn. (1) ] by taking pk = 1. In fact, taking pk = 1 for
1 ≤ k ≤ q in [19, Eqn. (1) ] gives q = p and λk = nk.
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It could be challenging to verify that system (2) is trans-
formable to (13) and to construct the state transformation
x = φ(ζ). Verifying the transformability and solving the state
transformation form another portfolio of research topics which
are relatively separated from observer design.

Given the state transformation x = φ(ζ) and its inverse ζ =
φ−1(x), one can obtain the system representation in the non-
triangular observable form. Observer design is performed in
the non-triangular observable coordinates to estimate x. Given
a system in the non-triangular observer form (13), a high gain
observer can be constructed as follows. For the kth subsystem,
the following observer is proposed

˙̂xk = Akx̂
k + ϕ̂k + θδk∆−1

k (θ)S−1
k C>k Ckx̃

k

ŷk = Ckx̂
k,

(15)

where x̂k = [x̂k1 , · · · , x̂kλk ]>, x̃k = xk − x̂k,

θ > 0

δk =

{
2p−k

(
Πp
i=k+1(λi − 3

2 )
)
, if 1 ≤ k ≤ p− 1

1, if k = p

∆k(θ) = diag{1, 1

θδk
, . . . ,

1

θδk(λk−1)
}

ϕ̂k =
[
ϕ̂k1 , . . . , ϕ̂

k
λk

]>

ϕ̂ki = ϕki (x̂1, . . . , x̂k−1, x̂k1 , . . . , x̂
k
i , x̂

k+1
1 , . . . , x̂p1, u),

and Sk is solved from

Sk +A>k Sk + SkAk = C>k Ck. (16)

It has been shown in [18] that the solution to (16) is symmetric
positive definite and satisfies

S−1
k C>k =

[
C1
λk
, . . . , Cλkλk

]>

with Ciλk = λk!/(i!(λk − i)!) for 1 ≤ i ≤ λk.
Assume that ϕ(x, u) is globally Lipschitz with respect to x

uniformly in u. That is
Assumption A.1: Given system (13), ∀x1, x2 ∈ Rn,∃Lx > 0

|ϕ(x1, u)− ϕ(x2, u)| ≤ Lx|x1 − x2|. (17)
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