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Abstract

Learning tasks from simulated data using reinforcement learning has been proven effective. A
major advantage of using simulation data for training is that it reduces the burden of acquiring
real data. Specifically when robots are involved, it is important to limit the amount of time a
robot is occupied with learning, and can instead be used for its intended (manufacturing) task.
A policy learned on simulation data can be transferred and refined for real data. In this paper
we propose to learn a robustified policy during reinforcement learning using simulation data.
A robustified policy is learned by exploiting the ability to change the simulation parameters
(appearance and dynamics) for successive training episodes. We demonstrate that the amount
of transfer learning for a robustified policy is reduced for transfer from a simulated to real task.
We focus on tasks which involve reasl-time non-linear dynamics, since non-linear dynamics
can only be approximately modeled in physics engines, and the need for robustness in learned
policies becomes more evident.
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Abstract

Learning tasks from simulated data using reinforcement learning has been proven
effective. A major advantage of using simulation data for training is that it reduces
the burden of acquiring real data. Specifically when robots are involved, it is impor-
tant to limit the amount of time a robot is occupied with learning, and can instead
be used for its intended (manufacturing) task. A policy learned on simulation data
can be transferred and refined for real data. In this paper we propose to learn a
robustified policy during reinforcement learning using simulation data. A robusti-
fied policy is learned by exploiting the ability to change the simulation parameters
(appearance and dynamics) for successive training episodes. We demonstrate that
the amount of transfer learning for a robustified policy is reduced for transfer from
a simulated to real task. We focus on tasks which involve reasl-time non-linear dy-
namics, since non-linear dynamics can only be approximately modeled in physics
engines, and the need for robustness in learned policies becomes more evident.

1 Introduction

Teaching robots to perform challenging tasks has been an active topic of research. In particular, it has
recently been demonstrated that reinforcement learning coupled with deep neural networks is able to
learn policies which can successfully perform tasks such as pick and fetch. The training for learning
policies with deep reinforcement learning typically requires many samples to explore the sequential
decision making space. Training tasks directly on robot hardware has several drawbacks. Robots are
slow, they can be dangerous or damage themselves and they are expensive. Robots are typically part
of a production or manufacturing environment. Therefore, in terms of practical considerations, the
time required for learning a task directly involving the robot should be as short as possible.

In order to reduce the time required for learning on the real robot, training can be performed on
simulated environments instead. The learned policy is then transferred to the real world domain, and
additional learning to refine the policy according to the real world domain is performed. Modern
graphics card and sophisticated physics engines enable the simulation of complex tasks. Learning
with simulators has several advantages. The rendering and physics engines are capable of computing
simulations faster than real-time. This helps to reduce overall training times. Recent deep reinforce-
ment learning algorithms allow agents to learn in parallel [16], further reducing training times. As a
final advantage, in simulation we can control both appearance and physics. For example the lighting
conditions, or the mass of an object can be changed. Simulations also have some drawbacks. The most
prominent drawback of simulation is the fact that both appearance and physics are approximations to
the real world. Transfer of a policy, learned in simulation, to the real world thus requires fine-tuning
on real data.
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By varying the appearance and/or physics parameters during reinforcement learning on simulation
data, robustified policies can be learned. This is analogous to training a deep convolutional neural
network to classify objects regardless of the background in the input images. We found that robustified
policies can greatly reduce the amount of fine-tuning required in transfer learning. This is especially
true for tasks that involve non-linear dynamics. Non-linear dynamics arise when objects are subject
to static and dynamic friction, accelerate during motion, or collide with other objects.

We demonstrate our proposed approach on a challenging task of a robot learning to solve a marble
maze puzzle. The marbles are subject to static and rolling friction, acceleration, and collisions (with
other marbles and with the maze geometry). We have also implemented a simulator to simulate the
physics of the marbles in the maze game, and render the results to images. We learn to solve the
game from scratch using deep reinforcement learning. We also implemented a modified version of
the deep reinforcement learning to learn directly on real robot hardware. In simulation, we learn
both a robustified and non-robustified policy and compare the times required for fine-tuning after
transferring the policy to the real world.

In the remainder of this paper we will refer to learning on simulated data / environments as offline
learning, and learning on real data / environments will be referred to as online learning. Transfer
learning with fine-tuning on real data therefore constitutes both offline as well as online learning.

2 Related Work

Our work is inspired by the recent advances in deep reinforcement learning, learning complicated
tasks and achieving (beyond) human level performance on a variety of tasks [15, 16, 25, 26]. Similar
to [17], we also perform domain randomization, in both appearance and dynamics.

Transfer learning has been an active area of research in the context of deep learning. For example, tasks
such as object detection and classification can avoid costly training time by using pre-trained networks
and fine-tuning [19, 33], where typically only the weights in the last couple of layers are updated.
Transfer learning from simulated to real has also been applied to learn robot tasks [21, 35, 34, 4].
To reduce the time required for fine-tuning in transfer learning, the authors in [24] propose to make
simulated data look more like the real world. By randomization of the appearance, the learning can
become robust against appearance changes and readily transfer to the real world domain [11, 22].
These approaches inspired our work to extend this randomization to the physics domain and perform
transfer learning for tasks involving non-linear dynamics.

Simulation data is used for learning different tasks such as semantic segmentation [20] and human
recognition [29]. The authors in [5] propose a game-like environment for generating synthetic data
for benchmark problems related to reinforcement learning. Our simulator is inspired by this toolkit.

Instead of transfer learning using simulated data, in model-agnostic meta-learning [7] the goal is to
learn a policy that is robust against different tasks by learning on samples drawn from a distribution
of tasks. Only a few samples of a new task are then required to adapt the policy to that new task.
This approach requires the availability of samples from several different tasks. Furthermore, many
samples would be required for tasks that involve non-linear dynamics. Instead of learning a robust
policy, in [12] the goal is to learn new tasks using only new data without "forgetting" how to perform
a previously learned task. This enables gradual adding of new capabilities, but does not focus on
reducing the amount of time required for fine-tuning.

Our simulator provides observations of the state in simulation, similar to the real world. In [18] the
critic receives full states, whereas the actor receives observations of states. Coupled with appearance
randomization, zero-shot transfer can be achieved. The full state requires that the physics parameters
to produce non-linear dynamics match those of the real world. Since this is non-trivial, our method
avoids this requirement by training on a range of parameters instead.

In [6] the authors acknowledge that training robot tasks on simulated data alone does not readily
transfer to the real world. They propose a form of fine-tuning where the inverse dynamics for the
real robot are recovered. It requires a simulator and training which produces reasonable estimates of
the real world situation. The drawback of this method is that it requires long online training times,
whereas our goal is to minimize the duration of the online training time.



It would be desirable to generate simulation data instead of developing (complicated) simulators,
e.g., [36, 14]. To date however, the resulting images are not at the quality level required for successful
learning.

Formulating reward functions is not straightforward. The authors in [9] propose to discover robust
rewards to enable the learning of complicated tasks. Adding additional goals (sub-goals), basically a
form of curriculum learning [3], can improve the learning as well [2]. The latter approach may be
applied to break up the goal of a marble maze into stages. However, in this paper we show that a
simple reward function which governs the overall goal of the game is sufficient.

In [31, 32] the graphics and physics engine are embedded within the learning to recover physics
parameters and perform predictions of non-linear dynamics. It is not clear how well this could work
in the context of robot control.

3 Preliminaries

We briefly review some concepts from reinforcement learning and deep reinforcement learning using
asynchronous actor-critic, and define some terminology that we will use in the remainder of this
paper. In the next section we will discuss our approach.

3.1 Reinforcement Learning

In reinforcement learning an agent interacts with an environment, represented by a set of states S,
taking actions from an action set .4, and receiving rewards r : S x A — R. The environment is
governed by (unknown) state transition probabilities p(s’|s, a). The agent aims to learn a (stochastic)
policy 7(a|s), which predicts (a distribution over) actions a based on state s. The goal for the agent is
to learn a policy which maximizes the expected return E[R;], where the return Ry = Y52 o v*resk
denotes the discounted sum of future rewards with discount factor ~.

Two value functions are defined, a state-value function V7™ (s) = E.[> ,-, Y Riy1i1|S: = 8]
and an action-value function Q™(s,a) = E.[> po 7" Ritx+1|S: = s, Ay = a]. For Markov
decision processes, the value functions can be written as a recursion for expected rewards, e.g.,
V7™(s) = R(s,m(s))+v >, p(s'|s,m(s))V7(s"). The recursive formulations are Bellman equations.
Solving the Bellman optimality equations would give rise to the optimal policy 7*. For details we
refer the reader to [27]

We consider the case where agents interact with the environment in episodes of finite length. The end
of an episode is reached if the agent arrives at the timestep of maximum episode length, or the goal
(terminal state) is achieved. In either case the agent restarts from a new initial state.

3.2 Deep RL using Advantage Actor-Critic

In actor-critic RL algorithms, e.g. [13], the policy 7 is considered as actor and the value function
as critic. In [16] the authors propose the advantage actor-critic algorithm. The algorithm defines
two networks: a policy network 7 (als, 8,,) with network parameters ¢,,, and a value network V (s|6,,)
with network parameters 6,,. This policy-based model-free method determines a reduced variance
estimate of Vg, IE[R;] as Vg, log 7(as|s¢, 0,)(Rs — bt (s¢)) [30]. The return R; is an estimate of Q™
and the baseline b, is a learned estimate of the value function V™.

The authors in [16] describe an algorithm where multiple agents learn in parallel, and agent maintains
local copies of the policy and value networks. Agents are trained on episodes with maximum
length L (shorter if the terminal state is reached). Within each episode, trajectories are acquired as
sequences T = (81,G1,71,52,02, 72, -« SL.uys @L.uys "Ly )» With maximum length L, (shorter
if the terminal state is reached in less than L,; steps). Rather than the actual state, the inputs are
observations (images) of the state, and a forward pass of each image through the agent’s local policy
network results in a distribution over the actions. Every L, steps, the parameters of the global
policy and value networks are updated and the agent synchronizes its local copy with the parameters
of the global networks. After L steps, or when the terminal state is reached, the current episode ends
and a next episode is started. See [16] for further details.



Figure 1: Marble maze game. (Left) Top view of the marble maze after a plexiglass top has been
removed (leaving holes in the outermost edge). A paper rim is used to cover the holes. The black
dots in each gate between rings are used for alignment. The view also shows the world aligned = and
y axes. (Middle) The marble maze mounted on the robot arm. (Right) A rendering of the simulated
marble maze under some chosen lighting conditions (without added noise.

4 Deep Reinforcement Learning for Tasks with Non-linear Dynamics

The task we aim to learn is to "solve" a marble maze game, see Figure 1. Solving the game means
that the marbles are maneuvered from the outermost ring, through a sequence of gates, into the
center. Due to static and dynamic friction, acceleration, damping, and the discontinuous geometry of
the maze the dynamics are (highly) non-linear. To solve a marble maze game using reinforcement
learning we can define a reward function as:

—1, if through gate away from center of maze
r =< +1, if through gate towards center of maze 1
0, otherwise

This simple reward function is general and does not encode any information about the actual geometry
of the game. The action space is discretized into five actions. The first four actions constitute 1°
rotation increments, clockwise and counterclockwise around the x, and y axes up to a fixed maximum
angle. Figure 1(Left) shows the orientation of the z, and y axes with respect to the maze. In addition,
we define a fifth action as the no-action, i.e., maintain the current orientation of the maze. We
empirically determined the fixed maximum angle to be 5° in either direction. This value is sufficient
to overcome the static friction, while simultaneously avoiding accelerations that are too large.

To successfully apply reinforcement learning for sparse rewards, a framework of auxiliary tasks
may be incorporated [10]. Path following may be an auxiliary task one could consider. However,
we aim to keep our approach as general as possible, and not require path finding algorithms which
rely on the geometry of the maze. Instead we incorporate pixel change and reward prediction, as
proposed by [10]. Pixel change promotes maximal change between images, and avoids the selection
of consecutive actions that would not result in any object motions. In addition, reward prediction
aims to over-represent rewarding events to offset the sparse reward signal provided by the reward
function. To stabilize learning and avoid settling into sub-optimal policies we employ the generalized
advantage estimation as proposed by [23] together with entropy regularization with respect to the
policy parameters [16].

4.1 Deep Reinforcement Learning on Simulated Robot Environments

In order to learn a robustified policy in simulation, we adopt the idea of randomization from [11, 22].
For each episode, physics and appearance parameters are varied. Parameters are chosen from a
pre-determined range, according to a uniform distribution. Alternatively, instead of varying the
parameters for each episode, the parameters could be randomized for each different agent, but keep
them fixed over the course of training. We found that the first approach reduced the transfer learning
time significantly more compared to the second approach.



4.2 Deep Reinforcement Learning on Real Robot Environments

If one had access to multiple robots, the robots could act as parallel agents similar to the case of
simulation. However, due to practical limitations, we only have access to a single robot and are
thus limited to training with a single agent in the real world case. The A3C method is an on-policy
method, where the current policy is used to determine the action to take (using an e-greedy exploration
strategy). During updates, A3C computes estimates to Vg, IE[R;] and performs backpropagation of
the losses to update the policy and value network parameters. The simulation is halted during this
computation.

For the real world case we instead adopt an "off-policy" approach. We acquire a trajectory 7; using
the current policy network m(s; 6). Then, using the same 7(s; #), we simultaneously acquire the
next trajectory 7341 while concurrently computing the estimate to V, I5[R;] followed by network
parameter updates to obtain an updated policy network 7(s;6’). Once trajectory ;41 has been
obtained, we replace 7(s; 6) with m(s;8") for acquiring a next trajectory 7¢12. The policy 7(s;6’)
computed at the end of an episode will be used to acquire the first trajectory of a next episode. We
first verified in simulation that our "off-policy" adaptation of the A3C method would indeed be able
to successfully learn a policy to solve the marble maze.

S Implementation

We have implemented a simulation of the marble maze using MuJoCo [28] to simulate the dynamics,
and Ogre 3D [1] for the appearance. Realistic dynamics for the marbles in the maze relies on correct
settings for the physics engine parameters. Examples of physics parameters are the mass of the
marbles, static and dynamic friction for marbles and maze, and damping, among others. We carefully
measured the mass of the marbles, and the maze dimensions to accurately reconstruct its 3D geometry.
We have empirically tuned the remaining parameters of MuJoCo to match the simulated dynamics to
the real world dynamics as closely as possible. Our tuning procedure used the following steps. The
maze was inclined to a known orientation, and the marble was released from various pre-determined
locations within the maze. Using the markers (see Figure 1) we aligned the images of the simulated
maze to the real maze by computing a homography warp. We then tuned the parameters to match the
marble oscillations between the simulated and real maze. Learning the parameters instead would be
preferable, but this is beyond the scope of this paper. The simulator is executed as a separate process,
and communication between controller and simulator performed via sockets. The simulator receives
an action to perform, and returns an image of the updated marble positions and maze orientation,
along with a reward (according to Eq. 1).

The policy network consists of two convolutional layers, followed by a fully-connected layer. A
one-hot vector and the reward are appended to the output of the fully-connected layer and serves
as input to an LSTM layer. This part of the network is shared between the policy (actor) and value
(critic) network. For the policy network a fully-connected layer with softmax activation computes a
distribution over the actions. For the value network, a fully connected layer outputs a single value.
The pixel change and reward prediction do not use the LSTM layer. The pixel change network uses
two deconvolutional layers to generate images from a given feature vector (with appended actions
and reward). The reward prediction uses a fully-connected layer to predict a reward value.

In terms of appearance, we varied the lighting conditions and added noise to the rendered images.
Additionally we added a frame delay by rendering images into a buffer. The delay is varied for each
episode to emulate the indeterminate latency of the online system. The physics parameters we varied
represent static friction, dynamic friction, and damping. They are uniformly sampled from a range
around the empirically estimated parameter values. Due to the lack of intuitive interpretation of some
of the physics parameters, the range was determined by visually inspecting the resulting dynamics to
ensure that the dynamics had sufficient variety, yet remain reasonable.

We used a Mitsubishi Electric Melfa RV-6SL robot arm for the real world implementation (Fig-
ure 1(Middle)). To ensure completion of the execution of a command for the robot arm, images
(observations of the state) are acquired at a framerate of 4.3Hz. We use the same framerate in the
simulator. For the real robot environment, we observed that the computation time for a forward pass
through the policy network varied. A large increase in computation time during concurrent network
parameter updates is also observed. However, we ignore this variation entirely in our learning using



Online (real)

Offline (simulator)

Transfer Learning (online)

Robust

3.5M

4.0M

55K

| Non-Robust |

3.5M

4.5M

220K |

Table 1: Comparison of online, offline and online fine-tuning steps for transfer learning. A robustified
policy can reduce the training steps by a factor of almost 60x compared to online training, and a
factor of more than 3 compared to non-robustified transfer learning fine-tuning
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Figure 2: Results for the fine-tuning of policies solving a maze puzzle with one marble for a simulation
pre-trained robustified policy (Left), and for a simulation pre-trained non-robustified policy (Right).
In the Top row we plot the number of steps per episode —with maximum episode length L = 2500
—and in the Bottom row we plot the accumulated rewards per episode. The fine-tuning of the
robustified policy leads to earlier success of consistently solving the maze puzzle. We consider
convergence at ~55K for the robustified policy. Even after more than ~220K fine-tuning episodes, the
non-robustified policy occasionally fails to solve the maze puzzle. In addition, the number of steps on
average per episode to solve the maze puzzle is significantly less for the case of the robustified policy.

the simulator. We implemented a simple marble detector to determine when a marble has passed
through a gate, in order to provide a reward signal.

6 Results

Table 1 compares the number of steps for training a policy to successfully play a one marble maze
game. Training directly on the real robot takes about 3.5M steps. For transfer learning, we compare
the number of fine-tuning steps necessary for a robustified policy versus a non-robustified policy
(fixed parameters). Training a robustified policy in simulation takes about 4.0M steps, whereas a
non-robustified policy takes approximately 4.5M 2. Transfer learning of a robustified policy requires
about 55K steps to "converge". This is a reduction of nearly 60x compared to online training. A
non-robustified policy requires at least 3x the number of fine-tuning steps in order to achieve the
same level of success in solving the maze puzzle.

Figure 2 further shows the benefit for transfer learning of a robustified policy. The left side of Figure 2
shows results for the robustified policy, with results for the non-robustified policy on the right. The
bottom row shows the accumulated rewards for an episode. An accumulated reward of 4.0 means that
the marble has been maneuvered from the outside ring into the center. The graph for the robustified
policy shows that the learning essentially converges, whereas for the non-robustified policy transfer, it
still fails to get the marble into center occasionally. The top row of Figure 2 shows the length of each

2For all intents and purpose the number of training steps for robustified and non-robustified is equal, since
there’s no actual true convergence of the learning.



episode. It is evident that the robustified policy has successfully learned how to handle the non-linear
dynamics to solve the maze game. Please see the supplemental material for videos of some of the
episodes.

We predict that a policy learned for a single marble, will transfer to the case of two marbles. Using the
single marble policy learned offline, we perform fine-tuning online with two marbles. Surprisingly,
after approximately 100K steps of fine-tuning, the policy was able to successfully solve the game. As
expected, successful episodes require more steps compared to the refined policy for a single marble
game. As in the case of non-robustified policy fine-tuning, the learning did not "converge" with
two marbles, and occasionally the game could not be solved within the maximum episode length L.
Please see the supplemental material for an example video.

The approximation of the simulation to the real world, results in a policy that can smoothly control
the marble in roll-outs in the simulation environment. We sometimes see this smoothness when a
marble moves through a gate in the real world case as well, however the dynamics are more chaotic
and less predictable, which results is less smoothness overall.

7 Discussion and Future Work

Deep reinforcement learning is capable of learning complicated robot tasks, and in some cases
achieving (beyond) human-level performance. Deep RL requires many training samples, especially
in the case of model-free approaches. For learning robot tasks, learning in simulation is desirable
since robots are slow, can be dangerous and are expensive. Powerful GPUs and CPUs have enabled
simulation of complex dynamics coupled with high quality rendering at high speeds. Transfer
learning, i.e., the training in simulation and subsequent transfer to the real world, is typically followed
by fine-tuning. Fine-tuning is necessary to adapt to the differences between the simulated and the
real world situation. Previous work has focused on transfer learning tasks involving linear dynamics,
such a controlling a robot to pick and object and place it at some desired location. However, we
explore the case when the dynamics are non-linear. Non-linearities arise due to static friction and
acceleration of objects interacting in some environment. We compare learning online, i.e., directly in
the real world, with learning in simulation where the physics parameters are varied during training.
For reinforcement learning we refer to this as learning robustified policies. We show that the time
required for fine-tuning with robustified policies, is greatly reduced.

Although we have shown that model-free deep reinforcement learning can be successfully used to
learn tasks involving non-linear dynamics, there are drawbacks of using a model-free approach. In
the example discussed in our paper, the dynamics are (mostly) captured by the LSTM layer in the
network. In the case of more than one marble the amount of training time significantly increases. In
general, as the complexity of the state space increases, the amount of training time increases as well.
When people perform tasks such as the maze game, they typically have a decent prediction of where
the marble(s) will go given the amount of rotation applied. Exploring learning with predictions from
a physics engine would be an interesting direction for this problem.

We currently use high-dimensional images as input to the learning framework. Low-dimensional
input, i.e. marble position and velocity, may be used instead. In addition, rather than producing a
distribution over a discrete set of actions, the problem can be formulated as a regression instead and
directly produce values for the x and y axes rotiations [13, 16].

People quickly figure out that the task can be broken down into moving a single marble at the time into
the center, while avoiding marbles already in the center location from spilling back out. Discovering
such sub-tasks automatically would be another interesting research direction. Along those lines,
teaching a robot to perform task by human demonstration, or imitation learning could teach robots
complicated tasks without the need for elaborate reward functions, e.g., [8].
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