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Abstract
This paper introduces a terahertz (THz)-based absolute positioning system with a single
THz transceiver as the read head and a multi-level pseudo-random reflectance pattern (e.g.,
multi-level m-sequences) as the high-resolution scale in a compressed scanning mode. One
of key technical challenges here is to computationally recover the multi-level pseudo-random
reflectance pattern from compressed measurements. To this end, we develop a variational
Bayesian approach to exploit the finite alphabet of reflectance levels and enable a pixel-
wise iterative inference for fast recovery. Numerical results confirm the effectiveness of the
proposed method.
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Abstract—This paper introduces a terahertz (THz)-based ab-
solute positioning system with a single THz transceiver as the
read head and a multi-level pseudo-random reflectance pattern
(e.g., multi-level m-sequences) as the high-resolution scale in
a compressed scanning mode. One of key technical challenges
here is to computationally recover the multi-level pseudo-random
reflectance pattern from compressed measurements. To this
end, we develop a variational Bayesian approach to exploit
the finite alphabet of reflectance levels and enable a pixel-wise
iterative inference for fast recovery. Numerical results confirm
the effectiveness of the proposed method.

I. INTRODUCTION

Over the past years, there has been an increased interest
in the use of terahertz (THz) wave for sensing, detection and
imaging. THz sensing can operate in a raster or compressed
scanning mode [1]–[3].

In the raster scanning mode, as shown in Fig. 1 (a), the
sample under inspection is illuminated by a THz point source
with a time-compact source pulse and a small spot size. The
THz emitter sends a focused beam to inspect a small area
of the sample, and a programmable mechanical raster moves
the sample in order to measure the two-dimensional surface
of the sample. In the compressed scanning mode, as shown in
Fig. 1 (b), the THz pulse is first collimated to a broad beam and
then spatially encoded with a random mask with the help of a
spatial light modulator [3]. At the receiver side, the spatially
encoded beam is re-focused by a focusing lens and received by
a single-pixel photoconductive detector. The sample image can
then be recovered by sparsity-driven minimization methods.
Compared with the raster scanning mode, the compressed
scanning mode has a much shorter acquisition period without
a mechanical raster move.

Here we are particularly interested in THz-based absolute
positioning systems where pseudo-random sequences (e.g.,
M -sequences) are used for high-resolution position encoding
[4]–[6]. Fig. 1 (c) shows a THz absolute positioning system
which uses a single THz transceiver, along with random
masks and collimating/focusing lenses, to scan an area of
the scale encoded by a multi-layer, multi-track, multi-level
pseudo-random code pattern which is mapped into a unique
position (hence absolute positioning). An example of the
multi-level scale is shown in Fig. 3 (a), where 4 different
levels are arranged into a pseudo-random code pattern in order
to uniquely encode a position. The multi-level encoding at
the scale can be realized by a metamaterial plate designed to
reflect energy proportional to the polarization direction of the

(a) (b) (c)
Fig. 1. THz sensing with a) a raster scanning (from [2]), b) a compressed
scanning (from [3]), and c) a multi-layer THz encoder system.

incident THz wave [6]. In this paper, we aim to address the
remaining technical challenge: how to recover the multi-level
pseudo-random code pattern with compressed measurements
received at the single THz transceiver for real-time positioning.

II. PROPOSED SCHEME

In this paper, we exploit the non-negative, finite alphabet
features of the code pattern to recover the reflectance pattern
from compressed THz measurements. To this end, we use
a variational Bayesian framework to impose a hierarchical
prior model for enforcing the two features and to develop
a decoupled element-wise iterative algorithm to estimate the
pseudo-random pattern in a computationally efficient way.

A. Compressed Measurements

Let x = [x1, · · · , xN ]
T , xn ∈ {µ1, · · · , µK} denote

the pseudo-random code pattern to be estimated with µk
specifying the non-negative reflectance from a finite set of
K unknown levels. The compressed scanning generates the
following measurements

y = Ax+ v, (1)

where each row of A represents a random mask at the THz
band, v = [v1, · · · , vM ]

T is the Gaussian noise with zero
mean and variance β−1, and y = [y1, · · · , yM ]

T collects M
compressed measurements.

To account for the non-negative, finite alphabet features of
xn, we impose a hierarchical prior model on xn

P (xn|αn,Cn;u) =

K∏
i=1

N+

(
xn;µi, α

−1
n,i

)Cn,i
, (2)

where Cn = [Cn,1, · · · , Cn,K ] is a label vector with only one
non-zero element assigning one of the K truncated Gaussian



Fig. 2. The truncated Gaussian mixture distribution for the n-th reflectance
xn with 4 components.

components to xn and

N+

(
xn;µ, α−1

)
=

{
η−1

√
α
2π e
−α(x−µ)2

2 x ≥ 0,

0, x < 0,
(3)

with η = 1 − Φ (−µ
√
α) denoting the normalization factor

and Φ (·) denoting the cumulative distribution function of the
standard normal distribution. Moreover, we assume that the
label variable Cn follows the categorical distribution or gen-
eralized Bernoulli distribution P (Cn;π) =

∏K
i=1 π

Cn,i
i , with

event probabilities π = [π1, · · · , πK ] where
∑K
i=1 πi = 1. It

is easy to see that

P (xn|αn;u) =

K∑
i=1

πi · N+

(
xn;µi, α

−1
n,i

)
, (4)

results in the truncated Gaussian mixture distribution for xn
which is illustrated in Fig. 2 for the case of K = 4. We further
assume the Gamma distribution for αn,i, i.e., P (α|a; b) =∏K
i=1

∏N
n=1 Gamma (αn,i|a, b) with a = b = 10−6.

B. Proposed Code-Pattern Recovery Algorithm
1) Decoupled element-wise likelihood function: To enable

an element-wise recovery algorithm, we first decouple the
original likelihood function of y into a decoupled approximate
likelihood function of {xn}Nn=1

P (y|x;β) ≈
N∏
n=1

1√
2πτ̂n

e−
(xn−r̂n)2

2τ̂n . (5)

where the approximated element-wise mean r̂n and variance
τ̂n can be found in a similar way of [5].

2) Posterior distributions of hidden variables {x,α,C}:
Next, we derive the posterior distributions for hidden variables
{x,α,C}. The element-wise reflectance {xn}Nn=1 follows an
independent truncated Gaussian posterior distribution,

q (xn) =

{
φ−1n

1√
2πσ̃n

exp
(
− (xn−µ̃n)2

2σ̃2
n

)
xn > 0

0 xn ≤ 0
, (6)

where φn = 1−Φ (−µ̃n/σ̃n) is the normalization factor. The
label vector C has the categorical posterior distribution as

q (Cn,i) =

K∏
i=1

(π̃n,i)
Cn,i (7)

with π̃n,i = exp(γn,i − ln(
∑K
i=1 exp(γn,i))) and γn,i =

−0.5〈αn,i〉〈(xn − µi)
2〉 − 〈ln ηn,i〉 + lnπi. The variable α

has the Gamma posterior distribution, i.e.,

q (αn,i) = Gamma
(
αn,i|ãn,i, b̃n,i

)
(8)

with ãn,i = a+ 0.5 〈Cn,i〉, b̃n,i = b+ 0.5〈Cn,i〉〈(xn − µi)2〉.

(a) (b)
Fig. 3. Numerical validation with a 4-level pseudo-random pattern: (a)
Ground truth versus recovered patterns; (b) Success rate and normalized MSE
as a function of compression ratio.

3) Updating for deterministic parameters {β, {µi}Ki=1}: At
the t-th iteration, the noise variance β−1 can be updated(

β−1
)t+1

=

M∑
m=1

〈
(ym − wm)

2
〉
/M, (9)

where wm is the m-th element of w = Ax. As we show in
[5], there is no closed-form updating rule for the unknown
reflectance levels µi for the simplest case of K = 2, i.e., the
binary reflectance. For the generalized multi-level K 6= 2 case,
we introduce an approximate updating rule

µt+1
i =

∑N
n=1 〈Cn,i〉 〈αn,i〉 〈xn〉∑N
n=1 〈Cn,i〉 〈αn,i〉

(10)

which turns out to be the weighted average of the posterior
mean of xn (i.e., 〈xn〉) in the corresponding class specified
by Cn,i.

III. SIMULATION RESULTS

The proposed method is numerically evaluated with syn-
thetic data and the Monte-Carlo simulation on a sample with
a pseudo-random reflectance pattern in Fig. 3 (a) with K = 4
levels ([0.2, 0.4, 0.6, 0.8]). The recovered reflectance patterns
is almost identical to the ground truth. The results in Fig. 3
(b) from the Monte-Carlo simulation suggest that the multi-
level pseudo-random pattern can be recovered reliably with
compressed measurements.

IV. CONCLUSION

A THz-based encoder system was introduced with a single
THz transceiver scanning over a multi-level pseudo-random
code pattern for high-resolution absolute positioning. This
paper proposed an efficient element-wise algorithm to recover
the multi-level pseudo-random code pattern with unknown
reflectance.
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