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Abstract
Recently emerging applications, such as autonomous navigation, mapping, and home enter-
tainment, have increased the demand for inexpensive and high quality depth sensing. In
this paper we fundamentally re-examine the problem, considering recent advances in pho-
toelectric devices, increased availability of fast electronics, reduced computation cost, and
developments in sensing theory. Our main contribution is a real-time hardware architecture
for time-of-flight (ToF) depth sensors that exploits random modulation to significantly re-
duce the acquisition burden. The proposed design is able to acquire compressive, critical, or
redundant measurements, without requiring any hardware modifications, at the expense of
small reduction in the system frame rate. The architecture we propose is sufficiently flexible
to be operable in a variety of conditions and with a variety of reconstruction algorithms.
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ABSTRACT

Recently emerging applications, such as autonomous navigation,
mapping, and home entertainment, have increased the demand for
inexpensive and high quality depth sensing. In this paper we fun-
damentally re-examine the problem, considering recent advances
in photoelectric devices, increased availability of fast electronics,
reduced computation cost, and developments in sensing theory.

Our main contribution is a real-time hardware architecture for
time-of-flight (ToF) depth sensors that exploits random modulation
to significantly reduce the acquisition burden. The proposed de-
sign is able to acquire compressive, critical, or redundant measure-
ments, without requiring any hardware modifications, at the expense
of small reduction in the system frame rate. The architecture we pro-
pose is sufficiently flexible to be operable in a variety of conditions
and with a variety of reconstruction algorithms.

Index Terms— Depth sensing, random demodulation, com-
pressed sensing, compressive LIDAR

1. INTRODUCTION

Recent advances in signal processing theory and acquisition hard-
ware, such as compressive sensing (CS), have enabled significant im-
provements and cost reduction in many imaging applications. How-
ever, while these advances have resulted in noteworthy developments
in a number of areas, the impact in time-of-flight (ToF) imaging has
only been modest [1, 2]. Fortunately, thanks to progress in device
technology, it is now possible for sensors and electronics to manipu-
late optical signals in a manner similar to other modalities. The only
remaining hurdle in implementing such systems is the cost of fast
signal acquisition.

In this paper we propose a new ToF architecture that uses an
array of fast optical sensors, combined with individual random mod-
ulators that multiply each received signal. The modulated signals
are added and a single fast analog-to-digital converter (ADC) is used
to acquire their sum, instead of requiring one ADC for each sensor.
Since the ADC is one of the most expensive components in ToF sys-
tems, the proposed architecture significantly reduces system cost.

The proposed architecture, inspired by [3], exploits recent ad-
vances in high-speed photonics and electronics. In particular, de-
mand for high frequency optical and wireless communications has
made the cost of very fast analog switches and multipliers negli-
gible, and significantly decreased the cost of fast photodiodes and
photodiode arrays. Thus, it is possible to manufacture the proposed
architecture inexpensively, bar for the cost of the ADC. As we also
demonstrate in this paper, advances in CS theory and practice further
guarantee that this architecture is able to acquire and reconstruct the
ToF of a properly modulated optical pulse with very high accuracy.

1.1. Contributions

The main realization in this paper is that the electronic components
required to implement fast modulators are significantly cheaper and
more flexible than the components required to implement optical
light modulation or multi-channel ADCs. Thus, we contribute a flex-
ible versatile hardware architecture for ToF imaging that

1. only requires a single high-speed ADC to acquire the signal,

2. allows for single-shot scene acquisition, enabling acquisition
of scenes with motion,

3. enables sufficiently flexible operation with adjustable number
of measurements, that can be selected at run-time, allowing
for compressive, critical, and overcomplete acquisition,

4. provides wide system design versatility and can be easily in-
corporated in other designs, such as scanning systems and
coded aperture systems.

1.2. Outline

The next section provides an overview of recently emerged com-
pressive ToF architectures, as well as most common reconstruction
approaches. Section 3 describes the proposed system architecture.
Section 4 presents the system model we use for reconstruction and
analysis. Section 5 describes how the acquired scene can be recon-
structed, under different modeling assumptions and system parame-
ters, as well as the computational trade-offs in the design. Section 6
concludes with simulations that validate the framework.

2. BACKGROUND

2.1. Compressive ToF Architectures

Earlier work on compressive ToF imaging relies mostly on ad-
justable coded aperture technology. In particular, several architec-
tures [4, 5, 6] exploit digital micromirror devices (DMD) or other
spatial light modulators (SLM) to create a coded aperture that can
be modified during acquisition. The depth of a scene can then be
acquired using a single detector and ADC by transmitting multiple
pulses and taking snapshots, each acquired using a different coded
aperture configuration. The hardware architecture is similar to the
Rice single-pixel camera [7], using a time-resolved photodector and
reconstruction algorithms specific to ToF imaging.

One drawback of adjustable coded aperture systems is that cur-
rent DMD and other SLM hardware operates too slow for real-time
scene acquisition, especially if the scene includes motion. Thus,
a non-trivial time interval—typically in the order of hundreds of
milliseconds—is required to acquire the necessary number of snap-
shots to reconstruct the scene. The reconstruction algorithms assume
that the scene is static throughout the measurement process, which
effectively precludes all but very slow-moving or static scenes.



Another drawback of coded aperture techniques is that approx-
imately half of the reflected light arriving at the sensor is rejected
by the code on the aperture. This incurs a 3dB signal-to-noise ra-
tio (SNR) penalty at the sensor, which, in some applications can be
significant, if not detrimental. Noise amplification is known to be
an Achilles heel of compressive acquisition; the reconstruction SNR
penalty is typically worse than the 3dB SNR loss at the sensor [8, 9].

More recently, it has been shown that a single, fixed, coded aper-
ture can be used instead of an adjustable one, by increasing the num-
ber of sensors and ADCs [10, 11]. This enables depth acquisition us-
ing a single snapshot. In other words, it is possible to acquire scenes
that include much faster motion, compared to adjustable coded aper-
ture systems. Still, while the cost of a fixed coded aperture is trivial
compared to the cost of the system, the cost trade-off is only ad-
vantageous if the additional detectors and, especially, ADCs are less
expensive that a DMD or other SLM device.

Unfortunately, a fixed coded aperture also induces the 3dB SNR
penalty at the receiver. The single-shot ability allows for pulses of
longer duration in order to introduce more energy into the scene and,
thus, improve the SNR, without incurring significant motion blur.
However, it would still be desirable to capture all the light arriving
at the receiver and use a shorter pulse.

The proposed architecture bears some similarities with earlier
approaches. On one hand, similarly to the architectures using an
adjustable coded aperture, we only require a single ADC. On the
other hand, similarly to the architectures using a fixed coded aper-
ture, we require several detectors. Fortunately, fast photodiodes with
sub-nanosecond response times are widely available and inexpen-
sive, especially when implemented in an integrated circuit.

There are also significant differences. In particular, our archi-
tecture does not require a coded aperture, thus capturing all of the
incident light. While the function of the electronic modulation can,
in some sense, be interpreted as an electronically adjustable coded
aperture, the behavior is quite different, allowing for single shot
imaging. An alternative interpretation is that the modulation code
is applied in time domain whereas coded apertures in earlier efforts
implement a spatial domain code. Still, the proposed architecture
can be combined with a fixed optical coded aperture, to reduce the
required number of sensors. While this is a straightforward combi-
nation with [11], we do not pursue it in this paper.

2.2. Compressive Sensing and Scene Reconstruction

The architectures described above rely on the emergence of CS
and sparse regularization as a powerful signal reconstruction frame-
work [12, 13, 14]. As well established by now, CS exploits sparse
signal priors to significantly reduce the number of measurements
required to acquire a signal that fits the assumed model. By regular-
izing the reconstruction with the appropriate model, it is possible to
provide reconstruction performance and stability guarantees.

The most common signal priors are sparsity in some basis,
commonly enforced using `1 regularization or greedy algorithms, or
sparsity in the signal gradient, commonly enforced using Total Vari-
ation (TV) regularization [14]. Signals with finite rate of innovation
(FRI) are a continuous-time model alternative, more appropriate
for capturing short pulses with unknown timing [15]. More so-
phisticated models can be enforced using model-based compressive
sensing [16]. Frequently, the reconstruction algorithm is specifically
designed and tuned in tandem with the hardware acquisition system.

Particularly for depth sensing, the coded aperture-based archi-
tecture in [5, 6] relies on a two-step acquisition approach: an FRI
model is first used to detect the depths at which reflectors are located;
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Fig. 1. Overview of the proposed system architecture and operation

the reflectivity is then recovered separately at each depth, optionally
using sparse regularization. Alternatively, [10, 11] demonstrate that
a 3-dimensional (3D) representation of the scene allows for linear
modeling of the acquisition, thus enabling one-step sparsity-based
recovery methods. Furthermore, application-specific models can im-
prove reconstruction quality. However, TV regularization of the
depth map is not straightforward in this representation. Computation
becomes a significant bottleneck, even more so than in conventional
sparse recovery approaches. Still, the model is more general and can
be used in a number of systems, including the ones in [4, 5, 6]. For
this reason, we adopt the same 3D representation in this paper.

3. SYSTEM ARCHITECTURE

A schematic of the system architecture we propose, and its oper-
ation, is shown in Fig. 1. The system comprises of a single fast
phototransmitter, such as a light emitting diode (LED) or a laser,
transmitting a coded pulse to the scene to be measured. The light
from the code pulse floods the scene and illuminates all objects. It
arrives at each object with different delay, depending on their dis-
tance from the source. The code is applied in time by rapidly turning
the transmitter on and off.

The light incident in the scene is reflected from the objects and
received by an array of photodetectors through a focusing system.
Each photodetector corresponds to a pixel of the depth image. The
light reflected back from the scene is delayed according to the dis-
tance of each object in the scene from the corresponding pixels re-
ceiving its reflection. The signal received by each photodetector is
modulated with a known randomized modulation, unique to the pho-
todetector. Finally, all the modulated signals are added and their sum
is acquired by an ADC.

The whole system, from transmission to reception, operates at
a bandwidth commensurate with the time resolution required by the
system. Thus, for practical purposes, the phototransmitter, the pho-
todetectors and the modulators, need to have sub-nanonsecond re-
sponse times to achieve round trip ToF resolution lower than 30cm,
i.e., depth resolution of 15cm. This is equivalent to bandwidth of
a few GHz. Phototransmitters, photodetectors and modulators are
readily available at this bandwidth. The ADC dominates the cost of
the system. We should note, that the time resolution can be improved
using computational methods such as FRI modeling, at the expense
of higher computational cost.

The architecture can be easily modified to either improve perfor-
mance or reduce the number of components. If cost permits, multiple
ADCs may be used in a variety of ways. For example, each signal
from the photodetector could be modulated by multiple unique mod-
ulation sequences, each feeding to a different summation and ADC
circuits running in parallel. Thus, each sensor is acquired by all
ADCs. Alternatively, the array can be split in smaller groups of sen-
sors, each group handled by a single summation and ADC circuit
under the same modulation architecture described above.



We exploit temporal mixing and subsampling to reduce the ADC
cost. However, if the reconstruction algorithm incorporates spatial
regularization, spatial mixing and subsampling can be used to also
reduce the number of sensors. For example, with the addition of a
fixed coded aperture, sensors can be removed from the system, to
obtain a subsampled array similar to [11].

4. MODELING AND OPERATION

4.1. System Model

The phototransmitter emits a pulse p(t) in time, of duration Tp. For
modeling convenience, although not necessary, we assume the pulse
comprises of a sequence of Kp square pulses po(t) of duration τ ,
modulated by a discrete sequence pk of length Kp = Tp/τ . We
assume this ratio is integer.

p(t) =
∑
k

pkpo(t− kτ), (1)

po(t) =

{
1 0 ≤ t < τ
0 otherwise.

(2)

In other words, pk is a discrete representation of p(t) under the ba-
sis comprising of shifts of po(t). Note that p(t), and, consequently
pk is positive, since the transmitter cannot transmit negative light.
Although not necessary in the subsequent development, to simplify
hardware implementation, we use pn ∈ {0, 1}.

Any object in the scene at distance d will receive the pulse with
delay d/c—where c is the speed of light—and reflect it attenuated,
according to the object’s reflectivity. The pulse reflection is further
attenuated inversely proportional to the square of distance of the ob-
ject and returns to the receiver with delay 2d/c. In other words,
given a delay t, the corresponding distance is tc/2.

The reflections are received by an array ofM×N detectors, i.e.,
pixels, focused on the scene, which measure the time profile of the
pulse, denoted rm,n(t). The received pulse is modulated by a unique
coded sequence, sm,n(t) =

∑
k sm,n,kpo(t− kτ), where sm,n,k is

the discrete representation of the code. Since this is an electronic and
not an optical modulator, this code can be negative. Even though not
assumed in the subsequent development, to facilitate hardware im-
plementation, we use sm,n,k ∈ {±1} or {−1, 0,+1}. Thus, the
multiplication can be implemented using a simple inverter and an
analog switch. In many cases, an analog multiplier may be less ex-
pensive, providing more freedom in designing s(t).

All modulated received pulses are summed using an adder

y(t) =
∑
m,n

rm,n(t)sm,n(t). (3)

The sum is sampled at rate τ to produce the measurements

yk =
∑
m,n

rm,n(kτ)sm,n(kτ) (4)

=
∑
m,n

rm,n,ksm,n,k, (5)

where rm,n,k = rm,n(kτ) and sm,n,k = sm,n(kτ) are samples, at
rate τ , of rm,n(t) and sm,n(t), respectively.

4.2. Scene Representation and Acquisition

To represent the scene, we use the same discretization. Specifically,
we use m and n to index the pixel of the scene, i.e., the dimensions

parallel to the plane of the sensors. We use k to index the depth of the
scene, using distance resolution corresponding to a roundtrip travel
of the pulse during the sampling period τ . In other words, at depth
index k, the corresponding true depth is d = kτc/2. Under this dis-
cretization, we denote the reflectivity of each voxel in the scene using
xn,m,k, (n,m, k) ∈ {0, . . . , N} × {0, . . . ,M} × {0, . . . ,Ks}, in
which we include the attenuation due to distance.

Assuming the scene does not contain diffusive media, such as
smoke or fog, along any spatial direction (n,m) we expect to ob-
serve very few depths k with non-zero reflectivity xn,m,k. In partic-
ular, we may assume that the scene only contains opaque reflectors
and that the discretization is sufficiently fine that every voxel is com-
pletely covered spatially if it contains a reflector. In this case, we
expect at most a single non-zero along each direction (n,m). This
is because, under these assumptions, a reflector at a certain distance
will obscure any reflectors behind it and will only be visible if there
is no reflector in front of it. Thus, if the reflector reflects the pulse,
it means that the recoverable reflectivity in front of and behind this
reflector should be zero. Even if we assume partial reflectors, e.g.,
semi-transparent surfaces, or reflectors that partially cover a voxel
and allow some light to be transmitted, we still expect very few vox-
els of non-zero reflectivity along any direction (n,m).

Given this model, the received signal at each sensor is a convo-
lution of the scene along the corresponding direction with the pulse
p(t). The equivalent discrete model is rm,n,k = xm,n,k ⊗k pk. In
other words, the measurements are equal to

yn =
∑
m,n

((xm,n,k ⊗k pk)sm,n,k (6)

Using vector and operator notation, we denote the measurements as

Y = Σ(S(P (X))) = A(X), (7)

where X denotes the scene, P (·) denotes the operator implied by
the convolution with the pulse, S(·) denotes the diagonal operator
implied by the modulation, Σ(·) denotes the summation operator,
andA(·) denotes the whole measurement operator. Given the square
pulse assumption in (2), it is straightforward to show that the loca-
tion of the reflector within the voxel does not affect the discretiza-
tion. Thus, under this assumption, the sampling rate τ , and the cor-
responding discretization fully determines the system’s depth reso-
lution.

Depending on the length of the pulse, compared to the length of
the scene, the system is not necessarily compressive. Given a scene
maximum length Ks and pulse length Kp, the measurements have
the same length as the resulting convolution, i.e., lengthKp+Ks−1.
If this is greater than the size of the scene, i.e., if

Kp +Ks − 1 ≥MNKs (8)
⇔ Kp ≥ (MN − 1)Ks + 1, (9)

then the number of measurements are greater than the size of the
scene. In that case, the measurement operator (7) can be designed to
be full rank.

To guarantee incoherence, we randomize the system through the
selection of the light pulse sequence pk and the modulation code
sm,n,k. Specifically, pk is determined using an independently and
identically distributed (i.i.d.) Bernoulli random variable, taking val-
ues in {0, 1} with equal probability. Similarly, sm,n,k is drawn from
an i.i.d. distribution taking values in {±1} with equal probability.
Note that in [3], incoherence is guaranteed since the signal model
assumes the signal is sparse in frequency. Since this is not the case
here, a long and varying pulse p(t) is necessary to guarantee inco-
herence with the time modulation and summation at the receiver.



5. RECONSTRUCTION APPROACHES

5.1. Adjoint Operator and Backprojection

Given the forward model (7), scene reconstruction becomes an in-
verse problem. Depending on the length of the pulse, different re-
construction algorithms can be used. However, any reconstruction
algorithm requires the use of adjoint of the forward operator (7).
This is straightforward to compute using the composition property
of adjoint operators: For any two linear operators A(·) and B(·),
(AB)∗ = B∗A∗, where (·)∗ denotes the adjoint. Thus, the adjoint
of (7) can be simply computed as

A∗(Y ) = P ∗(S∗(Σ∗(Y ))). (10)

The adjoint of the summation Σ is a replication to all channels. The
adjoint of the diagonal modulation operator S is also a modulation
by the same sequences, i.e., S∗ = S. Finally, the adjoint of the
convolution by the pulse, P , is a convolution by the same pulse, time
reversed, i.e., a matched filter. In summary, the adjoint computes the
backprojection of the data, i.e., a scene X̃ such that

x̃m,n,k = (yksm,n,k)⊗k p−k. (11)

5.2. Scene Models, Reconstruction, and Complexity

As described in (9), if the pulse is short, the acquisition is compres-
sive. In that case, it becomes necessary to use regularization to re-
cover the scene. Depending on the pulse length and assumptions on
the scene, stronger or lighter regularization might be appropriate. If
the acquisition is more compressive, using short pulses, then model-
based regularization techniques, such as the ones described in [10,
11] would be necessary. If the scene includes semi-transparent ob-
jects, model-based algorithms may fail; models in [10, 11] do not
accept multiple reflections along a single direction (m,n). In that
case, and using longer pulses, conventional sparsity models, using
a convex reconstruction or a greedy algorithm would perform well.
Adapt streaming reconstruction algorithms, such as [17], could also
achieve faster reconstruction of time varying scenes, possibly with
fewer measurements.

With a sufficiently long pulse, satisfying (9), the forward opera-
tor becomes full rank and least-squares inversion is sufficient. How-
ever, even in these cases, regularization or thresholding can improve
performance by denoising the reconstruction.

As the transmitted randomized pulse becomes even longer, the
operator becomes overcomplete, i.e., redundant. In this case, it is
straightforward to show that, asymptotically, the forward operator
becomes a tight frame. Thus, if the pulse is sufficiently long, simple
backprojection using the adjoint operator (11), followed by thresh-
olding approximately inverts and denoises the acquisition. We defer
the proof to an extended version of the paper.

5.3. Reconstruction Complexity Trade-offs

Inversion by simple backprojection and thresholding is particularly
appealing in practical applications, especially in real-time ones. The
computational complexity of the backprojection operator is orders
of magnitude lower than typical sparse regularization or, even, least
squares algorithms. Typical sparse recovery algorithms require hun-
dreds of iterations, where each iteration applies both the forward and
the adjoint operator. Thus, each iteration exhibits at least twice the
computational cost of a simple backprojection.

Fig. 2. Performance for different pulse lengths. (a) Original Scene,
(b)–(c) Backprojected thresholded reconstruction for different Kp

The typical assumption in compressive sensing is that the acqui-
sition cost per measurement is significant, compared to the computa-
tional cost of sparse reconstruction. However, in our architecture, the
cost of a longer pulse is minimal. Specifically, the main cost is the
additional energy used to transmit the pulse and the longer time re-
quired to acquire the scene—which implies a lower maximum frame
rate. There is no requirement for additional sensors, or additional
ADCs. The very high pulsing rate makes this cost insignificant, en-
abling very fast reconstruction by backprojection.

As a simple example, consider a system that images a 30m deep
scene using τ = 200ps, i.e., has 3cm depth resolution and Ks =
100. Assume the system has MN = 0.25MP (megapixel) spatial
resolution, e.g., M = 500, N = 500. Using (9), we obtain

Kp ≥ (MN − 1) ∗Ks + 1 ≈MNKs (12)

=⇒ Kp & 2.5× 107, (13)

which is equivalent to a Tp = 5ms pulse. Even if use a pulse length
5 times longer, i.e., 25ms, to improve the operator conditioning, we
can still achieve 40 frames per second (fps) frame rate for the system.

6. EXPERIMENTS

To verify our approach, we conducted an experiment on aM = 100,
N = 100 scene, with depth Ks = 40 and three extended reflectors.
The scene is acquired with pulses of different lengths, and recon-
structed using backprojection and thresholding. Figure 2 plots (a)
the original scene and (b)–(c) the backprojected thresholded recon-
struction for Kp = 10000, 20000, and 30000, respectively. As ex-
pected, increasing the pulse length improves reconstruction quality.

Note that the pulse length required to obtain non-compressive
acquisition according to (9) is Kp ' NMKs = 400000, i.e., at
least one order of magnitude higher than the pulse lengths in the ex-
periments. Still, even at this low pulse length, the randomization
makes the acquisition operator sufficiently incoherent that backpro-
jection followed by thresholding performs very well. Of course, we
expect that more sophisticated reconstruction methods will perform
even better with even shorter pulse lengths. However, as we argue
above, the computational cost does not make the trade-off favorable.
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