
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Recurrent Multi-frame Single Shot Detector for Video
Object Detection

Jones, Michael J.; Broad, Alexander; Lee, Teng-Yok

TR2018-137 September 26, 2018

Abstract
Deep convolutional neural networks (CNNs) have recently proven extremely capable of per-
forming object detection in single-frame images. In this work, we extend a class of CNNs
designed for static image object detection to multi-frame video object detection. Our Multi-
frame Single Shot Detector (Mf-SSD) augments the Single Shot Detector (SSD) meta-architecture
[16] to incorporate temporal information from video data. By adding a convolutional recur-
rent layer to an SSD architecture our model fuses features across multiple frames and takes
advantage of the additional spatial and temporal information available in video data to im-
prove the overall accuracy of the object detector. Our solution uses a fully convolutional
network architecture to retain the impressive speed of single-frame SSDs. In particular, our
Recurrent Mf-SSD (based on the SqueezeNet+ architecture) can perform object detection at
50 frames per second (FPS). This model improves upon a state-of-the-art SSD model by 2.7
percentage points in mean average precision (mAP) on the challenging KITTI dataset. Addi-
tional experiments demonstrate that our Mf-SSD can incorporate a wide range of underlying
network architectures and that in each case, the multi-frame model consistently improves
upon single-frame baselines. We further validate the efficacy of our RMf-SSD on the Caltech
Pedestrians dataset and find similar improvements of 5% on the pre-defined Reasonable set
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Abstract

Deep convolutional neural networks (CNNs) have recently proven extremely capable
of performing object detection in single-frame images. In this work, we extend a class
of CNNs designed for static image object detection to multi-frame video object detec-
tion. Our Multi-frame Single Shot Detector (Mf-SSD) augments the Single Shot Detector
(SSD) meta-architecture [16] to incorporate temporal information from video data. By
adding a convolutional recurrent layer to an SSD architecture our model fuses features
across multiple frames and takes advantage of the additional spatial and temporal infor-
mation available in video data to improve the overall accuracy of the object detector. Our
solution uses a fully convolutional network architecture to retain the impressive speed
of single-frame SSDs. In particular, our Recurrent Mf-SSD (based on the SqueezeNet+
architecture) can perform object detection at 50 frames per second (FPS). This model
improves upon a state-of-the-art SSD model by 2.7 percentage points in mean average
precision (mAP) on the challenging KITTI dataset. Additional experiments demonstrate
that our Mf-SSD can incorporate a wide range of underlying network architectures and
that in each case, the multi-frame model consistently improves upon single-frame base-
lines. We further validate the efficacy of our RMf-SSD on the Caltech Pedestrians dataset
and find similar improvements of 5% on the pre-defined Reasonable set.

1 Introduction
Object detection remains a core problem in the computer vision community. This is par-
tially due to its inherent complexity as well as its potential for wide-ranging application.
Recently, we have seen great progress in the accuracy and speed of object detection frame-
works for static images [22, 27, 34], however, there is less work in the related field of object
detection in the video domain. Video provides information not available in a single image
such as additional appearance information (pixels) as well as motion and depth information.
Each of these sources of information can potentially be exploited to improve detection ac-
curacy. In this work we explore a novel method of incorporating the extra information from
video data into real-time object detectors. In particular, we focus on augmenting a new class
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(or meta-architecture [16]) of object detectors called Single Shot Detectors (e.g. SSD [22],
YOLO [27], SqueezeDet [34], DSSD [9], YOLOv2 [26]). The SSD meta-architecture di-
rectly predicts object bounding boxes and class probabilities from an input image. This is in
contrast to the multi-stage process standard in region proposal-plus-classification methods.
Recent SSD architectures are fully convolutional which results in extremely fast run-time.

While SSDs can run at speeds equal to (or faster than) standard video frame rates, they
do not incorporate the extra temporal and spatial information available from streaming video
data. To remedy this issue, we feed a video sequence into the model and use a convolutional
recurrent layer to fuse information from the multiple input frames. This layer (1) improves
detection accuracy by taking advantage of the spatio-temporal information available from
multiple sequential frames, and (2) maintains the fully convolutional nature of recent SSD
networks, resulting in very fast execution times. Because this recurrent fusion layer can
be incorporated into any single-frame SSD-based object detection framework, we call the
resulting meta-architecture a Recurrent Multi-frame Single Shot Detector (Recurrent Mf-
SSD). Importantly, this additional layer does not impact the ability to train the network in an
end-to-end fashion.

2 Related Work
The vast majority of recent work in object detection has focused on single-frame images.
Convolutional neural networks (CNN) have dominated recent progress. Two-stage CNN-
based detectors such as R-CNN [12], Fast R-CNN [11], and Faster R-CNN [28] replaced
scanning window detectors (Viola-Jones [33]) with a region proposal stage followed by
a multi-class classifier. Single shot detectors, such as Overfeat [30], and more recently,
YOLO [27], SSD [22], YOLOv2 [26], DSSD [9], R-FCN [21], and SqueezeDet [34], re-
placed the proposal-plus-classification paradigm with a regression formulation that directly
estimates a set of bounding boxes and class labels. Both region proposal style detectors, and
single shot detectors, have become fast (using modern GPUs) and reasonably accurate. For
an in-depth comparison of modern convolutional object detectors see [16].

When developing object detection algorithms it is important to remember that, for many
applications, the natural input is actually video (not single-frame images). However, stan-
dard practice is to treat each frame independently, and simply process the input one frame
at a time. There has been a comparatively small amount of work on object detectors that
explicitly take a sequence of multiple frames as input. Within this space, we refer to object
detectors that integrate features from multiple frames as feature-level approaches [37]. This
is in contrast to box-level techniques which operate on the sequence of bounding-boxes pro-
duced by object detectors applied independently to multiple sequential frames. In the video
object detection literature, there has been significantly more work on box-level methods.
One example is the work of Han et al. [13] that replaces standard Non-Maximal Suppres-
sion (NMS) with one that incorporates bounding boxes from multiple frames. Tripathi et
al. [32] describe another box-level technique that processes a sequence of object detector
outputs using a recurrent network to improve object predictions. Kang et al. [18, 19] use the
output from a single-frame detector to produce spatial-temporal “tubelets” that are further
processed to generate improved box predictions. Similarly, Lu et al. [23] use feature maps
from a single-frame detector within detected regions and pass these to a recurrent network
that outputs new bounding boxes and class probabilities. All of these approaches are related
to another class of box-level techniques known as tracking-by-detection [1, 3, 4, 15, 20].
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The basic idea of these methods is to associate detections across the output of an object
detector applied independently to sequential single-frame images to create tracks that can
be used to remove false positives and restore missed detections. In contrast, we propose a
method that directly fuses feature-level information from multiple frames to improve per-
frame detections. Box-level approaches are orthogonal to this goal and can be applied in a
post-processing phase to the output of any multi-frame detector.

In comparison to box-level methods, there have been relatively few feature-level ap-
proaches in video object detection. One such approach is the work of Zhu et al. [37] who
use optical flow to warp feature maps computed from two input frames into correspon-
dence. Modest improvements over a single-frame baseline are shown on the ImageNet VID
dataset [29]. In a related paper [38] use intermediary key frames to avoid computing feature
maps for every frame. This idea increases speed at the cost of accuracy. In the latest paper in
this series, [39] combine these two orthogonal ideas with a spatially-adaptive feature com-
putation to further improve results on ImageNet VID. Another approach by Feichtenhofer et
al. [8] uses a deep network to combine detection and tracking to improve object detection in
videos. Good results are reported on ImageNet VID.

3 Multi-frame Single Shot Detector
In this section we describe the meta-architecture of our Multi-frame Single Shot Detec-
tor (Mf-SSD). The Mf-SSD takes a video sequence as input and requires only a simple
modification to the SSD meta-architecture to handle the change in input space. The SSD
meta-architecture has two main components: a feature extractor network consisting of con-
volutional and pooling layers and a detection head consisting of convolutional layers. The
feature extractor takes an image as input and outputs a set of feature maps. The detection
head takes the feature maps and outputs a set of bounding boxes and object class probabil-
ities that indicate the detected objects. The main modification we make to the base SSD
architecture is to add a data fusion layer to the network directly after the feature extractor to
integrate information from the sequence of input images. The data fusion technique can be
an element-wise operation (e.g. add or max), a simple concatenation of feature maps, or
a recurrent layer. The key factor is that the fusion layer must either be convolutional itself,
or a basic operation that does not alter the fully convolutional nature of the full network.
By enforcing this requirement on the network architecture, we can ensure that the network
will remain extremely fast. The output of the data fusion layer is then fed into the standard
SSD detection head which produces the final bounding boxes and classes for the most recent
time-stamped image. Importantly, this change does not require extra labeled training data
as only the final time-stamped image needs labeled bounding boxes. In this work, we partic-
ularly focus on an Mf-SSD implementation that uses a convolutional recurrent layer to fuse
the information from multiple frames at the feature level.

3.1 Recurrent Multi-frame Single Shot Detector
A special class of our Multi-frame Single Shot Detector meta-architecture is the Recurrent
Multi-frame Single Shot Detector (RMf-SSD) which fuses information from multiple se-
quential images through the use of a recurrent layer. A pictorial representation of an exam-
ple RMf-SSD can be seen in Figure 1. A different feature extractor, such as one based on
VGG [31], ResNet [14], YOLOv2 [26] or SSD [22], could be used instead. This architec-
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Figure 1: Recurrent Multi-frame Single Shot Detector (Mf-SSD) Meta-Architecture. The
depicted RMf-SSD is based on the SqueezeDet+ architecture [34]. RMf-SSDs extend mod-
ern, single shot object detection frameworks to the video domain by merging information
from sequential images with a convolutional recurrent fusion layer. The fire module refers to
a specific combination of layers described in the original SqueezeNet paper [17].

ture takes a sequence of video frames as input and uses the same feature extractor on each
sequential image to produce a set of feature maps. The feature maps from each image are
then fed into the recurrent units along with the feature maps from the previous time step. The
recurrent units output new feature maps which are then used to compute bounding boxes and
class probabilities by more convolutional layers. This basic architecture allows the network
to take advantage of information from previous frames to detect objects in the current frame.

Recurrent neural networks have demonstrated the ability to incorporate temporal infor-
mation in many domains, and more recent advancements (such as LSTM and GRU units)
have proven particularly successful. The Recurrent Mf-SSD uses convolutional recurrent
units, instead of fully connected recurrent units, to maintain the fully convolutional structure
of modern SSD architectures. We now describe convolutional recurrent units in more detail.

3.1.1 Convolutional Recurrent Units

Convolutional recurrent units combine the benefits of standard convolutional layers (i.e.
sparsity of connection, suitability to spatial information) with the benefits of standard re-
current layers (i.e. learning temporal features). From a mathematical perspective, convolu-
tional recurrent units simply replace the dot product operator in the standard fully connected
recurrent unit definition with the convolution operator. In this work, we mainly focus on
convolutional gated recurrent units (GRU) [2, 5]. We found LSTMs [35] and GRUs to yield
similar accuracy but GRUs are faster to train. The updated GRU recurrent unit equations are:

zl
t = σ(Wz ∗ xxxttt +Uz ∗hhht−1), h̃l

t = tanh(W ∗ xxxttt +U ∗ (rrrttt ���hhht−1)),

rl
t = σ(Wr ∗ xxxttt +Ur ∗hhht−1), hl

t = (1− zl
t)h

l
t−1 + zl

t h̃
l
t

where ∗ denotes the convolution operator and � denotes the Hadamard product. The variable
zl

t is an update gate, rl
t is a reset gate, h̃l

t is a candidate activation, hl
t is an output, and xxxttt is
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the input (feature maps). The function σ is a logistic sigmoid function. Wz,Wr,W,Uz,Ur,
and U are the convolution parameters that are learned. Ballas et al. [2] provide a more
detailed treatment of convolutional GRU units, including information regarding the required
computation and memory.

3.2 Implementation

We implement the described Recurrent Mf-SSD in Tensorflow on a machine running Ubuntu
16.04 with an nVidia Titan X (Pascal) GPU. We use SqueezeDet+1 [34] as our baseline SSD
model and, through experimentation, chose to use a Convolutional Gated Recurrent Unit2

(GRU) as the convolutional recurrent layer. The SqueezeDet+ architecture was chosen as
the baseline because it achieves state-of-the-art results on the KITTI dataset. A detailed
description of the full network and further information on the fire module can be found in
the supplementary material.

4 Experiments

We begin by evaluating the efficacy of our approach on the KITTI detection dataset [10]. We
first compare the efficacy of our described Recurrent Multi-frame Single Shot Detector with
a state-of-the-art single-frame baseline [34] and numerous alternative Mf-SSDs based on dif-
ferent data fusion techniques. We then perform further experimental analysis to demonstrate
that RMf-SSDs provide consistent improvement over single-frame baselines, independent of
the choice feature extractor (e.g. VGG-16 and ResNet-50). Finally, to validate our RMf-SSD
in a different setting, we evaluate our RMf-SSD on the Caltech Pedestrian dataset.

4.0.1 KITTI

The KITTI [10] autonomous driving dataset consists of 6 hours of driving data under various
weather conditions and traffic scenarios. Images were captured at 10 Hz with resolution
1242x375. The 2D object detection dataset consists of 7,481 training images and 7,518
testing images. Each image in this dataset is labeled with bounding boxes and class labels
for three classes: cars, pedestrians and cyclists. KITTI is the only widely circulated video
object detection dataset in which the majority of images contain multiple objects and multiple
classes. Additionally, KITTI remains a challenging object detection dataset as it contains
many small objects with varying amounts of occlusion, saturation, shadows and truncation.
While the standard form of this dataset is best suited to single-frame object detection, KITTI
does provide three prior frames of unlabeled data for each training image which we use to
define the multi-frame video input. For our experiments on the KITTI detection dataset, we
define train/val splits by randomly splitting the provided training data in half. Before doing
so, we remove any images for which the prior three frames are not provided (∼30 frames),
as they are not suitable for video object detection. We evaluate each model on the validation
set and use the standard evaluation metrics and provided evaluation code during analysis.

1https://github.com/BichenWuUCB/squeezeDet
2https://github.com/carlthome/tensorflow-convlstm-cell
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4.1 Multi-Frame Fusion Techniques

To evaluate the efficacy of our described Recurrent Multi-frame Single Shot Detector, we
compare and contrast our approach with a single-frame SSD baseline [34] that performs
at the state-of-the-art on the KITTI dataset. Additionally, because it is unclear a priori
which data fusion technique is the most appropriate when merging information from multi-
ple frames [24, 25], we evaluate various alternative Mf-SSDs based on the aforementioned
fusion techniques. In this work, we consider non-learnable techniques such as element wise
add and max operations; learnable techniques such as early and late stage feature map
concatenation; and lastly, we compare with a Recurrent Mf-SSD. The results of these ex-
periments can be found in Table 1. Each of these experiments used 4 total frames to detect
objects in the last frame.

Car Pedestrian Cyclist
Method E M H E M H E M H mAP
Single-frame 0.933 0.885 0.798 0.858 0.775 0.741 0.872 0.845 0.789 0.833
Late Add 0.766 0.723 0.700 0.604 0.553 0.529 0.559 0.588 0.578 0.622
Late Max 0.798 0.780 0.707 0.597 0.547 0.537 0.529 0.560 0.534 0.621
Early Concat 0.896 0.881 0.796 0.850 0.772 0.743 0.866 0.840 0.793 0.826
Late Concat 0.920 0.886 0.799 0.867 0.782 0.751 0.896 0.884 0.851 0.849
Late Concat+Conv 0.906 0.888 0.851 0.875 0.788 0.757 0.890 0.884 0.848 0.854
Conv GRU 0.946 0.891 0.870 0.868 0.782 0.758 0.888 0.881 0.853 0.860

Table 1: KITTI Detection results. The top row represents the results of a single-frame SSD
and each subsequent row represents the results of a multi-frame fusion technique. The input
to each multi-frame network is the current frame and the three prior frames provided by
KITTI for a total of four images. The only difference between each multi-frame network is
the fusion technique. Our Recurrent Mf-SSD (last row), achieves highest mAP.

First, we evaluate element-wise add and max fusion operations. Here, we fuse the
outputs of the feature extractor (see Figure 1) from each frame using element-wise operations
on the 3D tensors. Both element-wise operations show a serious degradation in the overall
accuracy of the model (Table 1, Lines 2&3). A simple explanation for these results is that
element-wise operations do not solve the correspondence problem [6]. When we perform
these operations on features from multiple frames we do not account for the relative shifts in
image space, meaning these methods can easily obscure (in the case of add) or even destroy
(in the case of max) important information. We provide evidence of this by using optical
flow to solve the correspondence problem in the supplementary material.

The second set of methods we explore include the simple concatenation of features from
different streams. Here, instead of performing element-wise operations on the feature maps,
we stack the feature maps from each stream along the third dimension. In the results table,
we relay the best performing early and late concatenation approaches (Table 1, Lines 4&5).
The best early concatenation (i.e. before the end of the feature extractor) results come from
fusing the streams after the second fire layer, and the best late concatenation (i.e. after the end
of the feature extractor) results come from fusing the streams directly after the final layer in
the feature extractor. Comparing these approaches to the single-frame baseline shows the late
concatenation model does produce a significant increase in mean average precision, whereas
early concatenation degrades the model’s performance slightly. This is likely because it is
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difficult to recover the pre-trained features earlier in the network.

(a) Video 1: Baseline SSD (b) Video 1: Recurrent Mf-SSD

(c) Video 2: Baseline SSD (d) Video 2: Recurrent Mf-SSD

Figure 2: Example detections. (a) The baseline single-frame model misses the car directly
behind the cyclist, likely due to occlusion. (b) The Recurrent Mf-SSD model correctly de-
tects all three cars, including the car occluded by the cyclist in the current frame. (c) The
baseline single-frame model mistakenly detects only a single person in the foreground of the
image, likely due to the proximity of the two pedestrians. (d) The Recurrent Mf-SSD model
correctly detects both pedestrians in the foreground. The multi-frame approach utilizes in-
formation from prior images when the pedestrians are less occluded.

Finally, we discuss the results of our Recurrent Mf-SSD, which explicitly learns temporal
relations between each stream by treating the resulting feature maps as a sequence which can
be fed into a recurrent layer. This approach demonstrates the largest improvement in mean
average precision of all of the methods tested (Table 1, Line 7). Using this model, we see
an improvement of 2.7% mAP over the baseline. Figure 2 shows a few example differences
between the detection capabilities of the single- and multi-frame approaches.

An important distinction between the recurrent approach and the other fusion techniques
is that the recurrent layer inherently adds additional parameters to the network. For this
reason we re-examine the best performing non-recurrent technique (Late Concat) with an
additional convolutional layer defined by the same number of feature maps as the recurrent
layer. This does indeed increase the mAP (Table 1, Line 6), however, we make two notes.
First, by adding another convolutional layer to the network, we simply add depth to the
detection sub-network. This is distinct from the use of additional parameters in the Recurrent
Mf-SSD, which learn temporal correlations among feature maps extracted from each frame.
Second, by using a stateful recurrent layer that processes frames sequentially we can simply
feed video frames into the network as they are captured. This allows the Recurrent Mf-SSD
to run at 50 FPS which is almost identical to the 55 FPS of the single-frame SqueezeDet+
network. In comparison, the “Late Concat+Conv” Mf-SSD network that uses 4 frames runs
at 14 FPS because it computes feature maps for each frame. This could be sped up using a
circular buffer, however, this increases the complexity of the model, increases the memory
footprint, and does not scale to an arbitrary number of prior frames like recurrent layers do.

4.2 RMf-SSD using Various Feature Extractor Architectures
The second set of experiments we run validates the notion that the RMf-SSD meta-architecture
can be integrated with any baseline architecture as a feature extractor. Specifically, we
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supplement the results found in Table 1 with a comparison of single-frame SSDs to their
multi-frame counterpart using SqueezeNet, VGG-16 and ResNet-50 as the feature extractor
network instead of SqueezeNet+ (see Table 2).

Car Pedestrian Cyclist
Arch. S/M E M H E M H E M H mAP
SqueezeNet S 0.921 0.861 0.774 0.797 0.725 0.662 0.811 0.770 0.757 0.786
SqueezeNet M 0.936 0.884 0.798 0.856 0.769 0.741 0.860 0.831 0.794 0.830
VGG-16 S 0.939 0.874 0.788 0.781 0.715 0.681 0.784 0.782 0.761 0.790
VGG-16 M 0.942 0.886 0.798 0.815 0.731 0.695 0.810 0.801 0.792 0.808
ResNet-50 S 0.926 0.852 0.751 0.772 0.718 0.672 0.781 0.776 0.745 0.777
ResNet-50 M 0.946 0.870 0.782 0.778 0.730 0.679 0.785 0.779 0.765 0.791

Table 2: KITTI Detection Results using alternative feature extractors. The second column
represents whether the model takes a single-frame (S) or multiple-frames (M) as input. The
RMf-SSD outperforms the baseline single frame network for all tested baseline architectures.

In Table 1, we see that the RMf-SSD based on SqueezeNet+ improves upon it’s single-
frame counterpart by 2.7% mAP. In Table 2, we see that the RMf-SSD based on SqueezeNet
shows an improvement of 4.4%, the RMf-SSD based on VGG-16 shows improvement of
1.8% mAP, and the RMf-SSD based on ResNet-50 shows improvement of 1.4% mAP. By
looking closer at Tables 1 and 2, we see that the each RMf-SSD model provides improve-
ment over the respective single-frame model, both in overall mAP and in every computed
breakdown by category and difficulty level. These results demonstrate a high level of con-
sistency and show the ease of application of the Mf-SSD meta-architecture. All models
are trained using the same procedure and hyper-parameters. Compared to SqueezeNet+,
SqueezeNet has fewer channels per layer, which can achieve AlexNet-level accuracies [17].
To train the larger RMf-SSDs we reduce the input image size by half in each dimension. Ad-
ditional information on the training procedure can be found in the supplementary material.

4.3 Analysis of Learned Temporal Features

(a) Frame 298. (b) Frame 299 with motion. (c) Frame 299 without motion.

Figure 3: Visualization of the feature map output from the recurrent layer in our RMf-SSD
overlaid on input frames. The frames are from video 51 of the KITTI benchmark. The
yellow highlights show that when motion information is present in the data (in the form of
previous frames) the network responds to cars even if they are heavily occluded in the final
frame. Without motion information, the occluded car is missed.

To analyze how temporal information is used in the recurrent layer, we designed an
experiment to highlight how the activation levels of the recurrent layer change depending on
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whether motion is present in the four input frames. This was done by giving the same trained
RMf-SSD network either the usual four consecutive frames (t through t −3) or giving it the
same frame t four times in a row. From the set of recurrent layer feature maps that differ
depending on whether motion is present or not, we found several that can detect heavily
occluded objects. Figure 3 shows one such feature map that detects cars from information in
previous frames even when they are heavily occluded in the current frame. A visualization
of the recurrent layer feature map computed from frames t to t − 3 is overlaid on frame t
(Figure 3.b) and t−1 (Figure 3.a). The yellow response shows that this feature map responds
to the heavily occluded car behind the van. However, when we just give the same network
frame t (with the occluded van) four times, the feature map has a low response (Figure 3.c).

4.4 Caltech Pedestrians
In addition to the experiments on the KITTI detection dataset, we include an evaluation
of our Recurrent Mf-SSD on the Caltech Pedestrians dataset [7]. Caltech Pedestrians is
also a multi-object dataset however it only contains a single class: pedestrians. The Caltech
dataset is significantly larger than KITTI including 22,356 training images, however standard
practice is to use a reduced set of training data (either 1/30th or 1/10th of the original data)
and evaluate on 1/30th of the testing data which results in 4,204 testing images [36]. The
Caltech Pedestrian images were captured at 30 Hz.

SSD RMf-SSD RMf-SSD (2X) Raw % Impr.
All 72% 70% 68% 4%
Reasonable 34% 32% 29% 5%

Table 3: Caltech Pedestrian results. Presented in Miss Rate (lower is better).

Table 3 shows results of both a single-frame SSD model (using the SqueezeNet+ archi-
tecture) and a Recurrent Mf-SSD on the full Caltech test set and the predefined Reasonable
test set. Using this dataset, we can begin to explore the effect of frame-rate and the number
of prior frames. In particular, when we use the three immediately prior frames, the RMf-
SSD produces a small improvement relative to the baseline. However, if we use every other
prior frame (i.e. t-2, t-4, t-6) we see a significantly larger improvement (RMf-SSD (2x)).
Specifically, the RMf-SSD (2x) model outperforms the baseline by 5% on the Reasonable
test set. Additional information regarding our analysis of the Caltech Pedestrian dataset can
be found in the supplementary material.

5 Conclusions
In this work we have described a novel meta-architecture which we call a Recurrent Multi-
frame Single Shot Detector (Recurrent Mf-SSD). Notably, it requires only a simple modi-
fication to the baseline Single Shot Detector meta-architecture to incorporate the additional
spatio-temporal features available in video data. Because the Mf-SSD meta-architecture is
fully convolutional, the runtime of the detection network remains very fast, an important
aspect when working with video data. Furthermore, our approach is not slowed by the need
to compute optical flow, unlike some previous approaches.

We have shown that our approach can incorporate additional temporal and spatial infor-
mation from video datasets to improve upon state-of-the-art single-frame baselines on KITTI
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while still running at 50 frames per second. Visualization of the feature maps output by the
recurrent layer give some insights into how they take advantage of information across multi-
ple frames. Furthermore, we tested numerous alternative methods of fusing information from
multiple frames and found that the Recurrent Mf-SSD network is both the fastest and most
accurate. Our empirical evaluation on the KITTI object detection framework demonstrates
a significant improvement in overall accuracy over a state-of-the-art single-frame detector
(2.7% mAP). Additionally, we find a similar improvement (5% on the Reasonable test set)
on the related Caltech Pedestrians dataset.
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