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Abstract: We investigate using Krylov subspace iterative methods in model predictive
control (MPC), where the prediction model is given by linear or linearized systems with linear
inequality constraints on the state and the input, and the performance index is quadratic.
The inequality constraints are treated by the primal-dual interior point method. We indicate
condition numbers of several linear systems, which determine the search direction in the Newton
method, and propose a new preconditioner for one of the systems. Numerical results illustrate
convergence of Krylov methods with and without preconditioning and demonstrate that our
preconditioning reduces the number of Krylov iterations 2–10 times.
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1. INTRODUCTION

We assess several numerical algorithms for solving optimal
control problems in a model predictive control (MPC) ap-
proach. The design of MPC is discussed, e.g., in (Rawlings
and Mayne, 2013). The survey (Diehl et al., 2009) gives a
comprehensive view of existing numerical techniques based
on Newton-type methods for solving the MPC problems
and proposes various combinations of these techniques to
design robust and efficient numerical procedures. Among
hundreds of publications about numerical issues and so-
lutions for MPC, we particularly refer to the prior work
in (Rao et al., 1998; Ohtsuka, 2004; Shimizu et al., 2009;
Zavala and Biegler, 2009; Wang and Boyd, 2010; Shahzad
et al., 2010, 2012; Freund and Jarre, 1996).

We focus on a linear or linearized dynamic system whose
state and control input satisfy linear inequality con-
straints and the performance index is given by a quadratic
form, i.e., a standard quadratic programming formulation;
cf. (Wang and Boyd, 2010; Shahzad et al., 2012). The
inequality constraints are treated by means of a primal-
dual interior point method (IPM) (Rao et al., 1998; Zavala
and Biegler, 2009; Wright, 1997; Boyd and Vandenberghe,
2004; Gondzio, 2012).

The main computationally intensive part of the interior
point method for solving the control prediction problem
over a finite horizon, corresponds to solving a structured
system of linear equations to compute the Newton step.
This system is solved either exactly by a direct method
or approximately using iterative techniques. The most ef-
ficient direct methods take advantage of the block banded
structure of the Hessian under suitable orderings of vari-
ables. If we denote by n, m, and N the dimensions of the
state variable and control input, and the horizon length,

respectively, then the arithmetic complexity of a struc-
tured direct method equals O

(
N(n+m)3

)
.

When the dimensions of the state, n, and of the control
input, m, are large, say (n + m) � 100, the cubic
dependence on n and m of such direct methods makes
the numerical solution too expensive, especially in case
of a real-time implementation of MPC under tight timing
constraints. To overcome the cubic complexity, one can use
Krylov subspace iterative methods (Greenbaum, 1997),
which, in theory, reduce the asymptotic complexity to a
quadratic dependence on both n and m. Such an approach
is developed, e.g., in (Ohtsuka, 2004; Shahzad et al., 2010,
2012; Freund and Jarre, 1996; Gould et al., 2001; Dollar,
2005; Cafieri, 2006).

In our previous papers (Knyazev et al., 2015; Knyazev
and Malyshev, 2016), we have further developed Ohtsuka’s
method (Ohtsuka, 2004), which has been designed for
online numerical solution of nonlinear MPC problems.
The method uses GMRES iterations (Kelly, 1995) to solve
a linear system to compute the Newton-type continuation
step, where the system is derived from the Karush-Kuhn-
Tucker (KKT) equations by eliminating the state and
costate variables. We have proposed a preconditioner for
the GMRES iterations in (Knyazev and Malyshev, 2016),
which is efficient for problems with inequality constraints
on the control input. In the present paper, we consider the
general framework of quadratic programming, similar to
the work in (Wang and Boyd, 2010; Shahzad et al., 2010,
2012). A similarly structured quadratic program (QP)
forms the subproblem within a sequential quadratic pro-
gramming method for nonlinear MPC (Diehl et al., 2009).

The goal of our work is to design preconditioning tech-
niques for the efficient use of Krylov subspace iterations
during calculation of the Newton search direction step



in the primal-dual interior point method. In particular,
we consider several size reductions of the KKT system
and indicate the resulting condition number; cf. (Greif
et al., 2014). We complement the investigation started
in (Shahzad et al., 2010, 2012) with a condensing pro-
cedure that is related to the so-called sequential method
reviewed in (Diehl et al., 2009) and used, e.g., in (Oht-
suka, 2004). We propose a sparse preconditioner for the
condensed problem, similar to (Knyazev and Malyshev,
2016), and we suggest an alternative preconditioner for the
additional size reduction that was proposed in (Shahzad
et al., 2010, 2012).

Our main contribution consists in a recommendation to
use the size reduction by condensing, without actually
forming the condensed QP formulation, and in combina-
tion with the new sparse preconditioner that treats in-
equality constraints for the control input as well as for the
state variables. Further reduction to the δ-active inequality
constraints, described in detail in (Shahzad et al., 2010,
2012), can be desirable; see similar approach in (Jung
et al., 2012). Suitable Krylov subspace methods for the
condensing approach include GMRES, QMR and BiCG.
The main motivation for our recommendation is that the
reduction from (Shahzad et al., 2010, 2012) is too expen-
sive for large problems since the computational cost of
their block elimination equals to that of a control problem
without inequality constraints, i.e., O

(
N(n+m)3

)
.

In the last section, numerical experiments in MATLAB
illustrate convergence of the IPM. We show the number
of the inner Krylov iterations with and without precondi-
tioning and demonstrate that our preconditioning reduces
the number of Krylov iterations 2–10 times. Note that our
tests use small matrices, where the fastest direct methods
perform better in terms of CPU time.

2. MPC PROBLEM FORMULATION

Model predictive control (MPC) determines the current
control input u(t) by solving an optimal control problem
on a finite horizon t = τ0 < τ1 < · · · < τN = t + T . Over
the finite horizon of length N , we consider a prediction
model given by the discrete-time linear system

xi+1 = Aixi +Biui, i = 0, 1, . . . , N − 1, (1)

where Ai ∈ Rn×n, Bi ∈ Rn×m, xi ∈ Rn is the state
vector, ui ∈ Rm is the control input vector. Let x̄ = x0 ∈
Rn be the measurement or estimate of the state at the
current time instant. The objective is to find a sequence
of optimal control inputs u0, . . . , uN−1 subject to the
equality constraints (1) and the inequality constraints

Gx,ixi +Gu,iui ≤ gi, i = 0, . . . , N − 1, (2)

Gx,NxN ≤ gN , (3)

while minimizing the quadratic performance index

x>NQNxN +

N−1∑
i=0

(
x>i Qixi + u>i Riui + 2u>i Mixi

)
, (4)

where we define the matrices Gx,i ∈ Rli×n, Gu,i ∈ Rli×m,
Qi ∈ Rn×n, Ri ∈ Rm×m and Mi ∈ Rm×n.

The optimal control problem (OCP) is the sparse convex
quadratic program (QP)

min
d

1

2
d>Hd+ d>h subject to Fd = f(x̄), Gd ≤ g, (5)

with respect to the vector of decision variables

d =
[
x>0 u>0 x>1 u>1 · · · u>N−1 x>N

]>
, (6)

where d, h ∈ Rnd , H ∈ Rnd×nd , F ∈ Rne×nd , G ∈ Rns×nd

with nd = (n+m)N+n, ne = n(N+1), and ns =
∑N

i=0 li.
The sparse matrices H, F , and G and the vectors h, f(x̄)
and g are defined as follows:

H =



Q0 M>0 · · · 0 0 0
M0 R0 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · QN−1 M>N−1 0
0 0 · · · MN−1 RN−1 0
0 0 · · · 0 0 QN

 ,

F =


−I 0 0 0 0 · · · 0 0 0
A0 B0 −I 0 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · AN−1 BN−1 −I

 ,

G =


Gx,0 Gu,0 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · Gx,N−1 Gu,N−1 0
0 0 · · · 0 0 Gx,N

 ,
f(x̄) =

[
−x̄> 0 . . . 0

]>
, g =

[
g>0 g>1 . . . g>N

]>
.

Note that the gradient vector is assumed to be equal to
zero, h = 0, for simplicity of notation in (4).

3. INTERIOR POINT METHOD (IPM)

Necessary optimality conditions for the OCP are derived
by means of the Lagrangian function

L =
1

2
x>NQNxN +

1

2

N−1∑
i=0

(
x>i Qixi + u>i Riui + 2u>i Mixi

)
+ y>0 (x̄− x0) +

N−1∑
i=0

y>i+1(Aixi +Biui − xi+1)

− µ
N∑
i=0

1> log si +

N∑
i=0

z>i (Gx,ixi +Gu,iui − gi + si),

where 1 = [1 . . . 1]>, and the slack variables si > 0 and
small parameter µ > 0 are required by the interior point
method. The optimality conditions, also known as the
KKT conditions, then read as follows:

Hd+ F>y +G>z = 0, Fd− f = 0,

Gd− g + s = 0, Z1− µS−11 = 0,
(7)

where the matrices Z = diag (z) and S = diag (s) are
diagonal. The last KKT condition is nonlinear and usually
substituted with the equation ZS1 − µ1 = 0, which is
better scaled for solving the system in (7).

A search direction at iteration k of Newton’s method is
determined by the following system of linear equations:H F> G> 0

F 0 0 0
G 0 0 I
0 0 Sk Zk


︸ ︷︷ ︸

Ak
0


∆dk

∆yk

∆zk

∆sk

 = −


rkH
rkF
rkG
rkS


︸ ︷︷ ︸

bk0

(8)



with the residuals

rkH = Hdk + F>yk +G>zk, (9)

rkF = Fdk − f, (10)

rkG = Gdk − g + sk, (11)

rkS = ZkSk1− σµk1, (12)

where σ ∈ (0, 1) is called a centering parameter, and
the value for µk = (zk)>sk/ns is directly related to the
current duality gap; see (Shahzad et al., 2012; Wright,
1997) for more detail. We solve the KKT system (8) at each
iteration of the interior point method (IPM) implemented
in Algorithm 1 from (Shahzad et al., 2012).

4. SIZE REDUCTION BY GAUSSIAN ELIMINATIONS

In this section, several KKT systems are introduced based
on Schur complements of the matrix in (8), and their
condition numbers are indicated near convergence of the
IPM with the tolerance ε = 10−3 for the test example
in Section 9. The initial KKT matrix Ak

0 has a condition
number at iteration k = 11 of cond(A11

0 ) = 2.8 · 106.

The system (8) can be reduced to a system of smaller size
by block Gaussian elimination, resulting inH F> G>

F 0 0
G 0 −W k


︸ ︷︷ ︸

Ak
1

∆dk

∆yk

∆zk

 = −

rkHrkF
rkW


︸ ︷︷ ︸

bk1

, (13)

∆sk = −(Zk)−1
(
rkS + Sk∆zk

)
, (14)

with the diagonal matrix W k = (Zk)−1Sk and the resid-
ual rkW = rkG − (Zk)−1rkS . The condition number reads
cond(A11

1 ) = 4.1 · 1010 for our test example.

Another block Gaussian elimination further reduces the
number of unknowns in the system (13):[

H +G>(W k)−1G F>

F 0

]
︸ ︷︷ ︸

Ak
2

[
∆dk

∆yk

]
= −

[
rkE
rkF

]
︸ ︷︷ ︸

bk2

, (15)

∆zk = (W k)−1
(
G∆dk + rkW

)
, (16)

where rkE = rkH +G>(W k)−1rkW , cond(A11
2 ) = 3.3 · 1010.

The three linear systems in (8), (13), and (15) can be trans-
formed into systems with banded matrices by a localized
reordering of unknowns. The resulting banded systems are
usually solved by Gaussian elimination in order to avoid
numerical issues, e.g., caused by large diagonal elements
in W k. The arithmetic complexity of such direct solution
methods typically amounts to O(N(n+m)3) operations.

If the block diagonal matrix Dk = H + G>(W k)−1G is
nonsingular, e.g., when H is positive definite, then the
linear system in (15) reduces to the block tridiagonal
system with respect to ∆yk (cf. (Wang and Boyd, 2010)):[

F (Dk)−1F>
]

∆yk = rkF − F (Dk)−1rkE , (17)

∆dk = −(Dk)−1
(
F>∆yk + rkE

)
.

For our test example in Section 9, cond(Dk) = ∞ such
that the system in (17) can not be formed.

The authors in (Shahzad et al., 2010, 2012) instead favor
the following block elimination from Eq. (13):

(
[G 0]

[
H F>

F 0

]−1 [
G>

0

]
+W k

)
︸ ︷︷ ︸

Ak
3

∆zk

= rkW − [G 0]

[
H F>

F 0

]−1 [
rkH
rkF

]
︸ ︷︷ ︸

bk3

, (18)

[
∆dk

∆yk

]
= −

[
H F>

F 0

]−1([
G>

0

]
∆zk +

[
rkH
rkF

])
.

However, the pivot matrix Π =

[
H F>

F 0

]
is nonsingular

if and only if the linear system (1) with the performance
index (4) is consistent, i.e., controllable and observable
without inequality constraints. Otherwise, the block elim-
ination method in (18) does not work. We have cond(Π) =
8 · 105 and cond(A11

3 ) = 9.2 · 1010 in our test example.

4.1 Numerical Condensing Procedure

Let us propose an alternative block elimination approach
based on the numerical condensing of the state vari-
ables (Frison, 2015). We first introduce the square block
bidiagonal matrix

A =


−I
A0 −I

A1 −I
. . .

. . .
AN−1 −I

 , (19)

and the block diagonal matrices

B = blkdiag(0, B0, B1, . . . , BN−1),

Q = blkdiag(Q0, Q1, . . . , QN ),

R = blkdiag(R0, R1, . . . , RN−1),

M = blkdiag(M0,M1, . . . ,MN−1),

Gx = blkdiag(Gx,0, Gx,1, . . . , Gx,N ),

Gu = blkdiag(Gu,0, Gu,1, . . . , Gu,N−1).

We split the decision vector d into two vectors x =[
x>0 x>1 · · · x>N

]>
and u =

[
u>0 u>1 · · · u>N−1

]>
and

rewrite (8), permuting its rows and columns, as
Q A> M> G>x 0
A 0 B 0 0
M B> R G>u 0
Gx 0 Gu 0 I
0 0 0 Sk Zk




∆xk

∆yk

∆uk

∆zk

∆sk

 = −


rkx
rkF
rku
rkG
rkS

 . (20)

As in (13), elimination of ∆sk from (20) gives
Q A> M> G>x
A 0 B 0
M B> R G>u
Gx 0 Gu −W k




∆xk

∆yk

∆uk

∆zk

 = −


rkx
rkF
rku
rkW

 , (21)

where rkW = rkG − (Zk)−1rkS . The matrix A is always
nonsingular, and the inverse of the pivot equals

P =

[
Q A>

A 0

]−1
=

[
0 A−1

A−T −A−TQA−1

]
.

After elimination of the variables ∆xk and ∆yk from (21),
we denote the blocks of the Schur complement as

S11 = R + B>A−TQA−1B−MA−1B−B>A−TM>,



S21 = Gu −GxA
−1B,

and arrive at the symmetric system[
S11 S>21
S21 −W k

]
︸ ︷︷ ︸

Ak
4

[
∆uk

∆zk

]
= −

[
rkS
rkW

]
︸ ︷︷ ︸

bk4

, (22)

where the residuals read rkS = rku −
[
M B>

]
P

[
rkx
rkF

]
and

rkW = rkW − [Gx 0]P

[
rkx
rkF

]
. The corresponding condition

numbers are cond(P) = 2.2 · 103 and cond(A11
4 ) = 2 · 1010.

Eliminating ∆xk and ∆yk from (20), but keeping ∆sk,
results in the nonsymmetric systemS11 S>21 0

S21 0 I
0 Sk Zk


︸ ︷︷ ︸

Ak
5

∆uk

∆zk

∆sk

 = −

rkSrkG
rkS


︸ ︷︷ ︸

bk5

, (23)

where rkG = rkG − [Gx 0]P

[
rkx
rkF

]
. For our test example,

the condition number is equal to cond(A11
5 ) = 1.6 · 107,

which is lower than the condition number for the system
matrices A4, A3, A2 and A1, and relatively comparable to
the initial KKT matrix cond(A11

0 ) = 2.8 · 106.

5. SIZE REDUCTION BY CHOOSING δ-ACTIVE
INEQUALITY CONSTRAINTS

The authors of (Shahzad et al., 2010, 2012) present a
simple technique that reduces the size of the problem and
it can improve the condition number, by introducing the
concept of a δ-active set of inequality constraints for a
given scalar δ > 0. The δ-active set at iteration k is the
set of indices N k

A(δ) = {i ∈ N|0 < wk
i ≤ δ}, where

wk
i =

ski
zk
i

and N := {1, 2, . . . , ns}. The δ-inactive set at

iteration k is the complement set N k
I = N\N k

A(δ). The
value of δ is usually selected sufficiently large such that
all inequality constraints in the first IPM iteration are δ-

active, i.e., δ >
s0i
z0
i

for all indices i.

Let us illustrate the idea on the formulation of the linear
KKT system in (13). Permuting and splitting the variables
∆zk according to the δ-active and δ-inactive constraints
yields the following block partitioning of (13),[

Mk
1 (Mk

2 )>

Mk
2 −W k

2

] [
pk1
pk2

]
=

[
rk1
rk2

]
, (24)

where

Mk
1 =

H F> (Gk
1)>

F 0 0
Gk

1 0 −W k
1

 , Mk
2 =

[
Gk

2 0 0
]
,

pk1 =

∆dk

∆yk

∆zk1

 , rk1 =

 rkHrkF
rkW1

 , pk2 = ∆zk2 , rk2 = rkW2
.

The diagonal matrix W k
1 corresponds to the δ-active set,

and the diagonal matrix W k
2 to the δ-inactive part.

The size reduction by means of the δ-active set is done by
replacing the block (Mk

2 )> by the zero matrix, i.e., instead
of the system (24), we solve the system of two equations

Mk
1 p̂

k
1 = rk1 , (25)

W k
2 p̂

k
2 = Mk

2 p̂
k
1 − rk2 . (26)

The main computational burden corresponds to solving
the linear KKT system in (25). Since the matrix W k

2 is
diagonal, solving system (26) is cheap. Both numerical
experience and theoretical arguments from (Shahzad et al.,
2012) show that the use of the solution (p̂k1 , p̂

k
2) instead

of (pk1 , p
k
2) provides a good performance of the IPM, but

maybe at the cost of a few extra iterations of Newton’s
method. It is straightforward to apply this size reduction
technique, by means of the δ-active set of inequality
constraints, to all other formulations of the linear KKT
system in (8), (15), (17), (18), (22) and (23).

6. REMARKS ON ITERATIVE SOLUTION OF THE
IPM SYSTEMS OF LINEAR EQUATIONS

Our main goal is to investigate the considered numerical
methods on suitability for problems of large size, e.g., to
cope with the case when the matrices Ai, Bi, Qi, Ri,
Mi, and Gi are large and sparse. Specifically, we aim to
reduce the problem size and lower condition numbers of
the resulting systems of linear equations, to which the
Krylov subspace methods are applied after size reduction.

From several size reductions introduced in the previous
sections, we propose to consider the following variants:

(a) system (8) with/out δ-active inequality constraints;
(b) system (13) with δ-active inequality constraints;
(c) system (18) with δ-active inequality constraints;
(d) system (22) with δ-active inequality constraints;
(e) system (23) with/out δ-active inequality constraints.

The papers (Shahzad et al., 2010, 2012) propose two
preconditioners for the variant c), where the matrix Ak

3

exists only if the pivot block Π =

[
H F>

F 0

]
is invertible.

In this case, Ak
3 is symmetric positive definite and dense.

This structure allows applying MINRES or CG iterations
for solving the system (18).

Our contribution concerns the variants d) and e), which
are always applicable for the quadratic program formu-
lated in Section II. These variants can be particularly

useful when the pivot matrix Π =

[
H F>

F 0

]
is singular, or

ill-conditioned, which makes the methods from (Shahzad
et al., 2010, 2012) difficult or impossible to use. Suitable
Krylov subspace methods for the variants d) and e) include
GMRES, QMR and BiCG, with optional preconditioning
as discussed in the next section. It is worth to remark that
the block Gaussian elimination with the pivot matrix Π, in
general, costs O(N(n+m)3) arithmetic operations, while
the numerical condensing in the variants d) and e) costs
O(N(n+m)2) arithmetic operations.

Note that the latter complexity is very different from the
typical result of O

(
N2(nm2 + n2m)

)
or O

(
N2(n+m)3

)
arithmetic operations to form the condensed Hessian S11

as in (Frison, 2015). We namely require only O(N(n +
m)2) arithmetic operations to perform a matrix-vector
multiplication in an iterative solver for system (22) or (23),
without explicitly constructing the matrix directly.



7. PRECONDITIONING TECHNIQUES

In this section, we propose a new preconditioner for the
matrix Ak

4 in (22). We recall that the matrix Ak
4 is not

well-conditioned, in particular, owing to large diagonals in
W k. The condition number can be sometimes improved by
the size reduction with the δ-active inequality constraints.
Therefore, we can assume that Ak

4 is given after this
reduction.

Let us look at the blocks of the Schur complement

S11 = R + B>A−TQA−1B−MA−1B−B>A−TM>,
(27)

S21 = Gu −GxA
−1B, (28)

as a result of the condensing procedure. Our precondi-
tioner is obtained by setting Ai = 0 for all indices i =
0, 1, . . . , N − 1, i.e., A = −I, where the block bidiagonal
matrix A is given in (19). In other words, we attempt to
approximate S11 by the block diagonal matrix

P11 = R + B>QB + MB + B>M>

and S21 by the block diagonal matrix

P21 = Gu + GxB.

Hence, the preconditioner for the matrices Ak
4 is given by

the block partitioned matrix

Pk =

[
P11 P>21
P21 −W k

]
, (29)

with the sparse block diagonal submatrices P11 and P21

and the diagonal matrix W k. An alternative precondi-
tioner can be constructed by setting all Ai to the iden-
tity matrix. However, such a preconditioner would be less
sparse than (29).

Remark. As mentioned earlier, the papers (Shahzad et al.,
2010, 2012) propose two preconditioners for solving (18)
iteratively, where the matrix undergoes the elimination of
the δ-inactive inequality constraints. One of the precon-
ditioners is the diagonal matrix W k

1 , the other one is the
block diagonal of the matrix Ak

3 . We suggest another block
diagonal preconditioner for (18),

Pk
3 = W k

1 + Gk
uR
−1(Gk

u)>,

which is constructed analogously to the preconditioner (29).
Testing Pk

3 is beyond the scope of the present paper.

8. TEST EXAMPLE: OSCILLATING MASSES

We consider a linear system of n/2 unit masses connected
by springs and to walls at the ends. The stiffness of each
spring equals 1, and there is no damping. There are m
actuators connected to the first m masses. The vectors of
the state, control and output are respectively as

x =
[
q>1 q>2 . . . q>n/2 q̇

>
1 q̇>2 . . . q̇>n/2

]>
,

u =
[
f>1 f>2 . . . f>m

]>
, y =

[
q>1 q>2 . . . q>n/2

]>
,

where qi denotes the coordinate of the ith mass with
respect to its equilibrium position and fi represents the
control force acting on the ith mass. The following inequal-
ity constraints are imposed on the inputs and outputs:

−0.5 ≤ u(i) ≤ 0.5, i = 0, . . . , N − 1,

−3.5 ≤ y(i) ≤ 3.5, i = 1, . . . , N.

The corresponding linear discrete-time system is sampled
for the time rate ∆τ = 0.5, the inputs are constant
between sample instants. The following matrices are used
in the discrete-time model:

Ai = exp (∆τAc) , Bi = A−1c (Ai − In)

 0n/2
Im

0n/2−m

 ,
where

Ac =

[
0n/2 In/2
Tn/2 0n/2

]
, T =


−2 1
1 −2 1

. . .
. . .

. . .
1 −2

 .
The objective of the control is to regulate the displace-
ments with the given constraints on displacements and
control inputs. We choose the following regulator tuning
matrices Ri = 10−6I, Mi = 0, and Qi = C>C =[
In/2 0

]> [
In/2 0

]
and the following initial values

x̄ = 3.5 [1 1 0 · · · 0]
>
.

9. NUMERICAL EXPERIMENTS

We have carried out numerical experiments in MATLAB
with the example from Section 8, where dimension of the
state is n = 12, the number of control inputs is m = 3,
the horizon length is N = 30. The number of inequality
constraints at each time instance is l = n + 2m = 18. As
the IPM method we choose Algorithm 1 from (Shahzad
et al., 2012). Other constants are σ = 0.1, γ = 10−3,
β = 2, ε = 10−6. The absolute error tolerance for the
Krylov iterations is tol = ε. The initial values of x, u, y,
z, s are chosen to be equal to 1.

Our MATLAB code implements the IPM using iterative
solvers for the linear system in (22) with the preconditioner
from (29) and the size reduction to the δ-active inequality
constraints. The available iterative solvers are the MAT-
LAB functions for GMRES, QMR and BiCG. We report
only the results of solving MPC at the initial time and
from a cold start, where the initial values equal to 1.

The example from Section 8 allows a simple MATLAB
implementation of a direct solution method exploiting
the particular banded structure of the properly permuted
system (8) and the sparse Gaussian elimination of MAT-
LAB. However, the direct solution method from (Wang
and Boyd, 2010) fails because the matrix Dk in (17)
is singular near the convergence of IPM. Our MATLAB
implementation of the iterative method from (Shahzad
et al., 2010, 2012), which solves (18) by CG, with δ = 1000,
converges to a solution after 17 IPM iterations and 19279
unpreconditioned CG iterations inside IPM, or 29689 CG
iterations preconditioned with W k

1 .

Figure 1 displays the number of Krylov iterations without
preconditioning. The δ-active inequality constraints for
GMRES are selected with δ = 100 and for QMR and
BiCG with δ = 4. We note that BiCG often requires less
inner Krylov iterations, compared to GMRES and QMR,
but ends up with many more IPM iterations, resulting
in residual values rGMRES = 2e−4, rQMR = 4e−4,
rBiCG = 4e−4 at the last IPM step.
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Fig. 1. Krylov iterations without preconditioning.
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Fig. 2. Krylov iterations with proposed preconditioning.

Figure 2 shows similar results for GMRES, QMR and
BiCG, but with preconditioning, where the δ-active in-
equality constraints are selected with δ = 200. We observe
that preconditioning accelerates GMRES by a factor of
5–10, compared to the results in Figure 1.

10. CONCLUSION

Our sparse preconditioners for Krylov methods applied to
systems of linear equations that appear at each Newton
step in an IPM for quadratic programs show speedups 5–
10x in numerical experiments with preconditioned GM-
RES. The expected computational complexity is O(N(n+
m + l)2), where N is the horizon length in the MPC
prediction, n and m are dimensions of the state and the
control input, and l is the number of inequality constraints.
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Universitá degli Studi di Napoli Federico II.

Diehl, M., Ferreau, H.J., and Haverbeke, N. (2009). Effi-
cient numerical methods for nonlinear MPC and moving
horizon estimation. In L.M. et al. (ed.), Nonlinear Model
Predictive Control, LNCIS 384, 391–417. Springer, Hei-
delberg, Germany.

Dollar, H. (2005). Iterative linear algebra for constrained
optimization. Ph.D. thesis, University of Oxford.

Freund, R.W. and Jarre, F. (1996). A QMR-based interior-
point algorithm for solving linear programs. Math.
Program., 76, 183–210.

Frison, G. (2015). Algorithms and Methods for High-
Performance Model Predictive Control. Ph.D. thesis,
Technical University of Denmark (DTU).

Gondzio, J. (2012). Interior point methods 25 years later.
European J. Operational Research, 218, 587–601.

Gould, N.I.M., Hribar, M.E., and Nocedal, J. (2001). On
the solution of equality constrained quadratic program-
ming problems arising in optimization. SIAM J. Sci.
Comput., 23, 1376–1395.

Greenbaum, A. (1997). Iterative methods for solving linear
systems. SIAM, Philadelphia, PA.

Greif, C., Moulding, E., and Orban, D. (2014). Bounds
on eigenvalues of matrices arising from interior-point
methods. SIAM J. Optim., 24, 49–83.

Jung, J.H., O’Leary, D.P., and Tits, A.L. (2012). Adaptive
constraint reduction for convex quadratic programming.
Comput. Optim. Appl., 51, 125–157.

Kelly, C.T. (1995). Iterative methods for linear and
nonlinear equations. SIAM, Philadelphia, PA.

Knyazev, A., Fujii, Y., and Malyshev, A. (2015). Pre-
conditioned continuation model predictive control. In
Proc. SIAM Conf. Control Appl., 101–108. SIAM, Paris,
France.

Knyazev, A. and Malyshev, A. (2016). Sparse precondi-
tioning for model predictive control. In Proc. American
Control Conf. (ACC), 4494–4499. Boston, MA, USA.

Ohtsuka, T. (2004). A continuation/GMRES method for
fast computation of nonlinear receding horizon control.
Automatica, 40, 563–574.

Rao, C.V., Wright, S.J., and Rawlings, J.B. (1998). Ap-
plication of interior-point methods to model predictive
control. J. Optimiz. Theory Appl., 99, 723–757.

Rawlings, J.B. and Mayne, D.Q. (2013). Model Predictive
Control. Theory and Design. Nob Hill Publishing,
Madison, WI.

Shahzad, A., Kerrigan, E.C., and Constantinides, G.A.
(2010). A fast well-conditionend interior point method
for predictive control. In Proc. IEEE Conf. Decision
Control, 508–513. Atlanta, GA, USA, December 15–17.

Shahzad, A., Kerrigan, E.C., and Constantinides, G.A.
(2012). A stable and efficient method for solving a
convex quadratic program with application to optimal
control. SIAM J. Optim., 22(4), 1369–1393.

Shimizu, Y., Ohtsuka, T., and Diehl, M. (2009). A real-
time algorithm for nonlinear receding horizon control us-
ing multiple shooting and continuation/Krylov method.
Int. J. Robust Nonlinear Control, 19, 919–936.

Wang, Y. and Boyd, S. (2010). Fast model predictive
control using online optimization. IEEE Trans. Control
Syst. Technology, 18, 267–278.

Wright, S.J. (1997). Primal-Dual Interior Point Methods.
SIAM, Philadelphia.

Zavala, V.M. and Biegler, L.T. (2009). Nonlinear pro-
gramming strategies for state estimation and model
predictive control. In L.M. et al. (ed.), Nonlinear Model
Predictive Control, LNCIS 384, 419–432. Springer, Hei-
delberg, Germany.


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-121.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


