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1. INTRODUCTION

In this paper, preconditioning techniques are proposed
that may be useful for numerical solution of optimal
control problems in model predictive control (MPC); see
(Rawlings et al., 2017). We consider MPC over a reced-
ing horizon in the form of a quadratic program (QP),
where the cost function is given by a convex quadratic
performance index, the equality constraints are the linear
model dynamics, the inequality constraints on the state
and control inputs are also linear; similar formulations
are used in (Wang and Boyd, 2010; Shahzad et al., 2012;
Frison et al., 2014; Quirynen et al., 2018). Such structured
QPs appear as subproblems within a sequential QP for
nonlinear MPC; see, e.g., (Diehl et al., 2009).

The inequality constraints in the QP problem are usually
treated by the interior point (IP) method or by the active-
set method; cf. (Bartlett et al., 2000). The IP method is
characterized by fast convergence, which is almost inde-
pendent of the problem size; see, e.g., (Mehrotra, 1992;
Gondzio, 2012, 2013). The active-set solvers for MPC are
highly competitive owing to rather small changes of the
active set during continuation steps, reducing arithmetic
costs by exploiting low-rank updates of a Cholesky fac-
torization when changing the active set as shown in (Gill
et al., 1974; Kirches et al., 2011).

Matrices in systems of linear equations defining search
directions in the Newton method are sparse, consisting
of blocks with banded matrices. Several efficient direct
methods have been proposed for solving such systems; see,
e.g., (Rao et al., 1998; Wang and Boyd, 2010; Domahidi
et al., 2012; Frison and Jørgensen, 2013). Let nx, nu, ng,
and N denote the dimensions of the state variable and the
control input, the number of the inequality constraints,
and the horizon length, respectively. Arithmetic complex-
ity of block structured direct solvers used in the IP method
typically amounts to O(N(n3x + n3u + n3g)) flops.

Numerical solution of linear systems of the Newton
method, e.g., using direct solvers, is the most time-
consuming online part of MPC. Computational complexity
can be reduced if saddle-point linear systems of KKT
conditions are replaced by linear systems having sym-
metric positive definite (SPD) block structured matrices.
Direct solvers for SPD linear systems are commonly based
on the Cholesky factorization, often implemented to take
advantage of the BLAS3 matrix operations, which is highly
efficient on contemporary computer architectures with ad-
vanced memory hierarchies. The active-set methods may
achieve theoretical complexity O(N(n2x+n2u+n2g)), if based
on cost-efficient low-rank updates, e.g., of the Cholesky
factorization, although the low-rank updates can only use
BLAS2; see (Anderson et al., 1999).

Well-known fast convergence of the IP method, its re-
silience to inexact implementations, and high performance
of BLAS3 implementations of the direct solvers can make
the IP method competitive with the active-set methods.
We have considered the IP method in (Malyshev et al.,
2018) using each of the three direct solvers: Riccati recur-
sion, Schur complement, and augmented Lagrangian, with
regularization by adding the identity matrix multiplied by
a small parameter to some blocks. The factorized Riccati
recursion and the augmented Lagrangian regularization
have been found the best in terms of arithmetic operations.

The sparse linear systems of the Newton methods can
be solved by iterative methods; see, e.g., (Golub and
Van Loan, 2013, Ch. 11). If an efficient preconditioner is
available, the theoretical complexity of an iterative method
is reduced to O(N(n2x +n2u +n2g)), and the preconditioned
iterative method outperforms direct solvers for relatively
large values of nx, nu, ng.

The rest of this paper is organized as follows. Section 2
introduces the notation and the MPC QP problem. Sec-
tion 3 discusses reductions to SPD systems. We revisit reg-



ularization of the Schur complement in Section 4 and the
augmented Lagrangian in Section 5. We show theoretically
in Section 6 and numerically in Section 7 that the former is
less sensitive to the choice of the regularization parameter,
compared to the latter. Section 7 also illustrates behavior
of the proposed preconditioning in the conjugate gradient
(CG) method, where Cholesky factorizations computed at
odd IP iterations are reused for preconditioning at even
IP iterations to halve the computational cost.

Our main contributions include (a) reuse of the Cholesky
factorization for preconditioning subsequent IP iterations
and (b) analysis of sensitivity of the regularized direct
solvers from Sections 4 and 5 to the choice of regularization
parameter values ε and τ .

2. QUADRATIC PROGRAMMING FOR MODEL
PREDICTIVE CONTROL

We consider the following quadratic program (QP) with
respect to a decision variable d ∈ Rnh ,

min
d

1

2
dTHd+ hT d subject to Fd = f, Gd ≤ g, (1)

where nh = (nx + nu)N + nx, nf = nx(N + 1), and the
matrices H ∈ Rnh×nh , F ∈ Rnf×nh , G ∈ Rng×nh and the
vectors h, f , and g have the form

H =



Q0 S
T
0 · · · 0 0 0

S0 R0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · QN−1 STN−1 0
0 0 · · · SN−1 RN−1 0
0 0 · · · 0 0 QN

 ,

F =


−I 0 0 0 · · · 0 0 0
A0 B0 −I 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · AN−1 BN−1 −I

 ,

G =


Gx0 Gu0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · GxN−1 G

u
N−1 0

0 0 · · · 0 0 GxN

 ,

h =


hx0
hu0
...

huN−1
hxN

 , f =


f0
f1
...
fN

 , g =


g0
g1
...
gN

 .
The blocks I in F denote identity matrices of order nx.
We assume that the matrix H is symmetric positive
semidefinite. We note that the matrix H as well as the
blocks Gxi and Gui of the matrix G are often diagonal.

Optimization problem (1) is solved by the primal-dual IP
method; see, e.g., (Wright, 1997; Shahzad et al., 2012).
The IP method uses the following Karush-Kuhn-Tucker
(KKT) optimality conditions

Hd+ FT y +GT z + h = 0, (2)

Fd− f = 0, (3)

Gd− g + s = 0, (4)

Z1− µS−11 = 0, (5)

where 1 = [1 . . . 1]T ∈ Rng , and the matrices Z = diag (z)
and S = diag (s) are diagonal. The vectors y ∈ Rnf and
z ∈ Rng denote the Lagrange multipliers. The slack vector
s ∈ Rng with positive components and the small parameter
µ > 0 are required by the IP method.

The KKT conditions consist of linear equations (2)-(4) and
nonlinear equation (5). The latter is usually substituted
by ZS1 − µ1 = 0 to improve scaling the residuals in the
Newton method. The search direction at iteration k of the
Newton method for solving (2)-(5) is determined by the
system of linear equationsH FT GT 0

F 0 0 0
G 0 0 I
0 0 Sk Zk




∆dk

∆yk

∆zk

∆sk

 = −


rkH
rkF
rkG
rkS

 , (6)

with the residuals

rkH = Hdk + FT yk +GT zk + h,

rkF = Fdk − f,
rkG = Gdk − g + sk,

rkS = ZkSk1− σµk1, where σ ∈ (0, 1).

The scalar σ in the last formula is called a centering
parameter. The value of µk = (zk)T sk/ng is related to
a duality gap; e.g., (Wright, 1997; Gondzio, 2012).

Linear system (6) must be solved online repeatedly for
k = 1, 2, . . . , kmax, where kmax is determined by a stopping
criterion, e.g., based on the 2-norm of the residual vector in
the right-hand side of (6). The matrix of linear system (6)
becomes increasingly ill-conditioned when some inequality
constraints become active. Nevertheless, the Newton IP
method performs well, if system (6) is solved by direct
methods, as discussed and justified in (Wright, 1998). We
note that the matrix of system (6) depends on the diagonal
matrices Sk and Zk in the last block row. Therefore, a
direct solver has to factorize the matrix of (6) at each
iteration k, which is the most time-consuming operation
of the IP method. Reducing costs of solving (6) is crucial.

3. PRELIMINARY REDUCTIONS BY BLOCK
GAUSSIAN ELIMINATIONS

The slack variable ∆sk is usually eliminated from (6),
which leads to the system of linear equationsH FT GT

F 0 0
G 0 −W k

∆dk

∆yk

∆zk

 = −

rkHrkF
rkW

 (7)

with the diagonal matrix W k = (Zk)−1Sk. The residual
rkG is substituted with the residual rkW = rkG − (Zk)−1rkS .
The eliminated variable ∆sk is recovered by the formula

∆sk = −(Zk)−1
(
rkS + Sk∆zk

)
.

In (Shahzad et al., 2010a,b, 2012), the block

[
H FT

F 0

]
is

assumed to be nonsingular and (7) is reduced to{
W k + [G 0]

[
H FT

F 0

]−1 [
GT

0

]}
∆zk =

rkM = rkW − [G 0]

[
H FT

F 0

]−1 [
rkH
rkF

]
.



The main advantage of such a reduction is that the matrix

M = [G 0]

[
H FT

F 0

]−1 [
GT

0

]
is computed only once for all

IP iterations. The SPD system (W k + M)∆zk = rkM is
then solved by preconditioned CG. However, cheap pre-
conditioning via the diagonal part of W k + M may be
not sufficient to provide fast convergence, while precon-
ditioning using the block diagonal or tridiagonal parts of
W k +M require expensive computations of the Cholesky
factorization at every iteration.

In contrast, we eliminate the variable ∆zk from linear
system (7). The resulting 2× 2 block linear system[

H̃k FT

F 0

] [
∆dk

∆yk

]
= −

[
rkE
rkF

]
(8)

has the residual rkE = rkH +GT (W k)−1rkW and the block

H̃k = H +GT (W k)−1G, (9)

which is symmetric positive semidefinite and block diago-
nal with the same sparsity pattern as the matrix H.

The eliminated variable ∆zk is recovered by the formula

∆zk = (W k)−1
(
G∆dk + rkW

)
. (10)

Systems in the form (8) are called saddle point problems.

Now that we have reduced (6) to (8), further reductions of
the linear system (8) with respect to the variables ∆dk or
∆yk are possible. In the next two sections, we describe two
popular alternative reductions, Schur complement- and
augmented Lagrangian-based, both supplemented with
regularization by adding the identity matrix multiplied by
a small parameter to some blocks.

4. INEXACT NEWTON METHOD BY THE SCHUR
COMPLEMENT APPROACH

The elimination of ∆dk is most popular in the primal-dual
IP method; see (Wright, 1997). If the matrix H̃k in (9)
is singular, it is usually replaced by a regularized SPD
block Ĥk = H̃k + εI, where ε is a small positive constant.
A justification of such a replacement is due to the fact
that the IP algorithm can use an inexact Newton method,
i.e., the system (6) may be solved only approximately; see,
e.g., (Nocedal and Wright, 2006).

In the following regularized analog of system (8),[
Ĥk FT

F 0

] [
∆dk

∆yk

]
= −

[
rkE
rkF

]
, (11)

the first equation of (11) is equivalent to

∆dk + (Ĥk)−1FT∆yk = −(Ĥk)−1rkE
and hence[

F (Ĥk)−1FT
]

∆yk = rkF − F (Ĥk)−1rkE . (12)

Equation (12), often called a normal equation, has the SPD

matrix F (Ĥk)−1FT , which is the Schur complement for
linear system (11). SPD linear system (12) can be solved
by preconditioned CG.

For nonlinear MPC, preconditioning is proposed, e.g., in
(Knyazev et al., 2015; Knyazev and Malyshev, 2015, 2016)
for the Newton method. Preconditioning in the IP context
is widely discussed; see, e.g., the survey in (Gondzio,

2012). Interesting relations between preconditioners for
normal (12) and indefinite (8) equations are discovered
in (Oliveira and Sorensen, 2005). We propose using the

Cholesky factorization of the matrix F (Ĥk−1)−1FT , i.e.
based on the values from the previous IP iteration k − 1,
as a preconditioner for CG in iteration k.

The arithmetic complexity of the Cholesky factorization
of the matrix F (Ĥk−1)−1FT is

N

(
19

3
n3x + 4n2xnu + 2nxn

2
u +

1

3
n3u

)
,

where only the leading terms are taken into account.

5. INEXACT NEWTON METHOD BY AUGMENTED
LAGRANGIAN REGULARIZATION

In this section, we investigate elimination of the variable
∆yk from system (8). Since the IP iterations allow the
inexact Newton method, we consider the following regu-
larized analog of system (8),[

H̃k FT

F −τI

] [
∆dk

∆yk

]
= −

[
rkE
rkF

]
, (13)

where the positive regularization parameter τ is suffi-
ciently small. Such a regularization is often used in it-
erative methods for numerical solution of saddle point
problems, especially for preconditioning, e.g., (Rees and
Greif, 2007; Benzi and Wathen, 2008), and is also con-
nected to the augmented Lagrangian method in numerical
optimization; see, e.g., (Nocedal and Wright, 2006).

Linear system (13) can be equivalently transformed to the
block triangular system[

H̃k +
1

τ
FTF 0

F −τI

] [
∆dk

∆yk

]
= −

[
rkE +

1

τ
FT rkF

rkF

]
. (14)

The solution of (14) is given by the formulas

∆dk = −(H̃k +
1

τ
FTF )−1(rkE +

1

τ
FT rkF ), (15)

∆yk =
1

τ
(rkF + F∆dk). (16)

The main computational burden in formulas (15)-(16) is

solving the system with the SPD matrix H̃k + 1
τ F

TF
in (15), which depends on k. Arithmetic complexity of the

Cholesky factorization for the matrix H̃k + 1
τ F

TF equals

N

(
7

3
n3x + 4n2xnu + 2nxn

2
u +

1

3
n3u

)
.

By analogy with the previous section, we propose evaluat-
ing (15) by preconditioned CG, where the preconditioner is
based on the Cholesky factorization of the system matrix
H̃k−1 + 1

τ F
TF from the previous IP iteration.

6. ANALYSIS OF REGULARIZATION IN INEXACT
NEWTON METHODS

Regularization of the saddle point matrices

[
H̃ FT

F 0

]
is

a well-known topic in optimization theory. For example,
(Vanderbei, 1995) investigates LDLT factorizations of the
following matrices, with both diagonal blocks regularized,[

H̃ + εI FT

F −τI

]
. (17)



(Saunders and Tomlin, 1996) consider the IP iterations,
where the inexact Newton method uses regularized linear
systems with the matrices of form (17). They give a
formulation of the initial QP problem, which is equivalent
to the regularized IP iteration, and present numerous tests
showing high efficiency of the regularization approach.

In this section, we contribute into theoretical analysis of
the regularizations given by equations (11) and (13).

Since the matrix H̃k is symmetric positive semidefinite, it
has its symmetric positive semidefinite square root H̃1/2.
The convex saddle point problem can be analyzed by
the aid of the generalized singular value decomposition
(GSVD) of the matrix pair H̃1/2 and F ; see, e.g., (Golub
and Van Loan, 2013). In our case, there exist orthogonal
matrices U1 and U2 and a nonsingular matrix V such that

H̃1/2 = U1

[
C
I

]
V T , F = U2 [S 0]V T ,

where the diagonal matrices

C =


c1
c2

. . .
cnf

 , S =


s1

s2
. . .

snf


have nonnegative diagonal elements ci and si such that
c2i + s2i = 1 for i = 1, . . . , nf . We consider below the regu-

larization H̃k + εV V T instead of our actual regularization
Ĥk = H̃k + εI for simplicity of presentation.

Theorem 1. The residual matrices

RS =

(
H̃k FT

F 0

)(
H̃k + εV V T FT

F 0

)−1

− I

and

RL =

(
H̃k FT

F 0

)(
H̃k FT

F −τI

)−1

− I

satisfy the bounds

‖RS‖ ≤ ε · cond(V ) max
(
1, ‖S−1‖

)
, (18)

‖RL‖ ≤ τ · cond(V )·
max

(
‖S(S2 + τC2)−1‖, ‖C2(S2 + τC2)−1‖

)
. (19)

Proof. Bounds (18) and (19) follow from the identities

RS =

(
V
U2

)0 −εS−1

− ε

1 + ε
I

0 0

(V U2

)−1

and

RL =

(
V
U2

)
· 0 0

0
τS(S2 + τC2)−1 −τC2(S2 + τC2)−1

(V
U2

)−1

.

2

Theorem 1 implies the following asymptotic results in
the situation where the smallest singular value σmin(S)
vanishes. The residuals for the Schur complement and
augmented Lagrangian regularizations are small if ε �
σmin(S) and τ � σmin(S)2. We thus conclude that the
Schur based regularization has much wider interval of ε,

where the regularization works, than the working interval
of τ in the augmented Lagrangian regularization.

7. CASE STUDY: CHAIN OF OSCILLATING MASSES

Let us present preliminary results from numerical exper-
iments for the classical linear control example of a chain
of n/2 unit masses, connected by springs of unit stiffness
without damping, where the ends are attached to fixed
walls. We analyze computational performance and numer-
ical robustness solving one QP at a particular sampling
instant—a representative case for performing full closed-
loop MPC simulations with cold initializations.

7.1 Problem Formulation and Algorithm Implementation

The continuous-time state-space system is discretized us-
ing a sample time ∆τ = 0.5 while keeping the m inputs
constant between the sampling instants. The discrete-time
dynamics are xi+1 = Aixi +Biui, where

Ai = exp (∆τAc) , Bi = A−1
c (Ai − In)

 0n/2
Im

0n/2−m

 ,
and

Ac =

[
0n/2 In/2
Tn/2 0n/2

]
, T =


−2 1
1 −2 1

. . .
. . .

. . .
1 −2

 .
The control inputs and states are subject to the inequality
constraints

−0.5 ≤ u(i) ≤ 0.5, i = 0, . . . , N − 1,

−3.5 ≤ x(i) ≤ 3.5, i = 1, . . . , N,

where x(·) denotes the position of the masses.

The cost matrices in the MPC formulation areRi = 10−6I,

Si = 0, and Qi = CTC =
[
In/2 0

]T [
In/2 0

]
. The initial

values of the state correspond to

−f0 = 3.5 [1 1 0 · · · 0]
T
.

Our numerical experiments in MATLAB are performed on
a test problem of the following size: we consider 6 masses
such that the state dimension equals n = 12, the number
of control inputs is m = 3 and the control horizon length
is N = 30. The number of inequality constraints at each
control interval is n+ 2m = 18.

Our MATLAB code implements the variant of the IP
method described in more detail by (Shahzad et al., 2012)
and uses the same algorithmic constants and stopping
criterion such as σ = 0.1, γ = 10−3, β = 2, ε = 10−7. We
report the results of solving QP from a cold start at the
initial time of the MPC controller, where the initial values
for x, u, y, z, and s are equal to 1. The IP method for
QP generally does not benefit much from warm starting,
especially for Sk and Zk, (Bartlett et al., 2000).

As a reference for further comparisons, we initially run the
IP method in which the linear system (8) is solved exactly
by the backslash operator in MATLAB. Our implementa-
tion returns a solution to the quadratic program after 20
IP iterations and with the 2-norm of the IP residual equal
to ‖[rTH , rTF , rTG, rTS ]T ‖2 = 9.84 · 10−8.



10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

 or 

10

20

30

40

50

# iterations IP-AL

# iterations IP-SC

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

 or 

10
-10

10
0

Residual IP-AL

Residual IP-SC

Fig. 1. The number of IP iterations and the 2-norm of the
residual for the solution with respect to ε or τ .

Our proposed implementation of the IP method uses direct
solvers based on the Schur complement (IP-SC) or the
augmented Lagrangian (IP-AL) regularization approach.
The IP-SC and IP-AL algorithms use regularization of
the problem with a small value of the parameter ε and τ ,
respectively. Smaller values of ε and τ give better approx-
imations to the KKT matrix, but too small values may
lead to prohibitively large condition numbers, for which
the IP method breaks down in our implementation using
double precision arithmetic. Choosing the regularization
parameter carefully becomes increasingly important when
performing computations with a lower precision, e.g., using
single precision arithmetic.

7.2 Numerical Stability and Parameter Sensitivity

Let us investigate the dependence of IP-SC on ε and IP-
AL on τ . For this purpose, we choose 100 values of ε
and τ uniformly distributed between 10−2 and 10−14 in
the logarithmic scale. Figure 1 displays the number of IP
iterations and the 2-norm of the IP residual with respect
to the value of the parameter ε = τ .

Our numerical results for ε or τ between approximately
10−13 and 10−3 almost coincide with those for the back-
slash operator, i.e., the number of IP iterations equals 20
and the 2-norm of the IP residual is very close to 10−7.
Both algorithms have similar behavior in Figure 1 for the
range 10−11–10−3 of values of ε and τ . The IP-SC method
is clearly preferential for practically important small val-
ues, below 10−11, consistent with our analysis in Section 6.
IP-SC and IP-AL are dramatically different for the larger
values of ε and τ within the interval [10−3.5, 10−2]. The
algorithm IP-SC continues executing well, while IP-AL has
very large residuals and breaks down.

7.3 Preconditioned CG within the IP Method

We report our preliminary results performing experiments
with preconditioned CG inside the IP method. The pre-
conditioner is applied at even IP iterations and uses the
Cholesky factorization from the previous odd IP iteration.
Odd IP iterations are resolved exactly, which technically

2 4 6 8 10 12 14 16 18 20 22

IP iteration number

0

2

4

6

8

10

12

14

16

18

20

#
 C

G
 i
te

ra
ti
o
n
s

IP-AL

IP-SC

Fig. 2. The number of preconditioned CG iterations in the
IP method for one MPC time step.

corresponds to one CG iteration. The dimension of the
state is nx = 240, corresponding to 120 masses, and the
number of the control inputs is nu = 3. We increase the
dimension of the state 20 times, compared to the previous
experiments, in order to make the test case representa-
tive for using CG, since running CG on small-size linear
systems may result in atypical convergence behavior.

Figure 2 shows that the number of CG iterations in
IP-AL with τ = 10−8 sometimes is growing with the
number of IP iterations. This behavior can be observed
also less strongly for the results of the IP-SC method in
Figure 2. We anticipate that tuning of IP-AL and IP-SC
parameters may further improve the performance of the
preconditioned CG method in both cases.

Practical embedded MPC implementations require solving
each QP within tight timing constraints. Therefore, it is
common to limit the maximum number of IP iterations
to a predetermined fixed value. Similarly, one may limit
the number of CG iterations, e.g., up to 10 iterations in
Figure 2, at the potential cost of an increase in the overall
number of IP iterations.

Finally, one can change the rule of when to construct a
new preconditioner, i.e. to compute the new structured
Cholesky factorization. Instead of constructing the new
preconditioner at each odd IP iteration, one could, e.g.,
apply the same preconditioner until the number of CG iter-
ations passes a threshold, further increasing performance.

8. CONCLUSION

We consider preconditioned CG for computation of the
search direction in the inexact Newton based IP method
to solve each QP in MPC. We propose preconditioning
by reusing matrix factors of direct solvers for the Schur
complement of the normal equations or for the augmented
Lagrangian regularization approach. We can apply precon-
ditioned CG, e.g., at every even iteration of the IP method
with the Cholesky factors computed in the previous odd
iteration. Such a variant could allow computing optimal
control solutions twice as fast compared to the traditional
use of the direct solvers at every IP/Newton iteration.



We have carried out numerical tests of the two proposed
regularizations for saddle point linear systems. On the
one hand, smaller computational complexity of the pre-
conditioners makes the augmented Lagrangian regular-
ization based approach somewhat preferential. On the
other hand, our perturbation analysis and numerical ex-
periments demonstrate that preconditioning based on the
more computationally expensive Schur complement is gen-
erally more robust to round-off errors, which is advanta-
geous for low-precision embedded MPC implementations.
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