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Abstract: Pseudospectral and collocation methods form a popular direct approach to solving
continuous-time optimal control problems. Lifted Newton-type algorithms have been proposed as
a computationally efficient way to implement online pseudospectral methods for nonlinear model
predictive control (NMPC). The present paper extends this work based on a rank-one Jacobian
update formula for the nonlinear system dynamics. In addition, we describe an algorithm
implementation where this rank-one Jacobian update can be used directly to compute a low-rank
update to the condensed Hessian, resulting in an overall quadratic computational complexity for
each iteration. A preliminary C code implementation is shown to allow considerable numerical
speedups for the optimal control case study of the nonlinear chain of masses.
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1. INTRODUCTION

There has been an increasing interest in using dynamic
optimization for real-time applications, i.e., in the context
of model predictive control (MPC) and moving horizon es-
timation (MHE) (Rawlings et al., 2017). For this purpose,
an optimal control problem (OCP) needs to be solved at
each time instant, under strict timing constraints. Tailored
continuation based online optimization algorithms have
been developed for real-time optimal control as discussed
in (Diehl et al., 2009). A popular example is the real-time
iteration (RTI) algorithm (Diehl et al., 2005), an online
variant of sequential quadratic programming (SQP) for
nonlinear MPC (NMPC) applications.

This article aims at solving the following OCP formulation
in continuous time

min
x(·), u(·)

∫ T

0

‖F (x(t), u(t))‖22 dt (1a)

s.t. 0 = x(0)− x̂0, (1b)

0 = f(ẋ(t), x(t), u(t)), ∀t ∈ [0, T ], (1c)

0 ≥ h(x(t), u(t)), ∀t ∈ [0, T ], (1d)

0 ≥ r(x(T )), (1e)

where x(t) ∈ Rnx denote the differential states and u(t) ∈
Rnu are the control inputs at time t. The objective in
Eq. (1a) consists of a nonlinear least squares type Lagrange
term. The problem depends on the parameter value x̂0

through the initial condition of Eq. (1b). The nonlinear
dynamics in Eq. (1c) are described by an implicit system
of ordinary differential equations (ODE), even though this
can generally be extended to differential-algebraic equa-
tions (DAE) of index 1. Respectively, Eqs. (1d) and (1e)
denote the path and terminal inequality constraints.

A popular direct technique for solving the optimal control
problem in (1) is based on orthogonal collocation, where

a distinction is made between the use of local and global
collocation polynomials (Rao, 2010). In local collocation,
also referred to as direct collocation (Betts, 2010; Biegler,
1984), one uses piecewise polynomials which are typically
of a fixed degree. Pseudospectral methods form an extreme
case of such an approach, by mainly increasing or decreas-
ing the degree of a global collocation polynomial. Given
a smooth and well-behaved optimal control solution, this
approximation is known to converge at an exponential
rate (Rao, 2010). Another reason for their popularity is
that any collocation method can readily be applied to
problems involving stiff or implicit systems of differential
equations. Orthogonal collocation methods are typically
used, based on the roots of Chebyshev or Legendre poly-
nomials. We focus on Legendre collocation methods, which
employ a quadrature rule based on either Gauss, Radau
or Lobatto points (Hairer and Wanner, 1991).

It has been shown how collocation schemes can be
used within a lifted Newton-type implementation, which
bridges the gap between direct collocation and direct
multiple shooting (Bock and Plitt, 1984) as discussed
in (Quirynen et al., 2017). Recently, a lifted Newton-type
optimization algorithm for pseudospectral based NMPC
has been proposed in (Quirynen and Diehl, 2018), based
on a tailored Jacobian approximation technique and the
inexact Newton method with iterated sensitivities (INIS)
from (Quirynen et al., 2018a). In addition, adjoint based
quasi-Newton Jacobian update schemes for constrained
optimization (Diehl et al., 2010; Griewank and Walther,
2002) have effectively been applied to the lifted collocation
algorithm in (Hespanhol and Quirynen, 2018).

The present paper extends both the work in (Quiry-
nen and Diehl, 2018) and in (Hespanhol and Quirynen,
2018) by proposing a tailored quasi-Newton type Jacobian
and Hessian update scheme with numerical condensing



and expansion of the collocation variables, resulting in
a pseudospectral based NMPC algorithm with an overall
quadratic computational complexity.

The paper is organized as follows. Section 2 summarizes
collocation schemes and their use in direct optimal control
methods. Section 3 introduces the lifted Newton imple-
mentation of a pseudospectral method with quasi-Newton
Jacobian updates. The corresponding low-rank Hessian
update schemes are presented in Section 4. The proposed
algorithms are illustrated based on numerical results of
NMPC for the chain of masses in Section 5.

2. DIRECT OPTIMAL CONTROL METHODS

Direct optimal control (Bock and Plitt, 1984) tackles the
continuous time OCP (1) by forming a discrete time
approximation and solving the resulting NLP.

2.1 Collocation based Numerical Simulation

In order to arrive at a compact notation, we consider a
collocation polynomial of degreeN for the parametrization
of both the state and control profile. Let us define the time
transformation τ := t

T , such that τ ∈ [0, 1] for t ∈ [0, T ].
The polynomial approximation for the differential state
can then be obtained as follows

px(c) = x0 + T

N∑
i=1

ki

∫ c

0

`i(τ) dτ, (2)

where `i(τ) denote the Lagrange interpolating polyno-
mials, given a set of collocation nodes 0 ≤ ci ≤ 1 for
i = 1, . . . , N and the corresponding stage values ki and
ui, respectively, for the state derivatives and the con-
trol inputs. Note that the parametrized control profile

reads as pu(c) =
∑N
i=1 `i(c)ui such that pu(ci) = ui, for

i = 1, . . . , N . The collocation variables ki are defined by
imposing the system dynamics in Eq. (1c):

G(x0, U,K) =



f(k1, x0 + T

N∑
j=1

a1jkj , u1)

...

f(kN , x0 + T

N∑
j=1

aNjkj , uN )


= 0, (3)

which denotes the nonlinear system of collocation equa-
tions and where aij =

∫ ci
0
`j(τ) dτ is defined. The numeri-

cal simulation result at the end of the interval reads as

x(T ) ≈ xT (K) = x0 + T

N∑
i=1

biki = px(1), (4)

where bi =
∫ 1

0
`i(τ) dτ . All collocation schemes belong to

the family of implicit Runge-Kutta (IRK) methods, which
are often defined based on their Butcher tableau.

2.2 Pseudospectral Optimal Control

Based on the same Gaussian quadrature rule as used for
the collocation scheme in (4), let us define a discretization
for the least squares type objective in (1a):∫ T

0

‖F (x(t), u(t))‖22 ≈ T
N∑
i=1

bi‖F (xi, ui)‖22, (5)

where xi(K) = x0 +T
∑N
j=1 aijkj . Direct transcription, of

which pseudospectral methods form a special subclass, is
then based on including the additional variables and equa-
tions (3) directly into the discrete time OCP formulation.
Based on the discretized cost and by imposing the path
constraints in (1d) at the collocation nodes, the resulting
dense nonlinear program (NLP) reads as

min
x0,U,K

T

N∑
i=1

bi‖F (xi(K), ui)‖22 (6a)

s.t. 0 = x0 − x̂0, (6b)

0 = f(ki, xi(K), ui), i = 1, . . . , N, (6c)

0 ≥ h(xi(K), ui), i = 1, . . . , N, (6d)

0 ≥ r(xT (K)), (6e)

where the stage values U = [u>1 , . . . , u
>
N ]> ∈ RNnu and

K = [k>1 , . . . , k
>
N ]> ∈ RNnx are defined.

2.3 Gauss-Newton based SQP Method

An adjoint based Gauss-Newton SQP algorithm for the
NLP in (6) relies on the solution of a quadratic pro-
gram (QP) approximation in each iteration:

min
∆U,∆K

T

N∑
i=1

bi‖Fi + Jxi ∆xi + Jui ∆ui‖22 (7a)

+ ωo>
[(

∂G

∂U
−D

) (
∂G

∂K
− C

)][
∆U
∆K

]
(7b)

s.t. 0 = g +D∆U + C∆K, (7c)

0 ≥ a+Au∆U +Ak∆K, (7d)

where Fi := F (x̂0+T
∑N
j=1 aijk

o
j , u

o
i ), ∆xi = T

∑N
j=1 aij∆kj

and g := G(x̂0, U
o,Ko) are defined. Note that the initial

state variable x0 = x̂0 has been eliminated to arrive
at a more compact notation. The values Uo,Ko denote
the linearization point and ωo denotes the values for the
Lagrange multipliers ω ∈ RNnx corresponding to the collo-
cation equations in (6c), based on the previous SQP itera-
tion. The Jacobian matrices read Jxi = ∂Fi

∂xi
and Jui = ∂Fi

∂ui

for the objective. The constraint Jacobian approximations
D ≈ ∂G

∂U (·) and C ≈ ∂G
∂K (·) will be discussed further in

Section 3. Given these constraint Jacobian approxima-
tions, the adjoint gradient correction for the inexact SQP
method (Wirsching et al., 2006) is defined in Eq. (7b). The
inequality constraints in (7d) denote an exact linearization
of the path and terminal constraints in (6d) and (6e),
which is typically relatively cheap to evaluate.

In embedded NMPC applications, one needs to solve the
nonlinear OCP of Eq. (6) at each sampling instant under
strict timing constraints. For this purpose, we instead use
the real-time iteration (RTI) scheme (Diehl et al., 2009,
2005) for nonlinear MPC, which is a continuation based
variant of a fixed-step SQP method. More specifically, by
warm-starting the algorithm based on the (approximate)
solution to the OCP at a previous time instant, only one
QP subproblem of the form in (7) needs to be solved at
each time step. The general idea is that one prefers to
obtain new measurement information from the system,
rather than iterating until convergence for an optimization
problem that is becoming outdated.



3. LIFTED NEWTON-TYPE OPTIMIZATION WITH
RANK-ONE JACOBIAN UPDATES

Let us describe the proposed lifted Newton-type optimiza-
tion algorithm for pseudospectral based NMPC, using a
quasi-Newton type rank-one Jacobian update formula.

3.1 Lifted Newton-Type Optimization

An efficient way to solve the QP subproblem in (7) is based
on the combination of condensing and expansion. This
corresponds to a numerical elimination of the collocation
variables, by defining the following quantities

∆K̃ = −C−1g and E = −C−1D, (8)

such that ∆K = ∆K̃+E∆U . Based on the inexact Newton
step in (8), the subproblem can be reformulated as the
following dense QP

min
∆U

1

2
∆U>Hc ∆U + h>c ∆U (9a)

s.t. 0 ≥ ac +Ac∆U, (9b)

where the vectors ac = a+Ak∆K̃ and hc =
[
1 E>

]
h are

defined and the condensed matrices read as Ac = Au+AkE

and Hc =
[
1 E>

]
H

[
1
E

]
. The condensed Gauss-Newton

based objective is defined, using the Hessian matrix H and
gradient vector h for the objective function in Eq. (7a)
including the gradient correction in Eq. (7b).

Based on the solution of the condensed QP subproblem
in (9), the inexact Newton (IN) method requires the
additional computation of the Lagrange multipliers ω
corresponding to the collocation equations in (6c). We use
λ to denote the Lagrange multipliers for the inequality
constraints in (9b) or (7d) and λo, λ+ denote, respectively,
the values in the previous and current SQP iteration.
Based on the optimality conditions for the QP in Eq. (7),
using the Jacobian approximation C ≈ ∂G

∂K (·), this results
in the Newton-type update for the ω multipliers:

∆ω = −C−>
(
hk +

∂G

∂K

>
ωo +A>k λ

+

)
, (10)

where hk ∈ RNnx denotes the gradient of the QP objective
term in (7a) with respect to the collocation variables. The
updated multiplier values read as ω+ = ωo + ∆ω and the
collocation variables are updated as follows K+ = Ko +
∆K̃ + E∆U , given the multiplier values λ+ and solution
vector ∆U? from solving the dense QP (9).

3.2 Quasi-Newton Jacobian Update Formula

Unlike standard Broyden type methods (Broyden, 1967),
a two-sided rank-one (TR1) update formula has been
proposed in (Diehl et al., 2010; Griewank and Walther,
2002) as a generalization of the symmetric rank-one (SR1)
update scheme in (Conn et al., 1991) for constrained op-
timization. The TR1 formula enjoys several benefits over
classical methods, such as heredity and linear transforma-
tion invariance (Griewank and Walther, 2002).

Let us apply the TR1 update formula to the Jacobian

approximation [D C] ≈ ∂G(·)
∂(U,K) . The key ingredient of

the TR1 method is that it aims to simultaneously satisfy
the direct secant condition

[
D+ C+

]
s = y and the ad-

joint or transposed secant condition σ>
[
D+ C+

]
= µ>,

where we define the adjoint µ> = σ> ∂G
∂(U,K) (x̂0, U

+,K+),

given σ = ω+ − ωo, the difference in function evaluations

y = G(x̂0, U
+,K+)−G(x̂0, U

o,Ko) and s :=

[
U+ − Uo

K+ −Ko

]
.

Note that the gradient σ> ∂G
∂(U,K) (·) can be computed effi-

ciently using the backward mode of algorithmic differen-
tiation (AD) (Griewank, 2000). The TR1 based Jacobian
update formula then reads as

[D+ C+] = [Do Co]+α (y − [Do Co]s)
(
µ> − σ>[Do Co]

)
,

(11)
where the scalar α can be defined for different variants of
the update scheme. Aside from the case where the function
G(·) is affine, the two secant conditions are not consis-
tent with each other and they can therefore not both be
satisfied by the updated matrix

[
D+ C+

]
. In the adjoint

variant of the TR1 update, the value αA = 1/(σ>y −
σ>[Do Co]s) is defined such that the adjoint secant condi-
tion is satisfied exactly and the forward condition holds up
to some accuracy. Similarly, the forward variant is based
on αF = 1/(µ>s − σ>[Do Co]s) and instead satisfies the
direct secant condition exactly.

3.3 Real-Time Iteration Scheme for NMPC

In order to use the TR1 Jacobian update formula (11)
within a lifted Newton-type optimization algorithm, one
needs to be able to efficiently form the condensed QP
in (9). For this purpose, the work in (Hespanhol and
Quirynen, 2018) described how to directly update the
condensed matrix E = −C−1D in Eq. (8) from one SQP
iteration to the next. Let us write the rank-one update
formula from Eq. (11) as follows

D+ = Do + αuv>D and C+ = Co + αuv>C , (12)

where u = y − [Do Co]s and [v>D v>C ] = µ> − σ>[Do Co].
The Sherman-Morrison formula can be used to update the

matrix inverse approximation Co−1 ≈ ∂G
∂K

−1
as

C+−1

= Co−1

− αβ u1v
>
CC

o−1

, (13)

where u1 = Co−1

u and β = 1
1+αv>

C
u1

. It can be shown that

the rank-one update formula then reads as

E+ = −C+−1

D+ = Eo + u1v
>
1 , (14)

where v>1 = αβv>C (Eo + αu1v
>
D)− αv>D .

This rank-one update for the matrix E+ = −C+−1

D+ in
Eq. (14) provides an efficient manner to directly compute
the matrices in the condensed QP (9), without the need
for a matrix factorization, matrix inversion and without
any matrix-matrix multiplications. Instead, the proposed
algorithm merely requires matrix-vector multiplications
and outer products, resulting in an overall quadratic
O
(
N2m2

)
instead of cubicO

(
N3m3

)
computational com-

plexity, where m = (nx + nu) denotes the number of
state and control variables. The resulting implementation
of the RTI scheme with TR1 based Jacobian updates for
pseudospectral based NMPC is presented in Algorithm 1.

Remark 1. The new input value can be applied to the
controlled system in step 4 of Alg. 1. A pseudospectral



Algorithm 1 Pseudospectral Method with TR1 Jacobian
Updates within a Real-Time Iteration Scheme for NMPC.

Input: Uo, Ko, λo, ωo, Co, Do, Co−1

and Eo.
Problem linearization

1: Formulate the dense QP in (9) with Ac = Au +AkE
o

and condensed Hessian Hc = Eo>HEo.

Computation of step direction
2: Obtain current state estimate x̂0. . from system
3: Evaluate the vectors ac, hc and solve the QP (9):
U+ ← Uo + ∆U? and λ+ ← λ?.

4: Apply new control input value. . to system

TR1 Jacobian update

5: K+ ← Ko + ∆K̃ + Eo∆U?,

6: ω+ ← ωo − C−>
(
hk + ∂G

∂K

>
ωo +A>k λ

+
)
,

7: D+ ← Do + αuv>D and C+ ← Co + αuv>C ,

8: C+−1← Co−1 − αβ u1v
>
CC

o−1

and E+ ← Eo + u1v
>
1 .

Output: U+, K+, λ+, ω+, C+, D+, C+−1

and E+.

method provides a continuous time control profile that is

represented by the polynomial pu(c) =
∑N
i=1 `i(c)ui. This

continuous time trajectory can more or less accurately
be applied to the system, depending on the particular
actuation in the control application and its sampling
frequency. For simplicity, let us further assume a piecewise
constant actuation, where we use the value pu(Ts

T ) of
the collocation polynomial in which Ts denotes the MPC
sampling time and T the control horizon length.

4. QUASI-NEWTON TYPE UPDATE SCHEME FOR
THE CONDENSED HESSIAN

The TR1 Jacobian update scheme has a quadratic compu-
tational complexity of O

(
N2m2

)
. Constructing the con-

densed Hessian contribution Hc = E>HE and comput-
ing a matrix factorization or inverse however requires a
cubic computational complexity of O

(
N3m3

)
in general.

Given the condensed Hessian and its inverse or matrix
decomposition, the runtime computational cost for solving
the dense QP (9) can be made of quadratic complexity
O
(
N2m2

)
instead, e.g., using a dense variant of the active-

set method from (Quirynen et al., 2018b). Let us focus
on how to avoid the operations with cubic complexity in
case of a constant Hessian approximation or when using a
quasi-Newton type update scheme.

4.1 Constant Hessian Approximation: Gauss-Newton

Note that the Gauss-Newton type Hessian approximation
in Eq. (7a) corresponds to a constant matrix H, in case of
a quadratic objective (6a) in the original NLP formulation.
This is rather common in practical applications of MPC
when tracking a reference for a linear output function
of the state and control variables. Let us look at the
condensed Hessian Hc, given the constant matrix H and
a rank-one Jacobian update as in (14).

Lemma 2. (SR2). Given a rank-one update to the con-
densed Jacobian E+ = Eo + u1v

>
1 , the condensed Hessian

matrix Hc = E>HE can be computed using the following
symmetric rank-two update:

H+
c = Ho

c + ũ1v
>
1 + v1

(
ũ>1 + β1 v

>
1

)
. (15)

Proof. This follows directly from the expression for the
updated condensed Hessian matrix

H+
c = E+>HE+ =

(
Eo + u1v

>
1

)>
H
(
Eo + u1v

>
1

)
= Ho

c + Eo>Hu1v
>
1 + v1u

>
1 HE

o + v1u
>
1 Hu1v

>
1

= Ho
c + ũ1v

>
1 + v1

(
ũ>1 + β1 v

>
1

)
,

(16)

where β1 := u>1 Hu1 and ũ1 := Eo>Hu1, such that the
symmetric update is readily identified to be of rank 2. 2

Note that the symmetric rank-two (SR2) update (15) can
alternatively be represented as follows:

H+
c = Ho

c +

(
1

β̃1

ũ1 + β̃1v1

)(
1

β̃1

ũ1 + β̃1v1

)>
− 1

β1
ũ1ũ
>
1 ,

(17)

where β̃1 :=
√
β1 given that β1 = u>1 Hu1 > 0. This

means that the condensed Hessian matrix can be updated,
from one SQP iteration to the next, using the SR2 up-
date or using two consecutive symmetric rank-one updates
as in Eq. (17). Similarly, the Cholesky factorization, or
the matrix inverse using the Sherman-Morrison-Woodbury
formula, can be updated directly for the condensed Hes-
sian. The resulting algorithm implementation, with overall
quadratic computational complexity based on the TR1
and SR2 update formulas, for pseudospectral based non-
linear MPC is presented in Algorithm 2.

4.2 Quasi-Newton Type Hessian Approximation

We can construct a similar update formula for the con-
densed Hessian in case that a quasi-Newton type method
is used instead of a constant Hessian approximation. For
simplicity, let us consider the symmetric rank-one (SR1)
update formula (Conn et al., 1991) to approximate the
Hessian of the Lagrangian. This results in the STR1 up-
date procedure as described in (Diehl et al., 2010).

Lemma 3. (SR3). Given a rank-one update to the con-
densed Jacobian E+ = Eo + u1v

>
1 and a symmetric rank-

one Hessian update H+ = Ho + α2 u2u
>
2 , the condensed

Hessian matrix Hc = E>HE can be computed using the
symmetric rank-three update:

H+
c = Ho

c + α2 ũ2ũ
>
2 + v1

(
ũ>1 + β3 ũ

>
2 + β4 v

>
1

)
+ (ũ1 + β3 ũ2 + β4 v1) v>1 .

(18)

Proof. It follows from the expression for the updated
condensed Hessian matrix

H+
c = E+>H+E+

=
(
Eo + u1v

>
1

)> (
Ho + α2 u2u

>
2

) (
Eo + u1v

>
1

)
= Ho

c + ũ1v
>
1 + v1ũ

>
1 + β1 v1v

>
1 + α2 ũ2ũ

>
2

+ α2 β2 ũ2v
>
1 + α2 β2 v1ũ

>
2 + α2 β

2
2 v1v

>
1 ,

(19)

where β1 := u>1 Hu1, β2 := u>2 u1, ũ1 := Eo>Hu1 and

ũ2 := Eo>u2. This can be further simplified to

H+
c = Ho

c + α2 ũ2ũ
>
2 + v1

(
ũ>1 + β3 ũ

>
2 + β4 v

>
1

)
+ (ũ1 + β3 ũ2 + β4 v1) v>1 ,

(20)

where β3 := α2 β2 and β4 :=
β1+α2 β

2
2

2 , such that the
symmetric update is readily identified to be of rank 3. 2



Algorithm 2 Pseudospectral Method with TR1 Jacobian
and SR2/SR3 condensed Hessian Updates for NMPC.

Input: Uo, Ko, λo, ωo, Co, Do, Co−1

, Eo, Ho and Ho
c .

Problem linearization
1: Formulate the dense QP in (9) with Ac and Ho

c .

2: Computation of step direction: line 2-4 in Alg. 1

3: TR1 Jacobian update: line 5-8 in Alg. 1

Option 1: SR2 condensed Hessian update
4: H+ ← Ho.
5: H+

c ← Ho
c + ũ1v

>
1 + v1

(
ũ>1 + β1 v

>
1

)
.

Option 2: SR3 condensed Hessian update
6: H+ ← Ho + α2 u2u

>
2

7: H+
c ← Ho

c + α2 ũ2ũ
>
2 + v1

(
ũ>1 + β3 ũ

>
2 + β4 v

>
1

)
+ (ũ1 + β3 ũ2 + β4 v1) v>1 .

Output: U+, K+, λ+, ω+, C+, D+, C+−1

, E+, H+, H+
c .

In a similar manner as for the symmetric rank-two update
from Lemma 2, an alternative representation of the sym-
metric rank-three (SR3) formula (18) can be constructed
as a sequence of three consecutive symmetric rank-one
updates. In addition, the Cholesky factorization, or the
matrix inverse using the Sherman-Morrison-Woodbury
formula, can be computed directly for the condensed Hes-
sian based on this update scheme. Algorithm 2 describes
an implementation of pseudospectral based NMPC, using
the TR1 and SR3 update formulas, respectively, for the
condensed Jacobian and Hessian approximations.

5. NMPC CASE STUDY: CHAIN OF MASSES

We consider the chain mass problem as a benchmark
example for nonlinear MPC, which allows one to intu-
itively change the number of masses and therefore the state
dimension in the problem. The control task is to return a
chain of nm masses connected with springs to its steady
state, starting from a perturbed initial configuration. The
mass at one end is fixed, while the control input u ∈ R3

to the system is the direct force applied to the mass at
the other end of the chain. This dynamic system can be
described by a state vector x ∈ R6(nm−1), which is governed
by the set of nonlinear differential equations in (Quirynen
et al., 2017; Wirsching et al., 2006).

Our aim is to validate the computational performance for
Algorithm 1 and 2, using a lifted Newton-type optimiza-
tion method with TR1 based Jacobian and correspond-
ing condensed Hessian updates, in comparison with the
standard RTI scheme based on exact Jacobian evaluations.
The preliminary software implementation of the presented
algorithms consists of C code for the TR1 and SR2 up-
date formulas, in combination with a dense variant of the
PRESAS active-set QP solver (Quirynen et al., 2018b) and
code generated evaluations of the system dynamics and
the adjoint derivatives using CasADi (Andersson, 2013). In
addition, we include a comparison with the direct colloca-
tion based RTI scheme with block-TR1 Jacobian updates
as presented in (Hespanhol and Quirynen, 2018).

5.1 Pseudospectral versus Direct Collocation Methods

The condensing procedure in a classical lifted Newton
optimization algorithm for pseudospectral based optimal
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Fig. 1. Average computation time per RTI step and overall
closed-loop cost of NMPC, for a varying number Ns of
shooting intervals in direct collocation (with N = 2)
or a varying number N of collocation nodes in the
pseudospectral method, respectively.

control requires a factorization of the exact Jacobian ma-
trix at each iteration, resulting in a computational com-
plexity of O

(
N3m3

)
. The proposed TR1 Jacobian update

scheme with numerical condensing in Algorithm 1 avoids
all cubic operations for the Jacobian approximation and
Algorithm 2 additionally avoids such costly operations for
the condensed Hessian, resulting in an overall computa-
tional complexity of O

(
N2m2

)
. The block-TR1 Jacobian

update formula itself has a computational complexity of
O
(
Nsm

2
)

for direct collocation (Hespanhol and Quiry-
nen, 2018), where Ns denotes the number of collocation
intervals. However, the cost of solving the block-structured
QP subproblems is typically O

(
Nsm

3
)
. For example, the

sparsity exploiting PRESAS active-set QP solver (Quirynen
et al., 2018b) enjoys a setup computational complexity of
O
(
Nsm

3
)

and a per iteration complexity of O
(
Nsm

2
)
.

On the other hand, a pseudospectral method converges
exponentially to a smooth continuous time optimal control
solution (Rao, 2010) for an increasing degree N of the
collocation polynomial. Alternatively, a piecewise constant
control parametrization is typically used in combination
with direct multiple shooting (Bock and Plitt, 1984) or
direct collocation (Biegler, 1984). Figure 1 shows the re-
sulting trade-off between closed-loop control performance
and computational cost, using an increasing number of
collocation intervals Ns (direct collocation) or an increas-
ing polynomial degree N (pseudospectral), for NMPC on
the chain with nm = 3 or 5 masses. The results for direct
collocation are based on a Gauss-Legendre (GL) method
with N = 2 nodes for each interval. Figure 1 shows the
performance for both the exact Jacobian and the TR1
based Newton-type optimization algorithms. Note that the
black dashed lines illustrate, respectively, a computational
cost that increases with a 2nd or 3rd order of complexity
with the number N of collocation nodes.

Note that an alternative NMPC implementation could be
based on a N -degree polynomial, for both the state and
control parametrization, over each of the Ns collocation
intervals in order to combine the advantages from both
approaches for optimal control, such as in a spectral
patching (Fahroo and Ross, 2000) or in a pseudospectral
knotting method (Ross and Fahroo, 2004).



Table 1. Average timing results (in ms) of
pseudospectral based NMPC for the chain of
masses using N = 8 Gauss collocation nodes.

Gauss-Newton with TR1
nm = 3, nx = 12 Exact Alg. 1 (TR1) Alg. 2 (TR1-SR2)

Linearization 0.474 0.093 0.084
Dense QP solution 0.020 0.021 0.016

Total RTI step 0.539 0.161 0.124

nm = 5, nx = 24 Exact Alg. 1 (TR1) Alg. 2 (TR1-SR2)

Linearization 4.856 0.295 0.296
Dense QP solution 0.023 0.042 0.019

Total RTI step 4.961 0.419 0.355

nm = 7, nx = 36 Exact Alg. 1 (TR1) Alg. 2 (TR1-SR2)

Linearization 15.403 0.628 0.609
Dense QP solution 0.024 0.024 0.018

Total RTI step 15.560 0.782 0.682

5.2 Detailed Computational Performance

Table 1 shows the average computation times of the closed-
loop NMPC simulation results using N = 8 Gauss collo-
cation nodes for the chain of nm = 3, 5 and 7 masses. The
table shows the detailed timing results for pseudospectral
based NMPC, using either the exact Jacobian or the TR1
based Jacobian update scheme. It can be observed that
the computation time for the problem linearization and
condensing procedure can be reduced significantly based
on the TR1 method, resulting in a speedup of about factor
4, 10 and 20, respectively, for the chain of nm = 3, 5 and
7 masses. On the other hand, the closed-loop NMPC per-
formance is indistinguishable for the exact Jacobian and
the TR1 based RTI scheme as shown earlier in Figure 1.
Note that the additional speedup of using Algorithm 2
instead of 1 is small for this particular case study, given
the small number of control inputs nu = 3 and therefore
the relatively small dimension of the dense QP in (9),
compared to the amount of state variables nx = 6(nm−1).

6. CONCLUSIONS

This paper proposed a lifted Newton-type optimization
method for pseudospectral based nonlinear MPC (NMPC),
using a rank-one Jacobian update formula in combina-
tion with numerical condensing and expansion of the col-
location variables. We showed how the condensed Hes-
sian can be updated directly, using either a symmetric
rank-two or a rank-three update, in case that a quasi-
Newton type method is used to approximate the Hessian
of the Lagrangian. The proposed pseudospectral optimiza-
tion algorithm has a quadratic computational complex-
ity of O

(
N2m2

)
, compared to the typical complexity

of O
(
Nm3

)
for sparsity exploiting algorithms based on

direct collocation. A preliminary C code implementation
has shown to allow considerable numerical speedups for
the NMPC case study of the nonlinear chain of masses.
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