
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

An Alternating Direction Method of Multipliers Algorithm
for Symmetric MPC

Danielson, C.

TR2018-118 August 25, 2018

Abstract
This paper presents an alternating-direction method of multipliers (admm) algorithm for solv-
ing large-scale symmetric model predictive control (mpc) problems in real-time on embedded
computers with limited computational and memory resources. Symmetry was used to find
transformations of the states, inputs, and constraints of the mpc problem that decompose
the dynamics and cost. We prove a key-property of the symmetric group that allows us to
efficiently transform between the original and decomposed symmetric domains. This allows
us to solve different sub-problems of a baseline admm algorithm in different domains where
the computations are less expensive. This reduces the computational cost of each iteration
from quadratic in problem size to linear. In addition, we show that our admm algorithm
requires a constant amount of memory regardless of the problem size. We demonstrate our
algorithm for a battery balancing problem which results in a reduction of computation-times
from hours to seconds and a reduction in memory from hundreds of megabytes to tens of
kilobytes.

IFAC Nonlinear Model Predictive Control Conference (NMPC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2018
201 Broadway, Cambridge, Massachusetts 02139

An Alternating Direction Method of Multipliers

Algorithm for Symmetric MPC

Claus Danielson ∗

∗ Mitsubishi Electric Research Laboratories, Cambridge MA

Abstract: This paper presents an alternating-direction method of multipliers (admm) algorithm for solving
large-scale symmetric model predictive control (mpc) problems in real-time on embedded computers with limited
computational and memory resources. Symmetry was used to find transformations of the states, inputs, and
constraints of the mpc problem that decompose the dynamics and cost. We prove a key-property of the symmetric
group that allows us to efficiently transform between the original and decomposed symmetric domains. This allows
us to solve different sub-problems of a baseline admm algorithm in different domains where the computations are
less expensive. This reduces the computational cost of each iteration from quadratic in problem size to linear. In
addition, we show that our admm algorithm requires a constant amount of memory regardless of the problem size.
We demonstrate our algorithm for a battery balancing problem which results in a reduction of computation-times
from hours to seconds and a reduction in memory from hundreds of megabytes to tens of kilobytes.

1. INTRODUCTION

Model predictive control for large-scale systems is inherently com-
putationally challenging since it requires solving large optimization
problems in real-time on embedded hardware with limit computa-
tional resources. However, large-scale man-made systems tend to
exhibit substantial repetition of mass-produced components that are
organized in regular patterns. For instance, a battery pack in an
electric vehicle will have hundreds of nearly identical cells wired
together in a regular pattern (see Danielson et al. (2012, 2013);
Preindl et al. (2013)). Likewise, a heating, ventilation, and air-
conditioning (hvac) system for a large building will typically use the
same heat-exchangers, fans, and thermocouples in each thermal zone
(see Burns et al. (2018); Danielson (2017)). This organized repetition
of components leads to patterns in the resulting control problem
called symmetries. Intuitively, it is obvious that these symmetries
can be exploited to reduce the computational burden of mpc for
large-scale systems. However, it is not obvious how to exploit these
symmetries, especially when the patterns are obscured by high-
dimensional and highly-coupled dynamics, costs, and constraints.

This paper presents an admm algorithm that exploits symmetry
to reduce the computational and memory burden of solving large-
scale mpc problems. We use symmetry to find transformations of
the inputs, outputs, and states that decompose the dynamics and
cost of the mpc problem. We use this symmetric decomposition to
simplify two of the sub-problems solved in each iteration of a baseline
admm algorithm. The third sub-problem is solved in the original
input, output, and state domain. We exploit a key-property of the
symmetric group that allows us to perform these transformations
with linear complexity. As a result, we are able to show that the
computational cost of each iteration of our admm algorithm grows
linearly with problem size (number of states, inputs, constraints)
rather than typical quadratic or cubic complexity growth. Further-
more, since the symmetric transformations are orthogonal they do
not adversely affect the convergence rate of the baseline algorithm,
resulting in an overall reduction in computational complexity. The
memory benefits of our algorithm are even more impressive. We show
that the amount of read-only memory required by the algorithm is
constant regardless of the problem size. This is a manifestation of
our intuition that adding more identical components to a system
should not increase the amount of memory needed to describe the
system nor the resulting mpc problem. For example, adding another
identical cell to a battery pack should not increase the amount of
memory needed to describe or control the battery pack.

Symmetry has been exploited for large-scale optimization. For in-
stance, Boyd et al. (2009); Margot (2010); Bodi et al. (2011) ex-

ploited the fact that the optimal solution of a symmetric convex
optimization problem lies in a lower-dimensional sub-space called
the fixed-space. Thus, symmetry can be used to reduce a high-
dimensional optimization problem into a low-dimensional problem.
Unfortunately, those papers used a stronger definition of symmetry
that is extremely restrictive for control applications. In the context of
control theory, their definition of symmetry requires that the states,
references, and disturbances are symmetric, as well as the dynamics,
cost, and constraints. For example, for an hvac system this requires
that all thermal-zones are at the same temperature, have the same
temperature set-points, and are subject to the same heat-loads. In
contrast, this paper uses a weaker definition of symmetry that does
not restrict the states, references, and disturbances of the system.
Instead, the symmetries appear in the system behavior. As shown in
Chuang et al. (2015); Danielson and Bauer (2015), this symmetric
behavior need only approximate e.g. in terms of the system’s H∞
norm.

Symmetry has also been applied to control theory, see Cogill et al.
(2008); Lin et al. (2012); Danielson and Borrelli (2014); Chuang et al.
(2015); Danielson and Di Cairano (2015). Most relevant to this paper,
are the works Danielson and Borrelli (2012, 2015b,a) on exploiting
symmetry for explicit mpc. In those papers, symmetry was used to
discard symmetrically redundant portions of the optimal control-
law resulting in an exponential decrease in the memory required
to store the piecewise affine on polyhedra controller. This paper
exploits the same symmetric structure, but for implicit rather than
explicit mpc. Furthermore, this paper uses a different mathematical
framework than the previous work; linear representations rather than
orbits of finite groups. However, we concentrate on the properties
and advantages of a specific symmetry group in order to avoid
becoming lost in the abstract algebra of group theory. Details on
representation theory can be found in the famous text Serre (1977)
and its application to the decomposition of dynamic systems can be
found in Cogill et al. (2008); Danielson and Bauer (2015).

This paper is organized as follows. In Section 2 we describe the
baseline admm algorithm on which our symmetric algorithm is based.
In Section 3 we formally define symmetry and describe the symmetric
decomposition. In Section 4 we present our symmetry exploiting
admm algorithm and study its computational and memory benefits.
Finally, in Section 5 we apply our admm algorithm to the problem
of balancing cells in a battery pack. For space reasons proof are
omitted. All proofs can be found in the extended version of this
paper Danielson (2018).

Notation and Definitions We will use the short-hand Θx,u,y ∈
Rnx,u,y×nx,u,y to denote a triple of transformations acting on the
states Θx ∈ Rnx×nx , inputs Θu ∈ Rnu×nu , and outputs Θy ∈
Rny×ny of a system. The notation [x]i will be used to denote the
i-th component of a vector x ∈ Rn. The Kronecker product A ⊗ B
of matrices A ∈ Rn1×m1 and B ∈ Rn2×m2 is defined as

A⊗B =

[
[A]11B ... [A]1m1

B

...
...

[A]n11B ... [A]n1m1
B

]
∈ Rn1n2×m1m2 .

The singular value decomposition (svd) decomposes a matrix M =
UΣV ∗ ∈ Rn×m into orthogonal matrices U ∈ Rn×n and V ∈ Rm×m

and a diagonal matrix Σ ∈ Rn×m. The column-vectors of V and
U are called in the input and output channels respectively and the
diagonal elements of Σ are called the singular values.

2. PROBLEM STATEMENT

In this section we describe the baseline admm algorithm on which
our symmetric algorithm is based. The baseline admm algorithm is
based on the design from Raghunathan and Di Cairano (2014a,b).

2.1 Model Predictive Control Problem

This paper studies algorithms for solving the following constrained
finite-time optimal control (cftoc) problem

min

N−1∑
k=0

[
xk
uk

]T[
Q S

ST R

][
xk
uk

]
(1a)

s.t. xk+1 = Axk +Buk, x0 = x(t) (1b)

yk = Cxk +Duk (1c)

y ≤ yk ≤ y (1d)

where xk is the predicted state over the horizon N under the control
inputs uk initialized x0 = x(t) at the current state x(t) of the plant.
The predicted outputs yk are signals to be constrained (1d) by the
controller. Note that, polytopic state and input constraints can be
describe by the bounds (1d) using properly defined matrices C and
D in the constrained-outputs (1c). We assume the pairs (A,B) and
(A,Q−SRST) are controllable and observable respectively and R � 0
positive definite so that (1) has a unique optimal solution.

The customary terminal cost and constraints were omitted from (1)
to keep the notion compact and since these features are not rele-
vant to the presented algorithms. Nonetheless, a terminal cost and
constraint set can be added to the cftoc (1) without affecting the
results of this paper.

2.2 Baseline ADMM

The admm algorithm moves the equality constraints (1c) that define
the constrained-outputs yk into the cost-function to produce the
following augmented cftoc

min

N−1∑
k=0

[
xk
uk

]T[
Q S

ST R

][
xk
uk

]
+ρ‖Cxk+Duk−yk−γk‖2 (2a)

s.t. xk+1 = Axk +Buk, x0 = x(t) (2b)

y ≤ yk ≤ y (2c)

where γk for k = 0, . . . , N − 1 are dual-variables that ensure the
equality constraints (1c) hold at optimality and the step-size ρ is a
design parameter for the admm algorithm.

The baseline admm algorithm is described by Algorithm 1. During
each iteration, Algorithm 1 alternately solves (2) with respect
to three sets of decision variables; the state {xk}N−1

k=0
and input

{uk}N−1
k=0

trajectories, the constrained output trajectory {yk}N−1
k=0

,

and the dual variable trajectory {γk}N−1
k=0

.

Algorithm 1 Baseline ADMM

Input: State x(t)
Output: Input u(t)

1: Set x0 = x(t)
2: Set {yk}N−1

k=0
= 0 and {γk}N−1

k=0
= 0

3: repeat
4: Update {x̂ik, û

i
k}

N−1
k=0

using (sp1)

5: Update {yk}N−1
k=0

using (sp2)

6: Update {γk}N−1
k=0

using (sp3)

7: until ‖γ+
k
−γk‖∞ < ε, ‖y+

k
−yk‖∞ < ε

8: return u(t) = u0

With the constrained-outputs {yk}N−1
k=0

and dual-variables {γk}N−1
k=0

fixed, the augmented optimal control problem (2) becomes the
following unconstrained finite-time optimal control problem

(x+
k
, u+

k
) =

arg min
xk,uk

N−1∑
k=0

[
xk
uk

]T[
Q S

ST R

][
xk
uk

]
+ρ
∥∥Cxk+Duk−rk

∥∥2
s.t. xk+1 = Axk +Buk, x0 = x(t) (sp1)

where rk = yk + γk. Sub-problem (sp1) trades-off tracking the
unconstrained optimal with tracking a constraint satisfying reference
rk = yk + γk. A solution of sub-problem (sp1) can be found using
various standard techniques.

Next, Algorithm 1 solves problem (2) with respect to the constrained-
outputs {yk}N−1

k=0
. This produces the following, time-decoupled,

constraint-projection problems

y+
k

=arg min ρ‖Cx+
k

+Du+
k
−yk−γk‖2

s.t. y ≤ yk ≤ y

for k = 0, . . . , N which has the following closed-form solution

y+
k

= sat(Cx+
k

+Du+
k
− γk) (sp2)

for k = 0, . . . , N where sat(·) is the saturation function

sat(y) =

y if y ≤ y ≤ y
y if y < y

y if y > y.

Finally, in each iteration, Algorithm 1 updates the dual-variables
using a simple gradient ascent

γ+
k

= γk +
(
Cx+

k
+Du+

k
− y+

k

)
(sp3)

for k = 0, . . . , N . The dual-variable update (sp3) can be interpreted
as integral-action for sub-problem (sp1) i.e. the constraint violations
vk = Cxk +Duk − yk are integrated (sp3) by the dual-variables γk
until the reference rk = yk +γk tracked in sub-problem (1) produces
an output trajectory yk that satisfies constraints. In practice, the
computation of the constraint-violations vk = Cxk + Duk − yk are
re-used from sub-problem (sp1) to update the dual-variable in linear-
time.

Algorithm 1 iterates until the dual-variables ‖γ+
k
−γk‖ = ‖Cxk +

Duk−yk‖ < ε and the predicted constrained-outputs ‖y+
k
−yk‖ < ε

have converged. For a more detailed description of Algorithm 1 and
its properties see Raghunathan and Di Cairano (2014a,b).

3. SYMMETRIC DECOMPOSITION

In this section we formally define symmetry and summarize how
symmetry can be used to decompose the cftoc (1).

3.1 Definition of Symmetry

Intuitively, symmetries are patterns in the cftoc (1). These pat-
terns can be rigorously defined using linear-operators that map the
problem (1) to itself. A symmetry of the cftoc (1) is defined as

invertible transformations of the inputs, outputs, and states Θu,y,x ∈
Rnu,y,x×nu,y,x that preserve the dynamics[

Θx 0
0 Θy

]−1 [
A B
C D

] [
Θx 0
0 Θu

]
=

[
A B
C D

]
(3a)

and the cost function[
Θx 0
0 Θu

]−1
[
Q S

ST R

][
Θx 0
0 Θu

]
=

[
Q S

ST R

]
. (3b)

For instance, a cftoc (1) is rotationally symmetric if definition (3)
holds for some collection of rotation matrices.

Remark 1. The addition of a terminal cost and constraint to the
cftoc (1) will not necessarily break symmetry. A symmetric stabi-
lizing terminal cost xTPx can be designed using a variety of methods.
For instance, Danielson (2014) showed that if the dynamics and
cost are symmetric (3) then the solution P of the algebraic Riccati
equation is symmetric Θ−1

x PΘx = P . A similar result for terminal
cost design using linear matrix inequalities was shown in Cogill et al.
(2008); Danielson and Di Cairano (2015). Likewise, a symmetric
terminal constraint set that provides persistent feasibility can also
be found using various methods. Danielson (2014) showed that the
maximal control invariant set for symmetric systems is symmetric,
furthermore it provided a procedure for constructing a sub-maximal
symmetric control invariant set from a sub-maximal non-symmetric
control invariant set. Thus, the symmetry requirement (3) will not
limit the closed-loop properties of the mpc. �

In this paper, we are interested in cftocs (1) whose symmetries (3)
have the particular form (or can be transformed into the form)

Θy,u,x =

[
Π⊗ In1

u,y,x
0

0 I
nm+1
u,y,x

]
(4)

for some m-dimensional permutation matrix Π ∈ Rm×m. The
set Sm of all permutation matrices Π ∈ Rm×m is called the
symmetric group. Thus, we say the cftoc (1) is invariant under the
symmetric group Sm if the definition (3) holds for all permutation
matrices of the form (4). The Kronecker product Π⊗ In1

u,y,x
means

that the symmetries can permute the state-space and cost-function
matrices block-wise rather than the more restrictive element-wise
permutations.

The symmetries (4) have a fixed subspace for all Π ∈ Sm due to
the identity matrix I

nm+1
u,y,x

. The dimension of this fixed-space nm+1
u,y,x

relative to the size m of the symmetric group Sm provides a measure
of the asymmetry of the cftoc (1) where mn1

u,y,x+nm+1
u,y,x =nu,y,x.

This asymmetry will strongly influence the computational benefits
of our symmetric admm algorithm.

3.2 Symmetric Decomposition

In this section we describe how symmetry (3) can be used to
decompose the dynamics and cost function of the cftoc (1).

The symmetric decomposition is essentially a common svd shared
by each of the state-space and cost-function matrices. The symmet-
ric decomposition finds orthogonal transformations of the inputs,
outputs, and states Φu,y,x ∈ Rnu,y,x×nu,y,x that decompose the
dynamics[

Φi
x 0

0 Φi
y

]T[
A B

C D

][
Φj

x 0

0 Φj
u

]
=

[
Âii B̂ii

Ĉii D̂ii

]
if i = j

0 if i 6= j

(5a)

and the cost function[
Φi

x 0

0 Φi
u

]T[
Q S

ST R

][
Φj

x 0

0 Φj
u

]
=

[
Q̂ii Ŝii

ŜiiT R̂ii

]
if i = j

0 if i 6= j

(5b)

where Âii = ΦiT
x AΦi

x ∈ Rni
x×ni

x and likewise for each of the other dy-

namics and cost matrices. The tall-matrix Φi
u,y,x ∈ Rnu,y,x×ni

u,y,x

contains a sub-set of the columns of the transformations Φu,y,x ∈
Rnu,y,x×nu,y,x that defines the i-th channel. Unlike a traditional
svd, the channels of the symmetric decomposition are defined by
multiple column-vectors and the singular values (5) are blocks rather
than scalars. Throughout this paper, we will use the hat-notation ·̂ to
denote variables and problems represented in the symmetry adapted
basis Φu,y,x. A procedure for computing the decomposition (5) for a
generic symmetry group (3) was presented in Murota et al. (2010);
de Klerk et al. (2011); Danielson and Bauer (2015).

In this paper we are concerned with cftocs (1) with a specific
symmetry group, the symmetric group Sm. For the symmetric group
Sm with symmetries of the form (4), the symmetric transformations
have the form

Φu,y,x =

[
In1

u,y,x
⊗ Φ 0

0 I
nm+1
u,y,x

]
(6)

where the dimensions n1
u,y,x and nm+1

u,y,x match those in (4) and

Φ =

1 1 1 . . . 1

−1 1 1 . . . 1

−2 1 . . . 1

. .
.

. .
.

.

.

.

−m+1 1

Λ ∈ Rm×m, (7)

where Λ ∈ Rm×m is a diagonal matrix, with elements λii =
1/
√
i2 + i for i = 1, . . . ,m− 1 and λmm = 1/

√
m, that ensures

that the column-vectors of Φ are unit-vectors. The structure of the
transformations (7) will play an important role in the computational
complexity of our symmetric admm algorithm.

For the symmetric group Sm, the generic decomposition (5) of the
dynamics and cost matrices has additional structure, namely that
first m−1 sub-systems and sub-costs are identical[

Âii B̂ii

Ĉii D̂ii

]
=

[
Â11 B̂11

Ĉ11 D̂11

]
(8a)[

Q̂ii Ŝii

ŜiiT R̂ii

]
=

[
Q̂11 Ŝ11

Ŝ11T R̂11

]
(8b)

for i = 1, . . . ,m − 1. The fixed dynamics i = m are different
and typically have a different input, output, and state dimensions
n1
u,y,x 6= n1

u,y,x +nm+1
u,y,x. The explicit repetition (8) of problem-data

will be used to reduce the memory required for the symmetric admm
algorithm.

4. SYMMETRIC ADMM ALGORITHM

In this section we present a symmetry exploiting variant of Algo-
rithm 1. We compare the computational and memory costs of our
symmetric admm algorithm with the baseline design.

4.1 Symmetric ADMM

In this section we present our symmetric variant of Algorithm 1 and
show that these algorithms are equivalent.

Algorithm 2 Symmetric ADMM

Input: State x(t)
Output: Input u(t)

1: Set x̂i0 = ΦiT
x x(t) for i = 1, . . . ,m

2: Set {ŷik}
N−1
k=0

= 0 and {γ̂ik}
N−1
k=0

= 0 for i = 1, . . . ,m
3: repeat
4: Update {x̂ik, û

i
k}

N−1
k=0

using (ŝp1) for i = 1, . . . ,m

5: Update {ŷik}
N−1
k=0

using (ŝp2) for i = 1, . . . ,m

6: Update {γ̂ik}
N−1
k=0

using (ŝp3) for i = 1, . . . ,m
7: until ‖γk+−γk‖∞ < ε, ‖yk+−yk‖∞ < ε
8: return u(t) = Φuû0

The symmetry exploiting variant of Algorithm 1 is described by
Algorithm 2. The main difference between Algorithms 1 and 2 is

that the optimal control sub-problem (sp1) is solved in the symmetric
domain. Using the symmetric decomposition (5), the unconstrained
optimal control problem (sp1) can be decomposed into m decoupled
sub-problems

min
x̂i
k
,ûi

k

N−1∑
k=0

[
x̂ik
ûik

]T[
Q̂ii Ŝii

ŜiiT R̂ii

][
x̂ik
ûik

]
+ ρ‖Ĉiix̂ik+D̂iiûik−r̂

i
k‖

2

s.t. x̂ik+1 = Âiix̂ik + B̂iiûik, x̂
i
0 = x̂i(t) (ŝp1)

for i = 1, . . . ,m where x̂i(t) = ΦiT
x x(t) and r̂ik = ΦiT

y rk are the
i-th components of the initial state x(t) and reference rk in the
symmetric domain. In the next section we will show that the m
sub-problems (ŝp1) can be solved either sequentially or in parallel
for a reduction in computational cost. However, first we show that
sub-problems (ŝp1) for i = 1, . . . ,m are equivalent to the original
sub-problem (sp1) in the following lemma.

Lemma 1. The state {x̂ik}
N−1
k=0

= {ΦiT
x xk}

N−1
k=0

and input {ûik}
N−1
k=0

=

{ΦiT
u uk}

N−1
k=0

trajectories produced by solving sub-problems (ŝp1)

are the transformations of the state {xk}N−1
k=0

and input {uk}N−1
k=0

trajectories produced by solving sub-problem (sp1).

Algorithm 2 solves the constraint-projection problems (sp2) in the
original domain, since transforming simple constraint (1d) into
the symmetric domain can complicate the constraints. The satura-
tion (sp2) and transformations Φ,ΦT can be combined into a single
operation

ŷik
+ = ΦiT

y sat
(
Φy(Ĉx̂+

k
+D̂û+

k
− γ̂k)

)
(ŝp2)

for k = 0, . . . , N − 1 and i = 1, . . . ,m where γ̂k = ΦT
yγk are

the symmetric transformations of the dual-variables γk. The dual-
variable updates (sp3) can also be decomposed

γ̂ik
+ = γ̂ik + Ĉiix̂ik

++D̂iiûik
+ − ŷik

+ (ŝp3)

for k = 0, . . . , N − 1 and i = 1, . . . ,m. The decoupled dual-variable
updates (ŝp3) can be performed in parallel, although with minuscule
practical computational benefit.

The following theorem shows that Algorithms 1 and 2 are equivalent.

Theorem 1. Algorithms 1 and 2 terminate after the same number of
iterations and produce the equivalent optimal solutions u0 = Φuû0.

Theorem 1 means that Algorithms 1 and 2 require the same number
of iterations to reach the same optimal solution. The benefit of
Algorithm 2 is that the computational cost of each iteration is
cheaper than Algorithm 1. This is shown in the following section.

4.2 Computational Complexity

In this section we compare the computational complexities of Algo-
rithms 1 and 2. First, we show that the decoupled sub-problems (ŝp1)
are significantly cheaper to solve than the original optimal control
problem (sp1). Obviously, the computational complexity depends on
the method used to solve the problems (sp1) and (ŝp1). Therefore, we
will assume that these sub-problems have a fixed step-size ρ so that
the matrix-factorizations can be performed offline and only matrix-
vector products need to be performed online.

Lemma 2. Sub-problem (sp1) has computational complexityO(Nn2)
where n = max{nx,u,y}. Sub-problems (ŝp1) for i = 1, . . . ,m

have computational complexity O
(
N(mn2

1 +n2
m+1)

)
when solved

sequentially on a single-processor and O(N(n1 + nm+1)2) when
solve in parallel on m processors where n1 = max{n1

x,u,y} and

nm+1 = max{nm+1
x,u,y}.

If the dimension of the fixed-space of the symmetries (4) is small

nm+1 � n1 then n2 =
(∑m

i=1
ni

)2
≈ n2

1m
2 and n1 +nm+1 ≈

n1. Thus, solving sub-problems (ŝp1) sequentially is approximately
m times faster than solving sub-problem (sp1) and solving sub-
problems (ŝp1) in parallel is approximately m2 times faster where
m is the size of the symmetry group Sm. Thus, for cftocs with

a high-degree of symmetry m � 1 the decomposition (ŝp1) pro-
vides a massive reduction in computational complexity. Indeed, the
computational cost of solving sub-problems (ŝp1) in parallel remains
constant regardless of the problem size. This is a reasonable since
symmetry allows us to efficiently use parallel computationally re-
source which we assume are growing with problem size.

However, Algorithm 2 is only useful if the computational savings
shown in Lemma 2 outweigh the additional computational burden
of transforming between domains in sub-problem (ŝp2). Naively,
this is not the case since the applying the transformations Φy

for k = 0, . . . , N using generic matrix-vector multiplication has
complexity O(Nn2

y). Since typically the number of constrained-
outputs ny ≥ nx + nu is larger than the number of states nx and
inputs nu, this would increase the computational cost of Algorithm 2.
However, we will show that by exploiting the special structure (7)
of the transformation Φ we can transform between domains with
linear-complexity.

Algorithm 3 Symmetric transformation ẑ = ΦTz

Input: Original vector z
Output: Transformed vector ẑi for i = 1, . . . ,m

1: s0 = 0
2: for i = 1, . . . ,m− 1 do
3: si = si−1 + zi

4: ẑi = λii(s
i − izi+1)

5: end for
6: ẑm = λmmsm

Algorithm 3 provides a computationally efficient method for trans-
forming ẑ = ΦTz a vector z into the symmetric domain. In each

iteration, Algorithm 3 computes a running-sum si =
∑i

j=1
zi of the

elements zi of the vector z ∈ Rm. The i-th component ẑi of the
transformed vector ẑ = ΦTz is the scaled difference ẑi = λii(s

i −
izi+1) between the running-sum si and the next element zi+1 of
the original vector z where λii = 1/

√
i2 + i. The final element

ẑm = λmmsm of the transformed vector ẑ = ΦTz is given by the
total running-sum sm =

∑m

j=1
zi normalized by λmm = 1/

√
m. A

similar algorithm for the inverse-transformation is described in the
extended version of this paper Danielson (2018).

Algorithm 3 and its inverse are used in each iteration of the
symmetric admm Algorithm 2 for evaluating sub-problems (ŝp2).
Furthermore, Algorithm 3 is used to pre-process x̂i0 = ΦiT

x x(t) the
current state x(t) of the system. And the inverse of Algorithm 3
is used to post-process u0 =

∑m

i=1
Φi

uû
i
0 the implemented control-

input u(t) = u0.

The following lemma shows that Algorithm 3 correctly performs the
symmetric transformation with linear complexity.

Lemma 3. Algorithm 3 computes ẑ = ΦTz with O(m) complexity.

Lemma 3 shows that the computational cost of transforming between
domains is insignificant in comparison to the computational benefits
shown in Lemma 2. This is the pivotal property of the symmetric
transformation that makes Algorithm 2 viable. In contrast, a generic
svd does not have this property and therefore would not provide the
computational benefits of the symmetric decomposition.

The following theorem combines Lemmas 2 and 3 to show that
Algorithm 2 has cheaper iteration than Algorithm 1.

Theorem 2. The main iteration of Algorithm 1 has computational
complexity O(Nn2) where n = max{nx,u,y}. The main iteration of

Algorithm 2 has computational complexity O
(
N(mn2

1+n
2
m+1)

)
when

implemented sequentially and O(Nn) when implemented in parallel
on m processors.

According to Theorem 1, Algorithms 1 and 2 required the same
number of iterations to converge to the optimal solution. Therefore,
Theorem 2 means that Algorithm 2 is more computationally efficient

than Algorithm 1 since its iteration are cheaper. Indeed, Algorithm 2
is asymptotically O(m) times faster than Algorithms 1 when im-
plemented either sequentially on a single processor or in parallel
on m processors, although typically the constant O(m) reduction
factor is higher for the parallel implementation than the sequential
implementation.

Remark 2. In our experience, the most common symmetry groups
encountered in real-world applications are the cyclic Cm, dihedral
Dm, symmetric Sm and hyperoctohedral Hm groups (see Danielson
(2014)). In fact, we are not aware of any real-world applications
with a different symmetry group. The dihedral group Dm is a signed
version of the cyclic group Cm and the hyperoctohedral group Hm is
a signed version of the symmetric group Sm where the sign does not
affect the symmetric decomposition (5). For cyclic/dihedral groups,
the symmetric transformation Φ is the Fourier transform matrix. It is
well known that the Fourier transform can be applied in O(m logm)
time, which is slower than Algorithm 3. This is most likely due
to the fact that the cyclic group |Cm| = m is smaller than the
symmetric group |Sm| = m!. Thus, the admm Algorithm 2 can also
be applied to problems (1) with cyclic or dihedral symmetry where
the optimal control problem (ŝp1) is solved in the spatial Fourier
domain. It is unclear whether fast algorithms exist for performing
the symmetric decomposition (5) for generic symmetry groups (3).
But certainly, Algorithm 2 provides computational benefits for the
four most common symmetry groups encountered in practice. �

4.3 Memory Complexity

The symmetric admm Algorithm 2 is intended for large-scale
nu,y,x � 1 problems (1) with a lot of symmetry m � 1. For large-
scale problems, storing the problem-data in memory on an embedded
platform can be nonviable. In addition, the computational benefits
provided by Algorithm 2 are often so drastic that the computational
bottleneck becomes accessing memory rather than the linear algebra
computations. Fortunately, the symmetry of the problem (1) can also
be used to reduce the memory requirements of the algorithm.

The following theorem shows the memory benefits of the symmetric
algorithm.

Theorem 3. Algorithms 1 and 2 have memory complexity O(Nn2)
and O(N(n2

1 + (n1 + nm+1)2)) where n = max{nx,u,y}, n1 =

max{n1
x,u,y}, and nm+1 = max{nm+1

x,u,y}

Theorem 3 says that the amount of read-only memory required for
the symmetric admm Algorithm 2 does not grow with the problem
size n = mn1 + nm+1 where n1 and nm+1 are fixed. This reflects
our intuition that the memory required to describe the cftoc (1)
should not increase due to repetition in the system. Note that the
memory needed to store the system signals (inputs uk, outputs
yk, states xk, and dual-variables γk) stills grows with problem size
nu,y,x = mn1

u,y,x + nm+1
u,y,x.

5. CASE STUDY: BATTERY BALANCING

In this section we apply the admm algorithms to a battery balancing
control problem. Details about this problem can be found in Daniel-
son et al. (2012, 2013); Preindl et al. (2013).

The objective of the battery balancing problem is to redistribute
charge in a battery of m cells so that every cell has the same
state-of-charge. Model Predictive Control (mpc) is used to achieve
fast and energy-efficient balancing. This is an ideal application for
Algorithm 2 since the problem is computationally challenging for
large-scale m� 1 battery packs, but also very symmetric.

The battery cell dynamics (1b) are modeled as integrators where
A = I ∈ Rm×m and B ∈ Rm×m describes the balancing circuit
topology. The state x(t) ∈ Rm is the state-of-charge of each cell
and u(t) is the balancing current. There are constraints on the
minimum x and maximum x state-of-charge for each cell. In addition,
the balancing circuit can only draw charge from a single cell at

a time. This integral constraint can be relax into a 1-norm ball
‖u(t)‖1 ≤ 1 constraint as shown in Preindl et al. (2013). These state
and input constraints can be expressed as 4m+1 constraints of the
form (1c) and (1d) using the standard trick of splitting the input
u(t) = u+(t) − u−(t) into positive and negative u+(t), u−(t) ≥ 0
components with

∑m

i=1
u+i (t)+u−i (t) ≤ 1. The cost-function (1a)

penalizes the cell imbalance and usage of balancing current where
Q = I − 1

m
11T ∈ Rm×m, R = rI ∈ R2m×2m, and S = 0 ∈ Rm×2m.

The cftoc (1) is solved every 1 minute with a prediction horizon of
10 minutes.

Intuitively, this problem is symmetric since the battery cells are
nearly identical and they are each connected to the balancing circuit
in the same manner. Numerically, it can be easily verified that the
resulting cftoc (1) is invariant (3) under the symmetric group (4)
where (n1

x, n
m+1
x) = (1, 0), (n1

u, n
m+1
u) = (2, 0), and (n1

y , n
m+1
y) =

(4, 1). Note that only the constraints have a non-trivial fixed-space
nm+1
y = 1 > 0. This fixed-space is a result of the constraint∑m

i=1
u+i (t)+u−i (t) ≤ 1 on the total balancing current i.e. permuting

the balancing currents does not change their sum.

The battery balancing problem was used to evaluate the performance
of the admm Algorithms 1 and 2. The number of cells m in the
battery pack was varied from m = 10 cells, which would be found in
an appliance, to m = 100 cells, which would be found in an electric
vehicle. For each battery size m, the cftoc (1) was solved for 10
randomly generated initial cell imbalances x(t). The cftocs (1) were
solved in matlab using a single-core, with code acceleration disable,
and using brute-force matrix-vector multiplication in order to em-
ulate the performance of an embedded platform. The termination
toleration used for all algorithms was ε = 10−8.

10 20 30 40 50 60 70 80 90 100
1e3

10e3

It
e
ra

ti
o
n
s

Nominal

Sequential

Parallel

10 20 30 40 50 60 70 80 90 100

1

60

3600

T
im

e
 [
s
]

10 20 30 40 50 60 70 80 90 100
of cells

10

1e3

100e3

M
e
m

o
ry

 [
k
B

]

Fig. 1. Comparison of the admm algorithms (a) number of iterations
and (b) solver-time and (c) solver-memory.

Fig. 1 shows the performance of Algorithm 1 and Algorithm 2 with
both a sequential and parallel implementation. The first sub-figure
shows the number of iterations required to solved the cftoc (1).
Note that the number of iterations is identical for each of the algo-
rithms. This empirically verifies Theorem 1 which showed that these
algorithms are equivalent, and therefore have the same convergence
rate and terminate after the same number of iterations.

On the other hand, the second sub-figure shows that both the se-
quential and parallel implement of the symmetric admm Algorithm 2
are significantly faster than the baseline Algorithm 1. This empiri-
cally verifies Theorem 2 which showed the computational benefits
of symmetry. The computational cost of the symmetric algorithms
grow linearly with the pack size m instead of quadratically for the
baseline algorithm. As a result, the symmetric algorithms outperform
the baseline algorithm as the number of cells increases. For the largest
battery pack m = 100, the baseline Algorithm 1 spent more than 1
hour solving the cftocs (1) whereas the sequential implementation
of the symmetric Algorithm 2 solved the cftocs (1) in less than 1
minute, which is the typical sample period for this problem. The
parallel implementation of the symmetric admm was even faster,
spending approximately 10 seconds for the largest problem.

The memory benefits of the symmetric admm Algorithm 2 over the
baseline Algorithm 1 are even more impressive. The third subfigure

in Fig. 1 shows the memory usages for each of the algorithms.
The memory required for the symmetric algorithms is constant
regardless of the pack size m whereas the memory required for the
baseline Algorithm 1 grows quadratically with the problem size,
which empirically verifies Theorem 3. For the largest battery pack
m = 100, the baseline Algorithm 1 required over 100 megabytes
of memory whereas the symmetric admm Algorithm 2 required
approximately 10 kilobytes.

10 20 30 40 50 60 70 80 90 100
0.1

1
60

3600

S
P

1
 [
s
]

10 20 30 40 50 60 70 80 90 100
0.1

10
60

S
P

2
 [
s
]

10 20 30 40 50 60 70 80 90 100
of cells

10
-110
010
1

S
P

3
 [
s
]

Fig. 2. Comparison of time spent solving each of the sub-problems
by each of the admm algorithms.

The computational benefits of the symmetric algorithms are further
demonstrated by Fig. 2 which shows the computation-time spent
solving each of the sub-problems. The first subfigure shows the time
spent solving the optimal control sub-problems (sp1) and (ŝp1). This
sub-problem dominated the computation-time for the baseline Algo-
rithm 1 and the sequentially implemented symmetric Algorithm 2.
For the parallel implementation of the symmetric Algorithm 2 the
computation-time is constant since the computational resources grow
with the number of cells m. This result empirically verifies Lemma 2.

The second subfigure of Fig. 2 shows the computation-time for
solving the constraint-projection sub-problems (sp2) and (ŝp2). For
the symmetric Algorithm 2, the computation-time includes the
time required to transform the constrained outputs yk between the
symmetric and original domains. As a result, computation-time of
the constraint-projection sub-problem (ŝp2) is increased compared
to (sp2), although only by a constant factor that does not grow with
problem-size m. This verifies our key-result, Lemma 3 which allows
for the rapid transformation between domains. Note that since sub-
problem (ŝp2) cannot be (spatially) parallelized, the computation-
time is identical for both the sequential and parallel variants of
Algorithm 2.

The third subfigure of Fig. 2 shows the computation-time for
updating the dual-variables (sp3) and (ŝp3). This figure shows that
updating the dual-variables in the symmetric domain (ŝp3) is indeed
faster than in the original domain (sp3). However, since the dual-
variables only require a faction-of-a-second to update, this sub-
problem is completely dominated by the other sub-problems. Thus,
the computational benefits of decomposing the dual-variable updates
are insignificant.

6. CONCLUSIONS AND FUTURE WORK

This paper presented an admm algorithm for solving large-scale mpc
problems. Using the symmetric decomposition (8), the optimal con-
trol sub-problem (sp1) and dual-variable updates (sp3) of a baseline
admm Algorithm 1 were decomposed (ŝp1) and (ŝp3) respectively.
The iterations of the resulting symmetric admm Algorithm 2 has
linear complexity instead of the typically quadratic. Furthermore,
the symmetric admm Algorithm 2 has constant memory require-
ments, independent from the problem size. The symmetric admm
Algorithm 2 was applied to a battery balancing problem where
it reduced computation-times from hours to seconds and reduced
memory requirements from megabytes to kilobytes.

In future work, we plan to apply our symmetric admm algorithm
to other applications, in particular hvac. In addition, we plan to

use symmetry to improve other baseline optimization algorithms,
for instance interior-point algorithms.

REFERENCES

Bodi, R., Herr, K., and Joswig, M. (2011). Algorithms for highly
symmetric linear and integer programs. Mathematical Program-
ming.

Boyd, S., Diaconis, P., Parrilo, P., and Xiao, L. (2009). Fastest
mixing markov chain on graphs with symmetries. Journal on
Optimization.

Burns, D., Danielson, C., Zhou, J., and Di Cairano, S. (2018). Re-
configurable model predictive control for multi-evaporator vapor
compression systems. Trans on Control Systems Technology.

Chuang, F., Danielson, C., and Borrelli, F. (2015). Robust ap-
proximate symmetric model predictive control. In Conference on
Decision and Control.

Cogill, R., Lall, S., and Parrilo, P. (2008). Structured semidefinite
programs for the control of symmetric systems. Automatica.

Danielson, C. (2014). Symmetric Constrained Optimal Control:
Theory, Algorithms, and Applications. Ph.D. thesis, University
of California, Berkeley.

Danielson, C. (2017). Symmetric control design for multi-evaporator
vapor compression systems. In Dynamic Systems and Control
Conference.

Danielson, C. (2018). An alternating direction method of multipliers
algorithm for symmetric mpc. merl.com.

Danielson, C. and Bauer, S. (2015). Numerical decomposition of
symmetric linear systems. In Conference on Decision and Control.

Danielson, C. and Borrelli, F. (2012). Symmetric explicit model
predictive control. In IFAC Nonlinear MPC Conference.

Danielson, C. and Borrelli, F. (2014). Identification of the symme-
tries of linear systems with polytopic constraints. In American
Control Conference.

Danielson, C. and Borrelli, F. (2015a). Symmetric constrained
optimal control. In IFAC Nonlinear MPC Conference.

Danielson, C. and Borrelli, F. (2015b). Symmetric linear model
predictive control. Trans on Automatic Control.

Danielson, C., Borrelli, F., Oliver, D., Anderson, D., Kuang, M., and
Phillips, T. (2012). Balancing of battery networks via constrained
optimal control. In American Control Conference, 0743–1619.

Danielson, C., Borrelli, F., Oliver, D., Anderson, D., and Phillips,
T. (2013). Constrained flow control in storage networks: Capacity
maximization and balancing. Automatica.

Danielson, C. and Di Cairano, S. (2015). Reduced complexity control
design for symmetric LPV systems. In Conference on Decision
and Control.

de Klerk, E., Dobre, C., and Ṗasechnik, D. (2011). Numerical
block diagonalization of matrix *-algebras with application to
semidefinite programming. Mathematical Programming.

Lin, F., Fardad, M., and Jovanović, M. (2012). Sparse feedback
synthesis via the alternating direction method of multipliers. In
American Control Conference.

Margot, F. (2010). Symmetry in integer linear programming. In 50
years of linear programming 1958-2008. Springer.

Murota, K., Kanno, Y., Kojima, M., and Kojima, S. (2010). A
numerical algorithm for block-diagonal decomposition of matrix
*-algebras with application to semidefinite programming. Japan
Journal of Industrial and Applied Mathematics.

Preindl, M., Danielson, C., and Borrelli, F. (2013). Performance
evaluation of battery balancing hardware. In European Control
Conference.

Raghunathan, A. and Di Cairano, S. (2014a). Alternating direction
method of multipliers for strictly convex quadratic programs:
Optimal parameter selection. In American Control Conference.

Raghunathan, A. and Di Cairano, S. (2014b). Infeasibility detection
in alternating direction method of multipliers for convex quadratic
programs. In Conference on Decision and Control.

Serre, J. (1977). Linear representations of finite groups. Springer-
Verlag.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-118.pdf
	An Alternating Direction Method of Multipliers Algorithm for Symmetric MPC
	page 2
	page 3
	page 4
	page 5
	page 6

