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Abstract
Face super-resolution methods usually aim at producing visually appealing results rather
than preserving distinctive features for further face identification. In this work, we pro-
pose a deep learning method for face verification on very low-resolution face images that
involves identity-preserving face super-resolution with an extreme upscaling factor of 8. Our
framework includes a super-resolution network and a feature extraction network. We train
a VGG-based deep face recognition network [1] to be used as feature extractor. Our super-
resolution network is trained to minimize the feature distance between the high resolution
ground truth image and the super-resolved image, where features are extracted using our pre-
trained feature extraction network. We carry out experiments on FRGC, Multi-PIE, LFW-a,
and MegaFace datasets to evaluate our method in controlled and uncontrolled settings. The
results show that the presented method outperforms conventional superresolution methods
in low-resolution face verification.
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Verification of Very Low-Resolution Faces
Using An Identity-Preserving Deep Face

Super-resolution Network

Esra Ataer-Cansizoglu, Michael Jones, Ziming Zhang and Alan Sullivan

Mitsubishi Electric Research Labs (MERL)
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Abstract. Face super-resolution methods usually aim at producing vi-
sually appealing results rather than preserving distinctive features for
further face identification. In this work, we propose a deep learning
method for face verification on very low-resolution face images that
involves identity-preserving face super-resolution with an extreme up-
scaling factor of 8. Our framework includes a super-resolution network
and a feature extraction network. We train a VGG-based deep face recog-
nition network [1] to be used as feature extractor. Our super-resolution
network is trained to minimize the feature distance between the high res-
olution ground truth image and the super-resolved image, where features
are extracted using our pre-trained feature extraction network. We carry
out experiments on FRGC, Multi-PIE, LFW-a, and MegaFace datasets
to evaluate our method in controlled and uncontrolled settings. The re-
sults show that the presented method outperforms conventional super-
resolution methods in low-resolution face verification.

1 Introduction

Face images appear in various platforms and are vital for many applications
ranging from forensics to health monitoring. In most cases, these images are in
low-resolution, making face identification difficult. Although many algorithms
have been developed for face recognition from high-quality images, few studies
focus on the problem of very low-resolution face recognition. The performance
of the traditional face recognition algorithms developed for high quality images,
degrades considerably on low-resolution faces.

There exists a tremendous amount of work in image enhancement and up-
sampling. Recently, high magnification factors greater than 4 times have gained
more attention for targeted objects such as faces with the rise in deep learning
methods. Existing methods provide an upsampling of the image that is as close
as possible to “a face image”. Since resulting upsampled images are meant to
be used in face identification task, recovering “the face” is essential. We present
a face super-resolution method that preserves the identity of the person during
super-resolution by minimizing the distance in feature space as opposed to the
traditional face super-resolution methods designed to minimize the distance in
high-resolution image space.
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2 Cansizoglu, Jones, Zhang, Sullivan
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Fig. 1. System overview for (top) low-resolution and (bottom) high-resolution-
resolution face verification. Dashed lines indicate weight sharing between networks.

The goal of this paper is to verify whether a given low-resolution face im-
age is the same person as in a high-resolution gallery image. Our focus is very
low-resolution face images with a tiny visible facial area (as low as 6× 6 pixels).
We represent a face image with its VGG face descriptor. Since our goal is veri-
fication, the face descriptor of a super-resolved face image should be as close as
possible to the face descriptor of its ground truth high-resolution version. Thus,
we train a super-resolution network by minimizing the feature distance between
them. Contrary to the conventional face hallucination methods, we consider face
descriptor similarity instead of appearance similarity during super-resolution.
Moreover, we also perform detailed experiments in order to investigate the effect
of various losses in training super-resolution for the task of low-resolution face
verification.

The performance of super-resolution methods are evaluated by using image
quality assessment measures such as peak signal-to-noise ratio (PSNR). These
measures account for the visual similarity of two images by equally paying at-
tention to every pixel in intensity domain. However, face identification relies on
discriminative features. In this work, we present face descriptor similarity as an
evaluation measure to assess the capacity of a method in preserving identity.

The main contributions of our study include: (1) a novel loss term to be
used for face super-resolution in order to preserve identity for aggressive scaling
factors as big as 8, (2) an evaluation measure to account for identity preservation
on the super-resolved faces, and (3) a thorough analysis of various loss terms in
training a face super-resolution network for low-resolution face verification.

1.1 Related Work

To solve the problem of low-resolution face verification (in which a low-resolution
probe face is compared to a high-resolution gallery face) the main problem is
how to handle the mismatch in resolutions. There are two basic approaches
to solve this problem. The first is to map the low-resolution probe face and the
high-resolution gallery face to a common feature space. Methods such as coupled
locality preserving mappings [2], coupled kernel embeddings [3], and multidimen-
sional scaling [4] follow this approach. Unfortunately, finding a resolution-robust
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Verification of Very LR Faces 3

feature space is very hard especially for high magnification factors. The second
approach is to upsample the low-resolution face image (using a super-resolution
algorithm) and compare to the high-resolution gallery face using a standard face
recognition method. Our method falls into the second category.

Baker and Kanade [5] showed how to greatly improve super-resolution qual-
ity specifically for faces using pairs of high and low-resolution examples of faces.
Since their work there have been many papers on face-specific techniques for
super-resolution [6–11]. All of these methods try to produce visually pleas-
ing high-resolution face images given the low-resolution input and face-specific
models. They are not directly concerned with improving face recognition ac-
curacy on the upsampled faces. However, since the main application of face
super-resolution is face recognition, it makes sense to optimize a face-specific
super-resolution algorithm explicitly to improve face recognition accuracy. This
idea has been explored in a number of papers [12–14]. The basic idea is to
find a high-resolution face image that optimizes both reconstruction and recog-
nition costs simultaneously. They mainly use linear models for extracting face
recognition feature vectors (e.g. PCA and LDA). These papers were all writ-
ten before the recent era of deep neural networks which now dominate the face
recognition field because of their high accuracy. The older recognition-optimizing
face-specific super-resolution algorithms work well for frontal faces taken in con-
trolled environments, but do not work nearly as well in typical “in-the-wild”
settings for which deep networks are so effective.

Recently, a few papers have used convolutional neural networks (CNNs) or
generative adversarial networks (GANs) for face-specific super-resolution. These
methods better handle uncontrolled input faces with variations in lighting, pose
and expression and only rough alignment. Zhou et al. [15]’s bi-channel approach
used a CNN to extract features from the low-resolution input face and then
mapped these using fully connected network layers to an intermediate upsam-
pled face image, which is linearly combined with a bicubicly interpolated up-
sampling of the input face image to create a final high-resolution output face.
In other work, Yu and Porikli [16, 17] used GANs for 8 times super-resolution
of face images. Their method provides visually appealing results, but the re-
sulting images can distort the identity of the person, which is a critical issue
for face recognition applications. Cao et al. [18] presented a deep reinforcement
learning approach that sequentially discovers attended patches followed by facial
part enhancement. Zhu et al. [19] proposed a bi-network architecture to solve
super-resolution in a cascaded way. Each of these methods is intended to pro-
duce visually pleasing face images and do not consider face recognition accuracy.
They do not test their methods on a face recognition task.

A recent paper by Ledig et al. [20] that use a GAN for general image super-
resolution is similar in spirit to ours in the sense that they also use the feature
vector from a pre-trained CNN in the loss function used to optimize their net-
work. In their case, in addition to reconstruction and adversarial losses they use
many feature maps from a VGG-19 network [21] trained on ImageNet [22] to
compare the similarity of upsampled and reference images (with any content)
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4 Cansizoglu, Jones, Zhang, Sullivan

and achieve at most 4 times super-resolution. In our case we use the single penul-
timate feature vector from a VGG Deep Face network [1] to compare upsampled
and reference face images in order to train a face-specific super-resolution net-
work that maintains identity for 8 times magnification.

To the best of our knowledge, our paper is the first to use a deep neural
network for face-specific super-resolution that is optimized not for visual quality,
but for face recognition accuracy. We show that our super-resolution algorithm
improves over other state-of-the-art super-resolution algorithms in terms of face
verification accuracy on both controlled datasets (FRGC [23] and Multi-PIE [24])
as well as an in-the-wild datasets (LFW-a [25, 26] and MegaFace [27, 28]).

2 Method

2.1 Notation

We denote xi
L ∈ RN×M and xi

H ∈ RdN×dM as a pair of low-resolution and
high-resolution (i.e. d times larger) versions of the i-th face image, function
G : RN×M → RdN×dM as a high-resolution image generator from low-resolution
images, function f : RdN×dM → RD as a D-dim feature extractor from high-
resolution images, ‖ · ‖ and ‖ · ‖F as the `2 norm of a vector and the Frobenius
norm of a matrix, respectively.

2.2 Face Verification Problem Setup

Training: We are provided with a set of K pairs as well as their identities, i.e.{(
xi
L,x

i
H , yi

)}K
i=1

, where yi ∈ Y denotes the identity of the i-th image pair. We
would like to learn face verification models based on such training data.
Testing: We are provided with a new pair of low-resolution (as probe) and high-
resolution (as gallery) face images, and asked whether these two images share
the same identity based on the learned models.

2.3 Algorithm

An overview of our proposed approach is shown in Figure 1. We first super-
resolve the given low-resolution face image using a deep convolutional network.
Next, we extract features from the super-resolved image and a high-resolution
gallery image using the VGG deep face network [1]. The similarity of the two
images is decided based on the Euclidean distance between their feature vectors.
Finally the verification is performed with a thresholding on the feature distance.

Training Objective We start our explanation from the objective function for
training our model. Inspired by conventional methods, we propose optimizing
the following objective function:

min
G,f

L
({(

xi
L,x

i
H , yi

)}K
i=1

,G, f
)

+ λ1Ω1(f) + λ2Ω2(G), (1)
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Verification of Very LR Faces 5

where L denotes the loss function, Ω1, Ω2 denote two regularizers on f and G
(e.g. weight decay), respectively, and λ1 ≥ 0, λ2 ≥ 0 denote the predefined
constants. In particular, we decompose the loss function as follows:

L
def
= Lf

({(
xi
H , yi

)}K
i=1

, f
)

+ Lrecog (2)

where Lf denotes the classification loss (e.g. least square) used in conventional
recognition approaches for measuring the performance of f , Lrecog denotes the
recognition loss to measure the performance of G given f

Lrecog =
∑
i

ωi

∥∥f(G(xi
L))− f(xi

H)
∥∥, (3)

where ωi ≥ 0,∀i denotes a weighting constant, in general, and in our current
implementation we simply set ωi = 1

K . Further investigation on the effect of
varying ωi’s will be conducted in our future work.

Since this loss term computes the similarity of super-resolved and ground
truth high-resolution faces, it can be used as an evaluation measure to assess the
capacity of a method to preserve identity during super-resolution.
Discussion: There are two alternative loss functions to recognition loss that are
widely used in image super resolution or restoration [29].
(1) Reconstruction Loss: It measures the difference (in Euclidean space) between
the reconstructed image from a low-resolution image and its corresponding high-
resolution image, defined as follows:

Lrecon =
1

K

∑
i

∥∥G(xi
L)− xi

H

∥∥
F
. (4)

Minimizing this loss usually introduces a large amount of smoothing and aver-
aging artifacts in reconstruction images that helps improve visual appearance
but not verification accuracy necessarily.
(2) Structural Similarity (SSIM) Loss: SSIM is a popular measure that accounts
for humans perception of image quality. On a local patch of two images x and
y around pixel p, SSIM is computed as

SSIM(x,y,p) =
2µxµy + c1
µ2
x + µ2

y + c1

2σxy + c2
σ2
x + σ2

y + c2
, (5)

where µx, µy and σx, σy denote the mean and variance, respectively, of the in-
tensities in the local patch around pixel p in x and y and σxy is the covariance
of intensities in the two local patches. c1 and c2 are constant factors to stabilize
the division with weak denominator. We divide the image into h× h pixel grids
and compute the mean of SSIM sum over all patches as the similarity between
two images

r(x,y) =
1

T

T∑
k=1

∑
p

SSIM(xk,yk,p) (6)
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6 Cansizoglu, Jones, Zhang, Sullivan

where T is the total number of patches and xk,yk are kth corresponding patch
pair. Consequently, our SSIM loss is formulated as

Lssim =
1

K

∑
i

[
h2 − r

(
G(xi

L),xi
H

)]
. (7)

Compared with reconstruction loss, minimizing SSIM loss helps recover the in-
formation at high frequency visually, but still unnecessarily improves the verifi-
cation performance.

In our experiments we conduct comprehensive comparison on these three loss
functions to demonstrate the correct usage of recognition loss for the task of face
verification.

Two-Stage Minimization To optimize Eq. 1 we propose using two-stage min-
imization technique. Precisely, we first learn the feature extraction function f
supervisedly by optimizing

min
f

Lf

({(
xi
H , yi

)}K
i=1

, f
)

+ λ1Ω1(f). (8)

Then we learn the high-resolution image generator function G unsupervisedly
based on the learned f by optimizing

min
G

1

K

∑
i

∥∥f(G(xi
L))− f(xi

H)
∥∥+ λ2Ω2(G). (9)

Two-Stage vs. End-to-End: We implement end-to-end training algorithm as
well, but find that the performance is much worse than our current two-stage
minimization algorithm. We hypothesize that the end-to-end training involves
many more parameters that need to be optimized, leading to overfitting on train-
ing data due to higher model complexity with respect to limited data samples.
In contrast, our two-stage training strategy serves as regularization similar to
the early stopping criterion used in deep learning.
Network Architecture: We use a similar architecture to Yu et al. [16] for our
face super-resolution network (i.e. function G), except our super-resolution net-
work is trained on gray-scale images. The network is a deconvolutional network
with 3 deconvolutional layers with stride 2 and 2 additional convolutional layers.
Our face recognition network (i.e. function f) has a VGG architecture with 19
layers as reported in [1]. Note that face descriptors from other deep networks for
face recognition could be used instead of VGG, but this was chosen because the
implementation of VGG deep face network is publicly available, and achieves
near state-of-the-art performance on face recognition [1].

Face Verification at Test Time After learning the super-resolution network,
each super-resolved image is represented with its VGG face descriptor. The de-
cision of whether a low-resolution face image xL and a high-resolution gallery
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Verification of Very LR Faces 7

image xH contain the same person is given based on the indicator function

I(xL,xH , γ) =

{
1 if ‖f(G(xL))− f(xH)‖ < γ,
0 otherwise,

(10)

where γ is a threshold that can be determined using cross-validation.

3 Experiments and Results

3.1 Datasets and Experimental Setup

We carried out two sets of experiments under controlled and uncontrolled, i.e.
in the wild, settings. For controlled settings, we used Face Recognition Grand
Challenge (FRGC) [23] and Multi-PIE [24] datasets. For uncontrolled setting,
we used an aligned version of the Labeled Faces in the Wild dataset [25], called
Labeled Faces in the Wild-a (LFW-a) [26] and MegaFace dataset [27, 28].
FRGC: The FRGC dataset contains frontal face images taken in a studio set-
ting under two lighting conditions with only two facial expressions (smiling and
neutral). We generated training and test splits, where we kept the identities in
each set disjoint. The training set consisted of 20, 000 images from 409 subjects
and the test set consisted of 2, 149 images from 142 subjects.
Multi-PIE: The Multi-PIE dataset consists of face images of 337 subjects cap-
tured from various viewpoints and illumination conditions over multiple sessions.
Our goal in using this set was to better evaluate the peformance of face veri-
fication under different facial poses and illumination conditions in a controlled
setting. We use the three most frontal views (05 1, 05 0, 14 0) and the four most
frontal lighting conditions (06, 07, 08, 09) from each data collection session. We
randomly generated training and test splits, where we kept the identities in each
set disjoint. The training set consisted of 9, 091 images from 252 subjects and
the test set consisted of 3, 000 images from 85 subjects. For both FRGC and
Multi-PIE datasets, we carried out face alignment [30].
LFW-a: This dataset consists of faces captured in an uncontrolled setting with
several poses, lightings and expressions. We used the training and test splits
as indicated in the LFW development benchmark, which also contains a set of
image pairs to be tested in the verification task. The benchmark contains 9, 525
training images, 3, 708 test images and 1, 000 image pairs from the test set to be
verified.
MegaFace: MegaFace consists of 4.7M images from 672K identities collected
from Flickr users. We followed the experimental protocol described for face veri-
fication in MegaFace challenge 2. The training set is provioded along with facial
landmark points. We performed face alignment using provided landmarks. We
discarded the images with resolution smaller than our high resolution images and
the images with high registration error during alignment. As a result we used
2.8M images from MegaFace for training. Following the verification protocol, we
used FaceScrub dataset [31] as our probe images during testing. FaceScrub com-
prises a total of 106,863 face images of male and female 530 celebrities. Negative
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8 Cansizoglu, Jones, Zhang, Sullivan

pairs for verification are constructed using 10K distractor images provided by
MegaFace challenge. Since facial landmarks are not provided for original high
resolution images of FaceScrub and MegaFace distractor images, we carry out
face alignment following [32].
Data preparation

High-resolution (HR) images had 128× 128 pixel resolution, where the faces
occupied approximately 50 × 50 pixels area. We generated low-resolution (LR)
images with 8 times downsampling by following the approach in [33]. Namely, we
filtered the high-resolution images with a Gaussian blur kernel σ = 2.4 followed
by downsampling. As a result, the low-resolution images contained a facial area
of approximately 6× 6 pixels. For the task of low-resolution face verification, we
tested whether a given low-resolution probe image contains the same person as
a given high-resolution gallery image. In the FRGC and Multi-PIE datasets, we
considered verification of all test image pairs. For LFW-a dataset, we tested all
1, 000 image pairs in the benchmark, where each pair was tested two times by
switching probe and gallery. For MegaFace dataset, we followed the verification
protocol given in the MegaFace challenge. More specifically, negative pairs con-
sisted of all pairs between FaceScrub as probe images and MegaFace distractor
dataset as gallery images. As for positive pairs, we tested each probe image from
FaceScrub with each of the other images of the same identity as gallery.

In terms of a baseline, we compare against face verification using the original
high-resolution images for both gallery and probe (See Figure 1). In this case, our
“baseline” algorithm provides an upper bound on the accuracy for low-resolution
face recognition.

3.2 Algorithm Details

We trained the VGG deep face network using the VGG face dataset [1] for
256× 256 pixel gray-scale face images. 1 The network outputs 4096 dimensional
feature vectors. Next, we trained the super-resolution network for each dataset
separately by minimizing each of the loss terms stated in equations (3), (4)
and (7). We also analyzed how joint optimization of all the terms affects the
verification performance by minimizing weighted sum of all loss terms

Ĝ = argmin
G

(Lrecon + αLssim + βLrecog) . (11)

We set weights α and β following a greedy search procedure. The code is im-
plemented using the Caffe deep learning framework [34]. Optimization was per-
formed using the RMSProp algorithm [35] with a learning rate of 0.001 and a
decay rate of 0.01. The training took 3 days on a NVIDIA GeForce GTX TITAN
X GPU with Maxwell architecture and 12GB memory. Average running time for
verification of a probe and gallery image pair is 0.1 second. We used a patch size
of h = 8 for SSIM loss.

1 Note that, the output of super-resolution network is upsampled 2× with linear in-
terpolation to be input to the VGG network.
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Method
FRGC Multi-PIE

Lrecog AUC PSNR SSIM Lrecog AUC PSNR SSIM

Bicubic 1.135 0.767 23.812 0.606 1.170 0.850 18.923 0.443

SRCNN [36] 1.115 0.773 23.733 0.619 1.153 0.875 23.249 0.610

URDGN [16] 1.025 0.780 17.738 0.512 1.143 0.896 23.845 0.632

VDSR [37] 1.088 0.796 24.794 0.646 1.192 0.685 13.366 0.285

MZQ [38] 0.909 0.806 25.287 0.758 1.170 0.850 18.923 0.443

Only Lrecon 0.834 0.818 26.485 0.797 0.912 0.958 24.718 0.724

Only Lssim 1.185 0.618 14.075 0.068 0.994 0.929 22.504 0.640

Only Lrecog 0.794 0.831 15.730 0.247 0.879 0.963 18.176 0.431

Joint 0.788 0.833 26.169 0.747 0.887 0.968 24.428 0.684

Table 1. Quantitative results on FRGC and Multi-PIE, where baseline (HR face verifi-
cation) AUC between original image pairs are computed as 0.851 and 0.998 respectively.

Method
LFW-a MegaFace

Lrecog AUC PSNR SSIM Lrecog AUC PSNR SSIM

Bicubic 1.131 0.791 22.273 0.566 1.174 0.568 20.615 0.514

SRCNN [36] 1.067 0.826 22.833 0.601 1.126 0.656 21.177 0.546

URDGN [16] - - - - 1.107 0.730 16.804 0.401

VDSR [37] 1.074 0.845 23.408 0.621 1.109 0.686 21.680 0.573

MZQ [38] 0.992 0.849 22.660 0.623 1.033 0.804 21.496 0.604

Only Lrecon 1.018 0.850 22.655 0.625 0.981 0.848 22.674 0.672

Only Lssim 1.159 0.673 13.417 0.171 1.253 0.406 11.305 0.071

Only Lrecog 0.974 0.883 16.600 0.336 0.900 0.891 15.354 0.376

Joint 0.963 0.887 22.055 0.537 0.949 0.864 21.218 0.555

Table 2. Quantitative results on LFW-a and MegaFace datasets, where baseline (HR
face verification) AUC between original image pairs are computed as 0.980 and 0.976
respectively. Best value for each column is shown in bold.

3.3 Quantitative Results

We report quantitative results in Table 1 and Table 2 for the experiments on
controlled and uncontrolled datasets, respectively. In order to evaluate face ver-
ification performance, we computed a receiver operating characteristic (ROC)
curve (plotting true positive versus false positive face verifications) by varying
the threshold γ and reported area under curve (AUC). Since an important con-
tribution of our method is minimizing the distance of low-resolution and high-
resolution images in feature space, we also report recognition loss Lrecog on the
test set as a means of quantifying identity preservation. For evaluating appear-
ance quality, we report peak signal-to-noise ratio (PSNR) and SSIM. As seen in
the tables, the network trained by minimizing recognition loss outperforms all
other methods and the other individual loss functions in terms of face verifica-
tion, although the others yield higher PSNR and SSIM values. Note that SSIM
loss is computed on each image patch independently as opposed to the SSIM
value that we compute for the whole image during evaluation. Low SSIM value
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(a) FRGC (b) Multi-PIE

(c) LFW-a (d) MegaFace

Fig. 2. ROC curves for the results on (a) FRGC, (b) Multi-PIE, (c) LFW-a, and (d)
MegaFace datasets. The numbers in parantheses indicate area under curve (AUC).

using Lssim loss on FRGC is due to the fact that the images are all frontal, yield-
ing filters learned independently for each facial patch (Please see block affects
on visual results in Figure 4).

After a greedy procedure, we set weights of joint optimization for FRGC
and Multi-PIE as α = 1, 000, β = 300 and for LFW-a and MegaFace as α =
10, 000, β = 3, 000. Note that the magnitude of Lrecon and Lssim is in the order
of number of pixels in the high-resolution image and in the patch respectively,
while the magnitude of Lrecog is in the order of feature vector dimension, which
is 4096. In Table 1 the results for joint optimization of all terms are comparable
to the results with recognition loss. However, adjusting the weights of the terms
in the joint optimization is a tedious process. Therefore, using only recognition
loss is sufficient, if the final goal of the super-resolution is face identification.
During greedy selection procedure, we also trained the network without SSIM
loss, but the verification performance was slightly worse compared to using all
three terms together. In Table 2, verification accuracy is comparable for joint
loss and recognition loss on LFW-a, while on MegaFace dataset recognition loss
outperforms with a difference of around 0.03 in AUC.
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(a) Labels (b) MZQ method (c) Our method (d) Baseline

Fig. 3. Colormap visualization of distance matrices: (a) facial identity matrix (white
pixels indicate the images of the same person) and the distance matrices in feature
domain between (b) super-resolved images with MZQ technique [38] and HR images,
(c) super-resolved images by our method and HR images, and (d) among HR image
pairs, i.e. baseline.

We compared the performance of our method with the state-of-the-art generic
and face-specific super-resolution methods as reported in the table. For general
object super-resolution methods, we compared with two deep learning-based
methods: SRCNN by Dong et al. [36] and VDSR by Kim et al. [37]. Since both
methods handle at most 4× magnification, we performed 4× magnification fol-
lowed by 2× magnification in order to achieve the same upsampling with our
method. For face-specific super-resolution methods, we compared against UR-
DGN by Yu et al. [16] and MZQ by Ma et al. [38]. We also performed experiments
with structured face hallucination (SFH) technique [39], but we omitted its re-
sults since it was not successful for most of the images for 8× magnification due
to its dependence on facial landmark detection. For the MZQ method we used
the implementation of Yang et al. [39] and employed the same training set as ours
for training except MegaFace dataset. Since MZQ is a dictionary-based approach
and the implementation had memory constraints, for MegaFace dataset we ran-
domly selected 100K images from the training set and used them for training
MZQ method. For the other methods, we used the provided pre-trained models
by the respective studies. URDGN method was trained on colored images with a
different face alignment than ours. Therefore, we tested their method after align-
ing the test images according to their settings. Also, URDGN experiments were
carried out on colored images, but final evaluation measures were computed on
grayscale images. Note that all datasets consist of colored images except LFW-a,
which has only grayscale images.

Figure 2 shows the ROC curves for all methods in each of the datasets.
The difference between recognition and other losses is more visible in uncon-
trolled datasets, while recognition loss still outperforms the other losses in both
controlled setting datasets, FRGC and Multi-PIE. The super-resolution network
trained with recognition loss has accuracy very close to the high-resolution (opti-
mal) baseline for FRGC and Multi-PIE (around 0.03 in terms of AUC), although
for LFW-a and MegaFace there is a larger gap. Compared to other state-of-the-
art super-resolution algorithms, our network trained on Lrecog does significantly
better. The network trained on joint loss is slightly better than Lrecog for FRGC
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Probe Bicubic Lrecon Lssim Lrecog Joint GT Probe

Fig. 4. Example probe images and super-resolution results on FRGC dataset. From
left to right: LR probe image, bicubic interpolation, super-resolution results with re-
construction, SSIM, recognition and joint losses, ground truth (GT) HR probe image.

Probe Bicubic MZQ [38] VDSR [37] SRCNN [36] URDGN [16] Proposed GT

Fig. 5. Comparative results on FRGC dataset.

and LFW-a and slightly worse for Multi-PIE, at the expense of more time con-
suming training. Proposed method gives the best performance on large-scale
MegaFace dataset. Our network trained on Lrecon is better in terms of AUC on
all test sets than competing super-resolution methods, although not as good as
when using Lrecog or joint loss.

Our main goal in this study is to obtain super-resolved images that are similar
to the corresponding ground truth high-resolution (HR) images in the feature
domain. Thus, we also provide a colormap visualization of the pairwise distance
matrices in the feature domain for the FRGC dataset in Figure 3. As can be
seen, the distance matrix of HR-to-HR (i.e. baseline) pairs is very similar to
the distance matrix of super-resolved-to-HR pairs. Figure 3b also shows the
distance matrix for MZQ algorithm [38] that gives the best performance among
the comparative methods in terms of face verification. The difference between
matching and unmatching pairs is more visible in the distance matrix obtained
from our method.

3.4 Qualitative Results

The goal of this study is not to obtain good looking super-resolved images,
but rather to improve face verification accuracy for low-resolution images. We
display visual results from our super-resolution network in order to elaborate
what kind of features are retained and input to the VGG network for better face
identification.

Face verification was performed between a low-resolution probe image and
high-resolution gallery image. Figure 4 shows example low-resolution probe im-
ages along with the super-resolved images from the minimization of various loss
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Probe Bicubic MZQ [38] VDSR [37] SRCNN [36] URDGN [16] Proposed GT

Fig. 6. Comparative results on Multi-PIE dataset.

Probe Bicubic MZQ [38] VDSR [37] SRCNN [36] Proposed GT

Fig. 7. Comparative results on LFW-a dataset.

functions on the FRGC dataset. Reconstruction loss and SSIM loss smooth out
facial details, while recognition-based loss can yield more details around impor-
tant facial regions such as eyes and nose.

Figure 5 shows comparative super-resolution results from all tested meth-
ods on FRGC dataset. The column labeled “Proposed” is our super-resolution
network trained using recognition loss only. As can be seen face-specific super-
resolution methods yield visually appealing results. However, their face verifica-
tion performance is poor.

Figure 6 shows visual results using various methods on the Multi-PIE dataset.
The proposed method is not affected from uneven brightness and shadows on the
face that occur due to lighting direction as seen in the figure. Comparative results
on LFW-a and MegaFace datasets are displayed in Figures 7 and 8 respectively.

An interesting observation about faces upsampled using our proposed super-
resolution network is that the lighting effects are largely removed, which is very
useful if face recognition accuracy is the goal, although it is not what should
happen if the goal is to create a high-resolution face image that looks like the
input low-resolution face when downsampled. Figure 7 and Figure 8 illustrate
this point the best. In Figure 7, the input faces have strong lighting on the right
side of the image, but our proposed super-resolved faces are much more evenly
lit. Similar effects are visible on the results in Figure 8. Removing the effects of
lighting is well-known to improve face recognition accuracy.
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Fig. 8. Comparative results on Megaface dataset.

4 Conclusion and Discussion

We presented a super-resolution-based method for verification of very low-resolution
faces. Our method exploited a VGG network for feature extraction. We trained
a deep neural network for 8 times super-resolution of face images by minimizing
the distances of high-resolution and super-resolved images of the same person
in terms of their face descriptors computed by the VGG Deep Face network.
The results on controlled and uncontrolled settings showed that the presented
method provides better verification accuracy compared to conventional super-
resolution techniques. This work demonstrates that generating visually appealing
super-resolved images is not necessary if the final goal is improving face recog-
nition accuracy. Instead, the super-resolution network should directly optimize
the distance to the desired face descriptor.

In this work, our aim was to learn a high-resolution image generator given a
feature extractor, assuming that the feature extractor already performs well in
high-resolution face verification. In other words, we trained the generator to find
the best mapping function that will transform a given low-resolution image to its
high-resolution version in feature space. Thus, feature extractor and generator
were trained in alternating steps rather than an end-to-end fashion. Moreover,
simultaneous learning of feature extractor and generator is a cumbersome task
as it will require learning of a larger number of parameters.

Low-resolution face verification is a challenging task that involves detection,
super-resolution and verification. In this work, we focused on super-resolution
and verification components by assuming the faces are already detected. Al-
though low-resolution face detection is hard, it can be done with current al-
gorithms, especially using upper torso or full pedestrian detection to localize
the face. Face alignment carried out in our experiments are very rough (espe-
cially LFW-a), hence a face bounding box will be sufficient for our verification
module. Moreover, the architecture of our super-resolution network is more ro-
bust to transformations on the input image as explained in [16]. Detection and
super-resolution problems can benefit from each other. We would like to work
on low-resolution face detection incorporating our super-resolution approach as
a future extension.

Using video inputs rather than single images is an important future exten-
sion of our work. Also, we would like to incorporate more constraints to our
loss function to increase the feature distance between face images with different
identities.
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