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Abstract
We present a set-oriented graph-based computational framework for continuous time optimal
transport over nonlinear dynamical systems. We recover provably optimal control laws for
steering a given initial distribution in phase space to a final distribution in prescribed finite
time for the case of non-autonomous nonlinear control-affine systems, while minimizing a
quadratic control cost. The resulting control law can be used to obtain approximate feedback
laws for individual agents in a swarm control application. Using infinitesimal generators,
the optimal control problem is reduced to a modified Monge-Kantorovich optimal transport
problem, resulting in a convex Benamou-Brenier type fluid dynamics formulation on a graph.
The well-posedness of this problem is shown to be a consequence of the graph being strongly-
connected, which in turn is shown to result from controllability of the underlying dynamical
system. Using our computational framework, we study optimal transport of distributions
where the underlying dynamical systems are chaotic, and non-holonomic. The solutions to the
optimal transport problem elucidate the role played by invariant manifolds, lobe-dynamics
and almost-invariant sets in efficient transport of distributions in finite time. Our work
connects set-oriented operator-theoretic methods in dynamical systems with optimal mass
transportation theory, and opens up new directions in design of efficient feedback control
strategies for nonlinear multi-agent and swarm systems operating in nonlinear ambient flow
fields.
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Abstract. We present a set-oriented graph-based computational framework for continuous-
time optimal transport over nonlinear dynamical systems. We recover provably optimal
control laws for steering a given initial distribution in phase space to a final distribution
in prescribed finite time for the case of non-autonomous nonlinear control-affine systems,
while minimizing a quadratic control cost. The resulting control law can be used to obtain
approximate feedback laws for individual agents in a swarm control application. Using infini-
tesimal generators, the optimal control problem is reduced to a modified Monge-Kantorovich
optimal transport problem, resulting in a convex Benamou-Brenier type fluid dynamics for-
mulation on a graph. The well-posedness of this problem is shown to be a consequence of
the graph being strongly-connected, which in turn is shown to result from controllability
of the underlying dynamical system. Using our computational framework, we study op-
timal transport of distributions where the underlying dynamical systems are chaotic, and
non-holonomic. The solutions to the optimal transport problem elucidate the role played
by invariant manifolds, lobe-dynamics and almost-invariant sets in efficient transport of
distributions in finite time. Our work connects set-oriented operator-theoretic methods in
dynamical systems with optimal mass transportation theory, and opens up new directions in
design of efficient feedback control strategies for nonlinear multi-agent and swarm systems
operating in nonlinear ambient flow fields.

1. Introduction. Understanding, computing and controlling phase space transport is of
utmost importance in the study of nonlinear dynamical systems. For computation of phase
space transport in dynamical systems, the available techniques can be divided into roughly
three classes: geometric, topological and statistical (or operator theoretic) methods.

The geometric methods, originating in Poincaré’s [63] work in celestial mechanics, aim at
extracting structures in phase space that organize transport. In recent years, the focus in
this field has been on extracting the Lagrangian coherent structures in autonomous and non-
autonomous systems, which are often the stable and unstable manifolds [82] of fixed points
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or periodic orbits, or their time-dependent analogues [41]. Related techniques based on
lobe-dynamics [82] allow for quantifying transport between different weakly mixing regions
in the phase space. Application to low-dimensional systems arising in fluid kinematics [60,
83], celestial mechanics [48], and plasma physics [55] have been developed over the years.
Once these Lagrangian structures have been identified, intelligent control strategies can be
formulated to obtain efficient phase space transport between the desired regions in the phase
space; see Refs. [48, 69, 68, 78, 79] for some recent work in this area. The topological methods
[37] provide rigorous bounds and sharp estimates of certain transport related quantities. For
example, such methods have been applied in the the study of passive scalar mixing in laminar
fluid flows [11, 74]. Some topological optimal control problems have also been studied [27].

The operator-theoretic statistical techniques [50] are based on lifting the evolution from the
state space to the space of measures, in case of the Perron-Frobenius (or transfer) operator,
and to the space of observables, in case of the Koopman operator. In both cases, the lifted
dynamical system is linear, albeit in infinite dimensions. The linearity allows for immediate
application of techniques from linear algebra and linear systems theory. Numerical methods
based on operator theory have been developed, and applied to several problems of contem-
porary interest [19, 17, 12, 10, 56]. Using efficient phase space discretization techniques,
these methods enable discovery of ‘coherent sets’ in autonomous [28] and non-autonomous
[30] dynamical systems. Recent work has also shown that combining the statistical methods
with geometric [18, 29, 73], or topological methods [40, 71] can give further qualitative and
quantitative information about phase space transport.

The set-oriented numerical methods for computing transfer operators [17, 10] are espe-
cially well-suited for developing rigorous methods for control, e.g. see Refs. [45, 67, 44] for
applications to control of individual trajectories. In Refs. [76, 77, 65], an optimal control
framework for asymptotic feedback stabilization of arbitrary initial measure to an attractor
is presented. Also relevant is the work in the area of occupation measures, see Ref. [51]. In
fluid mechanics, such techniques have been exploited for optimal control of mixing passive
scalars in fluids, see Refs. [32, 34].

For control problems, the transfer operator based framework has a dual interpretation.
The density control problem of a passive scalar (as in fluid mechanics), and the control of
distribution of a continuum of dynamic agents (as in swarm robotics etc.) can both be
studied in this setting. The difference lies in the definition of admissible controlled vector
fields. In the former case, the controlled vector field is chosen to be among a set of physically
meaningful vector fields (e.g. satisfying the incompressibility condition), and/or is governed
via a dynamic equation (e.g. Navier-Stokes).

In the latter case that is the focus of our work, the individual agents are being governed by
a nonlinear control system. The distribution of agents’ states is described by a time-varying
measure over the phase space of a single agent. The controlled velocity field governing
the evolution of this measure is restricted to the set of all vector fields that result from
controlled motion of individual agents. In this paper, we develop a set-oriented framework
for the problem of continuous-time ‘optimal transport’ [80] of measure under such controlled
nonlinear dynamics. This problem involves optimally steering an initial measure on a phase
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space X, to a final measure in given finite time. Specifically, we consider nonlinear control-
affine systems of the form,

ẋ(t) = g0(x(t), t) +
n∑
i=1

ui(t)gi(x(t)), (1)

where X is d−dimensional, and n is the number of control inputs. Our aim is to compute
controls ui such that a cost of transporting a measure µt0 to µtf over the time-horizon [t0, tf ]
is minimized. This cost is given by the integral over phase-space and time,

C =

∫
X

∫ tf

t0

n∑
i=1

|ui(x, t)|2dt dµ(x). (2)

A major motivation for studying this problem comes from the field of multi-agent systems
or swarm control. The problem of path planning and control of a swarm of homogenous
agents in an ambient nonlinear flow field can be formulated as optimal transport problem
in the presence of nonlinear dynamics. For instance, the control of magnetic particles in
blood stream [35, 14, 62], robotic bees in air [21, 84], and swarms of autonomous underwater
vehicles (AUVs) in the ocean [53] can all be studied in this setting. This problem also
arises naturally in the realm of nonlinear control systems of a single ‘agent’, where its initial
and final states can only be specified as probability distributions. In this case, the measures
involved are probability measures, and hence, the optimal transport cost C is the expectation
of control cost over all possible initial and final states.

The field of optimal mass transportation [80] is concerned with optimal mapping of mea-
sures in different settings, including on graphs [54], and has deep connections with phase
space transport in dynamical systems [26, 8, 5]. The problem of optimal transport in linear
dynamical systems has been studied recently [43, 16, 15], resulting in several theoretical and
computational advances.

In our previous work [39], we studied the problem of obtaining optimal perturbations in
discrete time for systems with nonlinear dynamics, that result in desired measure trans-
port. The perturbations were modeled as instantaneous, and computed by solving a Monge-
Kantorovich optimal transport problem on a graph in pseudo-time. Furthermore, full con-
trollability was assumed in computation of the pseudo-time optimal transport. Hence, the
evolution of the measure resulted from switching between the uncontrolled dynamics in (real)
time, and the continuous pseudo-time optimal transport.
Contributions: In this work, we develop a set-oriented graph-based computational frame-
work for continuous-time optimal transport over nonlinear dynamical systems of the form
given in Eq. (1). The solution of this problem provides an open-loop control for the mea-
sure, and an approximate feedback control for individual agents, to move from an initial
to final measure in finite time. Using infinitesimal generators, the optimal control prob-
lem is reduced to a modified Monge-Kantorovich optimal transport problem, resulting in a
convex Benamou-Brenier type fluid dynamics formulation on a graph. We show that the
well-posedness of the resulting optimal transport problem on this graph is related to con-
trollability of the underlying dynamical system. We prove that if the underlying dynamical
system is controllable, the graph obtained in our formulation is strongly-connected. It is then
proved that arbitrary final measures not lying on the boundary of the probability simplex
can be reached in finite-time.
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This work extends our previous work [39] in several directions. First, we work in continuous-
time, and as a result, the (passive) dynamics and the control act on the measure concurrently
(rather than in a switching fashion). This also removes the requirement in Ref. [39] that the
control acts on faster time scales than the passive dynamics. Second, rather than assuming
full-controllability of measures, we rigorously relate the controllability in the space of mea-
sures on a graph to the controllability properties of the underlying (single-agent) dynamical
system in continuous phase space. Third, we obtain an algorithm to obtain approximate
feedback laws for individual agents from the open-loop solutions of the optimal transport
problem.

Using this framework, we compute optimal transport of distributions where the under-
lying dynamical systems are chaotic (periodic double-gyre), and non-holonomic (unicycle).
The application to periodically driven double-gyre rigorously elucidates the role of invari-
ant manifolds, lobe-dynamics and almost-invariants sets in efficient finite-time transport of
distributions in the phase space.

2. Background and Mathematical Preliminaries. We briefly review concepts from
control systems theory, optimal transport and set-oriented numerical methods relevant to
the discussion in Section 3. Specifically, we motivate the developments of Section 3 by
relating the continuous and discrete (graph-based) concepts of optimal transport in controlled
dynamical systems.

2.1. Optimal Transport in Controlled Dynamical Systems. The Monge-Kantorovich
optimal transport (OT) problem [80] is concerned with mapping of an initial measure µ0 on
a space X to a final measure µ1 on a space Y . In the original formulation, it involves solving
for a measurable transport map T : X → Y , which pushes forward µ0 to µ1 in an optimal
manner. The cost of transport per unit mass is prescribed by a function c(x, T (x)). Hence,
the optimization problem is

inf
T

∫
c(x, T (x))dµ0(x), (3)

s.t. T#µ0 = µ1,

where T# is the pushforward of T , i.e. (T#µ)(A) = µ(T−1(A)) for every A. In a ‘relaxed’
version of this problem, due to Kantorovich, the optimization problem is to obtain an optimal
joint distribution π(X × Y ) on the product space X × Y , where the marginal of π on X is
µ0 and on Y is µ1. We denote by

∏
(µ0, µ1) the set of all measures on product space with

the marginals µ0 and µ1 on X and Y respectively. Hence, the relaxed problem is

inf
π(X×Y )∈

∏
(µ0,µ1)

∫
c(x, y)dπ(x, y). (4)

For the case of quadratic costs, i.e., c(x, y) = ‖x− y‖2, the support of the optimal distri-
bution π(X × Y ) is the graph of the optimal map T obtained from the solution of problem
3. The square-root of the optimal cost obtained as solution of this problem is called the
2−Wasserstein distance, and we denote it by W2(µ0, µ1). We concern ourselves with only
quadratic cost in this paper.

An alternative fluid dynamical interpretation of OT problem was provided by Brenier-
Benamou [6]. In this approach, the optimization problem is formulated in terms of an
advection field u(x, t), and initial and final densities (ρ0(x), ρ1(x)) of a passive scalar. The
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core idea is to obtain the optimal map T as a result of advection over a ‘time’ period (t0, tf )
by an optimal advection field u(x, t). It can be shown that the optimization problem given
by Eq. (3) (with X = Y = Rd) with quadratic cost is equivalent to the following problem:

W 2
2 (µ0, µ1) = inf

u(x,t),ρ(x,t)

∫
Rd

∫ tf

t0

ρ(x, t)|u(x, t)|2dtdx, (5)

s.t.
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)u(x, t)) = 0, (6)

ρ(x, t0) = ρ0(x), ρ(x, tf ) = ρ1(x).

The motion of a passive scalar is governed by the ordinary differential equation of the
single integrator,

ẋ(t) = u(x, t). (7)

By a change of variables from (ρ, u) to (ρ,m
∆
= ρu), the optimization problem in Eq. (5)

can be put into a form where its convexity can be proved easily. The transformed convex
optimization problem is

inf
ρ(x,t)≥0,m(x,t)

∫
Rd

∫ tf

t0

|m(x, t)|2
ρ(x, t)

dtdx, (8)

s.t.
∂ρ(x, t)

∂t
+∇ · (m(x, t)) = 0, t0 ≤ t ≤ tf ,

ρ(x, t0) = ρ0(x), ρ(x, tf ) = ρ1(x).

The basic theory of generalization to general nonlinear controlled dynamical systems
ẋ(t) = f(x(t), u(t)), has been developed in Refs. [2, 66]. This problem can be interpreted
as finding optimal control which steers an initial scalar density to a final density, where the
scalar transport occurs according to a controlled dynamical system f(x(t), u(t)).

For the special case of linear dynamical systems with quadratic cost, mirroring the optimal
control case, further analytical development and computational simplification has been made
[43, 16]. As described in Ref. [16], consider the following setup:

c(x1, x2) = inf
Ux2x1

∫ tf

t0

1

2
‖u‖2dt, (9)

ẋ(t) = A(t)x(t) +B(t)u(t), t0 ≤ t ≤ tf , (10)

x(t0) = x1, x(tf ) = x2. (11)

The generalization of Benamou-Brenier approach to the corresponding optimal transport
problem can be seen to be the following:

inf
u(x,t),ρ(x,t)

∫
Rd

∫ tf

t0

ρ(x, t)|u(x, t)|2dtdx, (12)

s.t.
∂ρ(x, t)

∂t
+∇ · ((A(t)x(t) +B(t)u(x, t))ρ(x, t)) = 0, t0 ≤ t ≤ tf ,

ρ(x, t0) = ρ0(x), ρ(x, tf ) = ρ1(x).
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We note that the optimal transport problem given by Eq. (12) can also be interpreted
as the problem of optimally steering a dynamical system from a probabilistic initial state
to a probabilistic final state. Note that the dynamics of the system are still taken to be
deterministic; however see Ref. [15] for connections with stochastic dynamical systems. For
the purpose of studying controlled measure transport in nonlinear systems, we use tools from
operator theory, which are discussed next.

2.2. Transfer Operator and Infinitesimal Generator. Consider the flow-map φt0+T
t0 :

X → X on a d-dimensional phase space X. This map may be obtained as a time-T map of
the flow of a possibly time-dependent dynamical system,

ẋ = f(x, t). (13)

The corresponding Perron-Frobenius transfer operator [50] P t0+T
t0 is a linear operator which

pushes forward measures in phase space according to the dynamics of the trajectories under
φt0+T
t0 . Let B(X) denote σ−algebra of Borel sets in X. Then, for any measure µ,

P t0+T
t0 µ(A) = µ((φt0+T

t0 )−1(A)) ∀A ∈ B(X). (14)

The transfer operator lifts the evolution of the dynamical systems from phase space X to
the space of measures M(X). Numerical approximation of P , denoted by P̂ , may be viewed
as a transition matrix of an N -state Markov chain [10]. For computation, we partition the
phase space volume of interest into N d−dimensional connected, positive volume subsets,
B1, B2, . . . , BN with piecewise smooth boundaries ∂Bi. Usually, these subsets are hyper-
rectangles. The matrix P̂ = {p̂ij} is numerically computed via the Ulam-Galerkin method
[75, 10], as follows

p̂ij =
m̄
(
(φt0+T

t0 )−1(Bi) ∩Bj

)
m̄(Bj)

, (15)

where m̄ is the Lebesgue measure. The action of the transfer operator over a finite time
T can also be defined naturally on densities in the case of Lebesgue absolutely continuous
measures. However, we are more interested in capturing the continuous-time behavior of the
dynamical system in Eq. (13) in the space of densities. The continuity equation for system
in Eq. (13), is given by

dµ

dt
= −∇ · (f(x, t)µ). (16)

For the numerical approach used in this paper we briefly consider the Eq. (16), in a
operator theoretic framework, as an abstract ordinary differential equation in the space of
measures, formally. Eq. (16) can be expressed as

µ̇(t) = A(t)µ ; µ(s) = µs ∈M(X), (17)

where A(t) : D(A(t)→M(X)), D(A(t)) ⊂M(X) and the solution, µ(t), of Eq. (17) can be
expressed using a two-parameter semigroup of operators (U(t, s)s,t∈R,t≥s as µ(t) = U(t, s)µs.
The divergence operation is to be understood in the sense of duality of M(X) with C(X)
(assuming X is compact). Here C(X) refers to the space of continuous functions on X.
The Perron-Frobenius operator is related to this two-parameter semigroup of operators as
U(T, t0) = P t0+T

t0 for given parameters t0 and T . In general, guaranteeing the existence
6



of a strongly continuous two-parameter semigroup based on the time-dependent generator
A(t) is quite involved. See for example Refs. [24, 25]. In contrast, the theory is more
well-developed for the case when A(t) ≡ A, (the vector field f(x) is time independent). In
this case, the solution, µ(t), can be expressed by a one-parameter semigroup of bounded
operators, (T (t))t≥0, as µ(t) = T (t − s)µs. Here, the generator A and T (t) are related by
the formula

Aµ = lim
h→0+

T (h)µ− µ
h

for each µ ∈ D(A). (18)

As in the case of the Perron-Frobenius operator, one can also consider the semigroup
and its generator on a space of densities (or equivalently on a space of measures absolutely
continuous with respect to a reference measure with additional regularity restrictions).

Bi Bj
nij

f

Figure 1. Computation of infinitesimal generator F . The entry Fij is proportional to
flux across Bi ∩Bj from Bi to Bj , due to vector field f .

Ulam’s method for approximating Perron-Frobenius operators using Markov matrices ex-
tends to numerical approximations of semigroups corresponding to the continuity equation.
Analogously, one approximates the generator of the semigroup using transition rate matri-
ces, which generate approximating semigroups on a finite state space. We recall this method
as shown in [33]. We denote by B̄i the closure of Bi. The operator A(t) is approximated
by defining elements of time-varying transition rate matrix {Aij(t)}, which are computed as
follows,

Aij(t) =


1

m̄(Bj)

∫
B̄i∩B̄j max{f(x, t) · nij, 0} i 6= j,

−∑k 6=i
m̄(B̄k)

m̄(B̄i)
Aik(t) otherwise,

(19)

where nij is the unit normal vector pointing out of Bi into Bj if B̄i∩B̄j is a (d−1) dimensional
face, and zero vector otherwise. See Fig. 1. Note that in [33], the authors also considered the

perturbed version of the operator, −∇· (f(x, t)·) : −∇· (f(x, t)·) + ε2

2
∆. This was mainly to

exploit the spectral properties of the perturbed operator and the corresponding semigroup.
However, in this work the perturbed operator does not offer any visible advantages. Hence,
we work with approximations of the operator, −∇ · (f(x, t)·), alone. Nevertheless, we note
that the discretization will introduce some numerical diffusion.
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2.3. Monge-Kantorovich Transport on Graphs. Now consider a directed graph G =
(V , E) on X, where the set of vertices V represent the subsets Bi as before, and the set of
directed edges E are obtained from the topology of X. For each pair of neighboring vertices,
two edges are constructed, one in each direction.

A continuous-time advection on such a graph can be described [7, 13] as,

d

dt
µ(t, v) =

∑
e=(w→v)

U(t, e)µ(t, w)−
∑

e=(v→w)

U(t, e)µ(t, v), (20)

where µ(t, v) is the time-varying measure on a vertex v, and U(t, e) is the flow on an edge
e. Here we use the notation e = (v → w) to represent the edge e directed from a vertex v to
w. The notion of optimal transport has been extended to such a continuous-time discrete-
space setting recently [54, 36, 57, 70]. Following [70], one can formulate a quadratic cost
optimal transport problem on G as follows. First, define an advective inner product between
two flows U1, U2 as

〈U1, U2〉µ =
∑

e=(v→w)

(
µ(v)

µ(w)
.
µ(v) + µ(w)

2

)
U1(e)U2(e). (21)

Then the corresponding optimal transport distance between a set of measures (µ0, µ1)
supported on V can be written as

W̃N(µ0, µ1) = inf
U(t,e)≥0,µ(t,v)≥0

∫ 1

0

‖U(t, .)‖µ(t,.)dt, (22)

such that Eq (20) holds, and

µ(0, v) = µ0(v), µ(1, v) = µ1(v) ∀v ∈ V.

Here ‖U(t, .)‖µ(t,.) ,
√
〈U,U〉

µ
. This approach is motivated by the previously discussed

Benamou-Brenier approach for optimal transport on continuous spaces, and results in the
following advection based convex optimization problem.

W̃N(µ0, µ1)2 = inf
J(t,e)≥0,µ(t,v)≥0

∫ 1

0

∑
e=(v→w)

J(t, e)2

2

(
1

µ(t, v)
+

1

µ(t, w)

)
dt, (23)

µ(0, v) = µ0(v), µ(1, v) = µ1(v) ∀v ∈ V, (24)

d

dt
µ(t, .) = DTJ(t, .), (25)

where J(t, e) , µ(t, v)U(t, e) for e = (v → w), and D ∈ R|E|×|V| is the linear flow operator
computing µ(w) − µ(v) for each e = (v → w) ∈ E . Specifically, DT (i, j) equals +1 if jth
edge points into ith vertex, −1 if jth edge points out of ith vertex, and 0 if jth edge is not
connected to ith vertex. Hence Eq. (25) is a rewriting of Eq. (20) in terms of J(t, .). The
change of variables from U to J is analogous to the change of variables in Brenier-Benamou
formulations, as discussed earlier in this section. The convergence of W̃N to W2, the 2-
Wasserstein distance on a continuous phase space (a d-torus), as N →∞ is studied in Ref.
[36].
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Continuous-Discrete Analogy: Conceptually, one can regard the problem described by
Eqs. (23-25) as the graph-based analogue of the optimal transport problem given in Eq. (8).
Recall that this corresponds to single-integrator dynamics ẋ = u(t). In the next section, we
use this interpretation, and generalize this graph-based framework to nonlinear dynamical
systems of the form given in Eq. (1).

3. Problem Setup and Computational Approach.

3.1. Formulation of Optimal Transport Problem on Graphs. Let M ⊂ Rd be an
open bounded connected subset of an Euclidean space with piecewise smooth boundary. For
a collection of analytic time-invariant vector fields {gi}ni=1 and possibly time-varying vector
field g0 on M , consider the control affine system of the form

ẋ(t) = g0(x(t), t) +
n∑
i=1

ui(t)gi(x(t)),

x(0) = x0. (26)

Then given the densities ρ0 and ρ1 on M , the corresponding optimal transport problem of
interest is the following

inf
u(x,t),ρ(x,t)

∫
Rn

∫ tf

t0

n∑
i=1

ρ(x, t)|ui(x, t)|2dtdx, (27)

s.t.
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)g0(x, t)) +

n∑
i=1

∇ · (ρ(x, t)ui(x, t)gi(x)) = 0 , x ∈M, (28)

~n · (g0(x, t)ρ(x, t) +
n∑
i

ui(x, t)gi(x)ρ(x, t)) = 0 a.e. x ∈ ∂M,

ρ(x, t0) = ρ0(x), ρ(x, tf ) = ρ1(x).

Here, ~n is the outward normal vector at the boundary of M , and we have assumed zero mass
flux boundary conditions.

We approximate the optimal transport problem using a sequence of optimal transport
problems on graphs. A key tool is to approximate the (time-varying) generator of the semi-
group corresponding to the Eq. (28) using generator approximations on a finite state space
[33], as discussed in Section 2.2. Hence, we approximate solutions of optimal transport prob-
lems on an Euclidean space using solutions of optimal transport problems on graphs.

Construction of Graph G : Towards this end, we partition M into m d-dimensional con-
nected, positive volume subsets Pm = {B1, B2..., Bm}. Additionally, we assume that the
boundaries ∂Bi are piecewise smooth. Then we can consider the optimal transport problem
on a graph G = (V , E) where the the cardinality of V is m and the connectivity of the graph
is determined by the topology of M and the partition Pm. More specifically, V = {1, 2.....m}
and an element e = (v → w) ∈ E for v, w ∈ G and v 6= w if B̄v ∩ B̄w has non-zero d − 1-
dimensional measure. The graph G is strongly connected, i.e., for any two vertices, v0, vT ∈ V
there exists a directed path of r vertices, (v1, v2....vr) in V , such that (vi → vi+1) ∈ E for
each i ∈ {1, 2....r − 1}. Moreover, this graph is also symmetric, that is, e = (v → w) ∈ E
implies ē defined by ē = (w → v) is also in E .

9



In order to apply the approximation procedure from Ref. [33], we express the continuity
Eq. (28), as a bilinear control system,

ẏ(t) = A0(t)y +
n∑
i=1

Ai(ûi(t)y(t)), (29)

where A0(t) = −∇ · (g0(x, t) · ) for each t ∈ [0, 1], ûi(t) = ui(·, t), y(t) = ρ(·, t), Ai = −∇ ·
(gi(x) · ). Note that the right hand side of a bilinear system is traditionally expressed in the
form A(t)ρ(t)+u(t)Bρ(t) in control theory literature [23]. The form in Eq. (29) is equivalent
for systems on finite-dimensional state spaces, but not for general infinite dimensional bilinear
systems if û(t) is not a scalar for each t ∈ [t0, tf ]. For example, in the continuity equation,
one can see that u(x, t)∇· (ρ(x, t)) 6= ∇· (u(x, t)ρ(x, t)) in general. Hence, the form Eq. (29)
is more appropriate for expressing the system in Eq. (28).

In Section 2.2, it was discussed how generators of semigroups corresponding to the con-
tinuity equation can be used to define a approximating semigroup on a graph generated by
appropriately constructed transition rate matrices. This method can be generalized to the
controlled continuity equation, Eq. (28). A natural extension is to consider approximations
of the control operators Ai using corresponding transition rate matrices, and analogously
construct a controlled Markov chain on the space V . However, we note that typically for a
controlled Markov chain, the control parameters are constrained to be non-negative. Hence,
a direct approximation of Ai using transition rate matrices and constraining ûi(t) to be pos-
itive would negate the possibility that one can flow both backward and forward along the
control vector fields, which is critical for controllability of the system. Hence, to account for
this in the approximation procedure, we define a bilinear control system equivalent to the
one in Eq. (29), but with positivity constraints on the control:

ẏ(t) = A0(t)y +
∑

s∈{+,−}

n∑
i=1

Asi (ûsi (t)y(t)) ; ûsi (t) ≥ 0 (30)

where A+
i = −A−i = Ai for each i ∈ {1, 2....n}.

Using the methodology introduced in Section 2.2, for each of the operators A0, Asi , we
construct the control operators on the graph G, which are denoted by A0 : [0, T ]× E → R+

and Asi : E → R+ (Recall that only g0 is possibly time-varying, while gi, i > 0, are all time-
invariant). The difference is that while generators in Section 2.2 were defined as vertex-based
|V|×|V| transition rate matrices, here we construct edge-based vectors of size |E| in a natural
way. Hence, A0 is the edge-based version of the generator constructed from the vector field
g0(x, t) using the formula in Eq. (19). For Asi , the corresponding transition rates are defined
as

A+
i (e) = A+

i (v → w) =
1

m(Bw)

∫
B̄v∩B̄w

max{gi(x) · nvw, 0)dmd−1(x), (31)

A−i (e) = A−i (v → w) =
1

m(Bw)

∫
B̄v∩B̄w

max{−gi(x) · nvw, 0)dmd−1(x), (32)

for (i = 1, . . . , n) and where nvw is the unit normal vector pointing out of Bv into Bw at x.

10



Construction of Control Graph Gc, and Drift Graph G0 : Let P(V) be the space of
probability densities on the finite state space, V . Then using the above parameter definitions,
we consider the following flows on the graph G,

d

dt
µ(t, v) =

∑
e=(w→v)

A0(t, e)µ(t, w)−
∑

e=(v→w)

A0(t, e)µ(t, v)

+
∑

s∈{+,−}

n∑
i=1

∑
e=(w→v)

Asi (e)U
s
i (t, e)µ(t, w)−

∑
s∈{+,−}

n∑
i=1

∑
e=(v→w)

Asi (e)U
s
i (t, e)µ(t, v),

(33)

where µ(t, ·) ∈ P(V) for each t ∈ [0, T ], and U s
i (t, ·) are the edge-dependent non-negative

‘control’ parameters that scale the transition rates, Asi (e). We associate a set of edges Esi
with the above controlled flow. For each s ∈ {+,−} and i ∈ {1, 2, ...n} we set e ∈ Esi if
Asi (e) 6= 0. Similarly, we define E0 by setting e ∈ E0 if A0(t, e) 6= 0 for some t ∈ [0, 1]. Using
these definitions we define the control graph Gc = (V , Ec) by setting Ec = ∪s∈{+,−} ∪ni=1 Esi ,
and the drift graph G0 = (V , E0). These definitions will be used in Section 3.2.

The above defined flows can be shown to correspond to the evolution of a time-inhomogeneous
continuous-time Markov chain on the finite state space, V . The evolution of the correspond-
ing stochastic process X(t) ∈ V over an edge, e = (w → v) ∈ E , is defined by the conditional
probabilities:

P(X(t+ h) = v|X(t) = w) = A0(t, e) +
∑

s∈{+,−}

n∑
i=1

∑
e=(w→v)

Asi (e)U
s
i (t, e) + o(h). (34)

This leads us to the approximating optimal transport problem on a graph, motivated by
the formulation in Section 2.3:

W̃ (µ0, µ1) = inf
Usi (t,e)≥0,µ(t,v)≥0

∑
s∈{+,−}

n∑
i=1

∫ 1

0

‖U s
i (t, .)‖µ(t,.)dt (35)

such that Eq. (33) holds, and

µ(0, v) = µ0(v), µ(1, v) = µ1(v) ∀v ∈ V

Again, the formulation in Section 2.3 motivates the following convex formulation of the
above problem

W̃ (µ0, µ1)2 = inf
Jsi (t,e)≥0,µ(t,v)≥0

∑
s∈{+,−}

n∑
i=1

∫ 1

0

∑
e=(v→w)

Jsi (t, e)2

2

(
1

µ(t, v)
+

1

µ(t, w)

)
dt, (36)

µ(0, v) = µ0(v), µ(1, v) = µ1(v) ∀v ∈ V ,
d

dt
µ(t, .) =

∑
e=(w→v)

A0(t, e)µ(t, w)−
∑

e=(v→w)

A0(t, e)µ(t, v) +
∑

s∈{+,−}

n∑
i=1

(Ds
i )

ᵀJsi (t, .), (37)

where Jsi (t, e) , µ(t, v)U s
i (t, e) for e = (v → w), i = {1, 2...n}, and Ds

i ∈ R|Esi |×|V| is the
linear flow operator computing µ(w)− µ(v) for each e = (v → w) ∈ Esi .
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Remark 3.1. We note that the controlled advection equation Eq. (33), and the correspond-
ing convex optimal transport problem in Eq. (36) can be simplified if control vector fields
are uni-directional across all boundaries ∂Bi. This can often be achieved by choosing the
grid carefully, and making the subvolumes Bi small enough. If this condition holds, then we
immediately see from Eqs. (31-32) that for each edge e = (v → w), only one of A+

i (e) and
A−i (e) is non-zero. Denote the non-zero matrix by Ai(e). It also follows that Ai(e) = Ai(ē),
where ē = (w → v). Then the simplified version of Eq. (33) is

d

dt
µ(t, v) =

∑
e=(w→v)

A0(t, e)µ(t, w)−
∑

e=(v→w)

A0(t, e)µ(t, v)

+
n∑
i=1

∑
e=(w→v)

Ai(e)Ui(t, e)µ(t, w)−
n∑
i=1

∑
e=(v→w)

Ai(e)Ui(t, e)µ(t, v). (38)

This results in the following convex optimal transport problem,

W̃ (µ0, µ1)2 = inf
Ji(t,e)≥0,µ(t,v)≥0

n∑
i=1

∫ 1

0

∑
e=(v→w)

Ji(t, e)
2

2

(
1

µ(t, v)
+

1

µ(t, w)

)
dt, (39)

µ(0, v) = µ0(v), µ(1, v) = µ1(v), ∀v ∈ V
d

dt
µ(t, .) =

∑
e=(w→v)

A0(t, e)µ(t, w)−
∑

e=(v→w)

A0(t, e)µ(t, v) +
n∑
i=1

(Di)
ᵀJi(t, .). (40)

Remark 3.2. We note that the Eq. (20) discussed in Section 2.3 can be seen as the special

case of Eq. (38) with g0 ≡ 0 and gi = î (the ith unit vector). Hence, our formulation
generalizes optimal transport on graphs from a single-integrator system to general nonlinear
control-affine systems.

While a rigorous proof of convergence of W̃ as defined in Eq. (35) or Eq. (39) to W2

is not provided here, the connection to Eq. (20) provides a heuristic argument in this
direction. As discussed in Section 2.3, Ref. [36] provides such a convergence proof for
an advection equation on graphs. The advection is modeled using anti-symmetric discrete
‘momentum vector fields’ V on the edges, and the optimal transport problem minimizes a
discrete action. For the driftless case, Eq. (38) satisifies those conditions due to the way
the transition matrices Ai(e) (which give edge-weights) are defined, and our definition of W̃
agrees with the one given in Ref. [36]. We also note in general when A0 6= 0, the solution
of the optimization problem W̃ does not necessarily define a metric on P(V) due to the
asymmetry that is possibly induced by the drift vector fields.

3.2. Controllability Analysis of Flow over Graphs. In this section, we establish that
the controlled Markov chain approximations Eq. (33) preserve the controllability properties
of the system in Eq. (26). In other words, we will show that if the underlying dynamical
system Eq. (26) satisfies some controllability conditions, then the dynamical system Eq.
(33) governing the evolution of measure on the graph G is also controllable in some precise
sense. This will ensure the well-posedness of the graph optimal transport problem, Eq. (35),
since optimal transport is meaningful only if the set of possible transports between a pair of
measures is non-empty.
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Our plan is as follows. First, in Theorem 3.7, we prove that controllability of Eq. (26)
results in the control graph Gc being strongly connected, and equal to G. In the subsequent
theorems, we show that the strongly connected property of Gc = Gc implies that the system
defined by Eq. (33) is controllable between any pair of measures in the interior of P(V).
This is first shown for the case of driftless systems (i.e., g0 ≡ 0) in Theorem 3.10, and then
for systems with drift (i.e., g0 6≡ 0) in Theorem 3.11. Here, the interior of P(V) is defined as
the set int(P(V)) = {µ ∈ P(V);µ(v) > 0 for each v ∈ V}.
Without loss of generality, we consider the case when t0 = 0 & tf = 1. First, we recall a few
standard notions from geometric control theory [9].
Definition 3.3. Given x0 ∈M we define R(x0, t) to be the set of all x ∈M for which there
exists an admissible control u = (u1, u2....un) such that there exists a trajectory of system in
Eq. (26) with x(0) = x0, x(t) = x. The reachable set from x0 at time T is defined to be

RT (x0) = ∪0≤t≤TR(x0, t) (41)

Definition 3.4. We say the system in Eq. (26) is small-time locally controllable from
x0 if x0 is an interior point of RT (x0) for any T > 0.
Definition 3.5. Let f = (f1, ...fd) and g = (g1, ...gd) be two smooth vector fields on M .
Then the Lie bracket [f, g] is defined to be the vector field with components

[f, g]i =
d∑
j=1

(
f j
∂gi

∂xj
− gj ∂f

i

∂xj

)
(42)

Definition 3.6. For a collection of vector fields {gi}, Lie{gi} refers to the smallest Lie sub-
algebra of set of smooth vector fields on M that contains {gi}. Liex{gi} refers to the span
of all vector fields in Lie{gi} at x ∈M

We will use the notation int(S) to refer to the interior of a set S. Using these definitions
we have the following result
Theorem 3.7. Suppose one of the following statements is true:

1. g0 ≡ 0 and Liex

{
gi : i ∈ {1, 2....n}

}
= TxM at each x ∈ int(M).

2. span

{
gi(x) : i ∈ {1, 2....n}

}
= TxM at each x ∈ int(M).

Then the graph Gc associated with the system in Eq. (33) is strongly connected and Gc = G.
The proof of Theorem 3.7 is provided in the appendix.

Remark 3.8. The above result can also be seen to, equivalently, follow from the Orbit the-
orem [3][Theorem 5.1]. Gc 6= G would imply the existence of a lower dimensional immersed-

submanifold, K, of M such that Liex

{
gi : i ∈ {1, 2....n}

}
⊆ TxK for all x in a neighborhood

of a point in the boundary of one of the elements in Pm.

Remark 3.9. The main obstruction in extending the above result for underactuated systems
(span

{
gi(x) : i ∈ {1, 2....n}

}
6= TxM for some x ∈ M) with drift, i.e. g0 6≡ 0, is that usual

tests for small-time local controllability of control systems with drift [72] require the initial
condition to be an equilibrium point. Hence, starting at a non-equilibrium initial condition
one might need to make large excursions (in our case, possibly outside the domain M) in
order to return to the initial condition. Take for example, the simplest control-affine system
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with drift, the double integrator: ẍ = u. Hence, given an initial and target density, the
optimal transport problem on a bounded domain might not admit a solution for a system
with drift if M is not taken to be large enough.

In the following, we show that Eq. (33) has certain a controllability property for the
case when the underlying system is driftless (i.e., g0 ≡ 0). The proof follows from a more
general result proved in Ref. [22] where the controllability result was proved for the case
when Ai(t, e) is either equal to 0 or 1 for each i ∈ {1, 2....n} and each e ∈ Gc and Gc is only
required to be strongly connected. Here we give an alternative proof for the case when Gc is
strongly connected and symmetric, to keep the paper self-contained.

Theorem 3.10. Consider µ0, µ1 ∈ int(P(V)), Gc = G strongly connected, and A0(t, e) = 0
for every e ∈ E and all t ∈ [0, 1]. Then there exist piecewise continuous U s

i (t, ·) ≥ 0 such
that the solution of Eq. (33), µ(t, ·) satisfies µ(0, ·) = µ0 and µ(1, ·) = µ1.

Proof. We can represent the equation (33) as a bilinear control system of the form

d

dt
µ(t, ·) =

∑
s∈{+,−}

n∑
i=1

∑
e=(v→w)

Asi (e)U
s
i (t, e)Bsi

e µ(t, ·) (43)

where Bsi
e ∈ Rm×m is given by

(Bsi
e )pq =


−1 if p = q = v

1 if p = w, q = v

0 otherwise

for each s ∈ {+,−}, i ∈ {1, 2, ...n} and e = (v → w) ∈ E . Here, (Bsi
e )pq denotes the element

in the pth row and qth column of the matrix Bsi
e . Corresponding to the graph, Gc, we define

the adjacency matrix Ac defined by

(Ac)pq =

{
1 if (p→ q) ∈ Ec
0 otherwise

Additionally, the degree matrix is a diagonal matrix Dc where the diagonal elements (Dc)jj
are equal to the total number of edges leaving the vertex j ∈ V . Then the Laplacian matrix
Lc associated with the graph Gc is given by Lc = Ac −Dc. Since the graph Gc is symmetric,
Lc is a symmetric matrix. Alternatively, the Laplacian Lc of the graph Gc can also be
expressed as Lc =

∑
s∈{+,−}

∑n
i=1

∑
e∈Esisub

Bs
ie for some subsets Esisub of the set of edges Ec

such that Asi (e) 6= 0 for each s ∈ {+,−} and i ∈ {1, 2, ...n} such that e ∈ Esisub. Since, Gc is
strongly connected and symmetric it follows that the rank of the matrix Lc is m − 1. Let
1 and 0 be vectors of dimension m with all elements equal to 1 and 0 respectively. Then
we know that that (Bsi

e 1)T1 = 0 for each s ∈ {+,−} and i ∈ {1, 2, ...n} such that e ∈ Esisub.
This implies that span of the set B = ∪s∈{+,−} ∪ni=1 ∪e∈Esisub{B

s
ie1} is equal to the tangent

space Tx(P(V)) of P(V) at every x ∈ int(P(V)). Here, we are identifying the set Tx(P(V))
with the set {y ∈ Rm;

∑m
j=1 yj = 0}. Let Ẽsisub be subsets of Esisub, such that the elements of

B̃ = ∪s∈{+,−}∪ni=1∪e∈Ẽsisub{B
s
ie1} are linearly independent and span the set Tx(P(V)) at every

x ∈ int(P(V)).
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Next, we note that int(P(V)) is convex and hence there exists an atleast-once-differentiable
path γ : [0, T ] → int(P(V)) such that γ(0) = µ0 and γ(1) = µ1. Since span of B̃ is equal
Tx(P(V)) at every x ∈ int(P(V) and d

dt
γ(t) ∈ Tγ(t)(P(V)) at every t ∈ [0, 1] it follows that

there exist parameters Ũ s
i (t, e) that are continuous with respect to time satisfying

d

dt
γ(t) =

∑
s∈{+,−}

n∑
i=1

∑
e∈Ẽsisub

Ũ s
i (t, e)Bsi

e 1 (44)

for all t ∈ [0, 1]. Next, for each s ∈ {+,−} and each i ∈ {1, 2....n} we set

U s
i (t, e) =

{
Ũsi (t,e)

Asi (e)µ(t,v)
if U s

i (t, e) ≥ 0

0 otherwise

and

U s
i (t, ē) =

{
− Ũsi (t,e)

Asi (ē)µ(t,w)
if U s

i (t, e) ≤ 0

0 otherwise

whenever e ∈ Ẽsisub, for each t ∈ [0, 1]. Additionally, if for a given s ∈ {+,−} and i ∈ {1, 2....n}
we have an edge e ∈ E such that e ∈ Ec\Ẽsisub, then we set

U s
i (t, e) = 0 (45)

and

U s
i (t, ē) = 0 (46)

for each t ∈ [0, 1]. Note that that Bsi
e µ(t, ·) = µ(t, v)Bsi

e 1 when e = (v → w). From this, the
result follows by noting that for the choice of parameters U s

i (t, e) the solution of (33), given
by µ(t, ·) = γ(t) for all t ∈ [0, 1].

The above proof can also be extended to the case when Gc is only strongly connected and
not necessarily symmetric. Note that for the case when either of (µ0, µ1) lie on the boundary
of P(V), controllability of the system in Eq. (33) might not hold, as pointed out in Ref. [22].
This does not affect our numerical results however, and we are able to achieve convergence
in all cases we discuss in Section 4.

Theorem 3.10 leads to the following result for the case of systems with drift (i.e., g0 6≡ 0).

Theorem 3.11. Consider µ0, µ1 ∈ int(P(V)). Assume the graph Gc = G is strongly con-
nected, and G0 ⊆ Gc. Then there exist Ui(t, ·) ≥ 0 such that Eq. (33) satisfies µ(0, ·) = µ0

and µ(1, ·) = µ1.

Proof. The graph Gc is connected. Since G0 ⊆ G, we can choose Ũ s
i (t, ·) such that the right

hand side in Eq. (33) is equal to 0 for all t ∈ [0, 1]. Then, from the previous theorem, it

follows that there exists a control U s
i (t, ·), of the form U s

i (t, ·) = Û s
i (t, ·) + Ũ s

i (t, ·) such that
Eq. (33) satisfies µ(0, ·) = µ0 and µ(1, ·) = µ1. Here, the parameters Ũi(t, ·) negate the

effect of the drift field A0, and Û s
i (t, ·) ensure the density µ0 is transported to µ1 as in Thm

3.10.
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3.3. Construction of Approximate Feedback Control Laws. Given the solution the
optimal transport problem on the graph, we reconstruct the corresponding approximate
feedback control laws {ui(x, t)} for the underlying dynamical system Eq. (26). Since the
optimal transport problem is solved on the graph, the feedback control law is vertex-based.
For any vertex v of the graph G, all agents with their state x lying in the sub-volume Bv,
apply the following feedback law:

ui(x, t) =

∑
w∈N+

i (v) U
+
i (v → w, t)

|N+
i (v)| −

∑
w∈N−

i (v) U
−
i (v → w, t)

|N−i (v)| ∀x ∈ Bv. (47)

Here, N s
i (v) refers to the the neighboring vertices of v in the graph (V , Esi ) for each

s ∈ {+,−} and i ∈ {1, 2....n}.
3.4. Numerical Implementation. We adapt the numerical scheme used in Refs. [61, 70]
to our setting, and use a staggered discretization scheme for pseudo-time discretization. We
define

µj(v) , µ(tj, v), (48)

Jsi,j(e) , Jsi (tj, e), (49)

where tj = (j/k)tf , j ∈ [0, 1, 2, . . . , k] is the time discretization into k intervals. We take
t0 = 0. Here Jsi,j(e) represents the s ∈ {+,−} flow due to gi(x) over edge e = (v → w), from
vertex v at time tj to vertex w at time tj+1.

Hence, the optimization problem given in Eqs. (36) can discretized as,

W̃ (µ0, µ1)2 = inf
Jsi,j≥0,µj≥0

∑
s∈{+,−}

n∑
i=1

k∑
j=1

|Esi |∑
e=1

e=(v→w)

(Jsi,j(e))
2(

1

µj(v)
+

1

µj+1(w)
), (50)

subject to the following constraints:

µj+1 − µj
∆t

= A0(tj)µj +
∑

s∈{+,−}

n∑
i=1

(Ds
i )

ᵀJ i,js , (51)

µ0 = µt0 , µk = µtf , (52)

where we have used the vertex-based m × m transition rate matrix A0(tj) as originally

defined in Eq. (19). Here ∆t =
tf
k

. The cost function given by Eq. (50) is again of the form

‘quadratic over linear’, and the advection (Eq. (51)) imposes linear constraints. Hence the
discretized problem is convex, and can be solved using many off-the-shelf convex solvers. The
optimization problem is solved via CVX [38] modeling platform, an open-source software for
converting convex optimization problems into usable format for various solvers. We use the
SCS [59] solver, a first-order solver for large size convex optimization problems. This solver
uses the Alternating Direction Method of Multipliers (ADMM) [20] to enable quick solution
of very large convex optimization problems, with moderate accuracy.

The variables to be solved for in the optimization problem Eqs. (50-52) are vertex based
quantities µj, and edge based quantities Jsi,j. The size of the optimization problem can be
quantified in terms of number of time-discretization steps k, number of vertices |V| = m,

16



and the number of edges |Ec|. The graph Gc is always sparse, since a typical vertex is at
most connected to 2(n + 1)d neighbors, and m � n,m � d. Hence, the variables in the
optimization problem scale as O(k(m + |E|)) = O(n · d · k · m). The computations are
performed on a workstation with an Intel Xeon X5690 [1] processor.

In the examples that follow, the graph size m is chosen to be large enough so that the
qualitative features of the optimal transport are well resolved, and do not change upon
finer grid refinement. The time-discretization parameter k is chosen such that the optimal
transport cost W̃ is insensitive to finer discretization.

4. Examples.

4.1. Optimal Transport in the Grushin Plane. We first apply our framework to a non-
holonomic control-affine system in which certain optimal transport solutions can be found
analytically. We consider transport of measure in the Grushin system. In Ref. [2], the
structure of optimal controls in this problem was analyzed. Using this structure, optimal
transport to a delta measure at (0, 0) was computed. The system is described by

ẋ1 = u1, (53a)

ẋ2 = u2x1. (53b)

This system is a driftless system with control vector fields g1(x1, x2) = [1 0]ᵀ, g2(x1, x2) =

[0 x1]ᵀ. These do not span the tangent space R2, but their Lie-algebra does, i.e. Liex

{
gi :

i ∈ {1, 2}
}

= R2. This can be seen by noting that the Lie-bracket [g1, g2] = [0 1]ᵀ, and hence

span{[g1, g2], g1} = R2. Hence, this system satisfies condition 1 of Theorem 3.7. By Theorem
3.10, the corresponding optimal transport problem for this driftless system is well-posed.

The optimal control cost c(x, y) between initial and final states, x = (x1, x2)ᵀ, y = (y1, y2)ᵀ,

is taken to be square of the subriemannian distance d(x, y) = infUyx
∫ 1

0

√
u2

1 + u2
2dt. Hence,

the optimal control solutions are also geodesics in the subriemannian space. The solutions
of the optimal control problem are integral curves of the Hamiltonian H given by

H(x1, x2, p1, p2) =
1

2
(p2

1 + x2
1p

2
2). (54)

Here p1, p2 are the co-state variables. Note that since H is independent of x2, H can be
reduced to a Hamiltonian in (x1, p1), and the integral curves of H can be obtained using
quadratures. The geodesics reaching (0, α) at t = 1 are of the form

x1(t) =
a

b
sin(b(1− t)), (55)

x2(t) =
a2

4b2
(2b(1− t)− sin(2b(1− t))) + α. (56)

A geodesic between a specified initial point (x̄1, x̄2), and (0, α) can be obtained by inverting
the Eqs. (55-56) at t = 0 to solve for (a, b). For t ≤ π

b
, these geodesics are also global

minimizers of the optimal control problem. Figure 2(a) shows some geodesics to the origin.
Now consider the optimal transport problem with c(x, y) = d2 from an initial measure µ0

to final measure µ1 = δ(0,0). Clearly, the optimal map T is x→ (0, 0), and the corresponding
flow is given by the geodesics between each x ∈ supp(µ0) and (0, 0). See Fig. 2(b) for
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analytically computed transport in the case in which the initial measure is uniform over a
disk. Using the algorithm developed in Section 3, we compute optimal transport for this same
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Figure 2. (a) Some minimizing geodesics to the origin in the Grushin plane. (b) Ana-
lytically computed optimal transport solution between a uniform measure whose support is
the disk Ω = {(x, y)|x2 + (y − .8)2 < .152}, and a measure concentrated at the origin.

case. We divide the X = [−1, 1]× [−1, 1] into m = 1002 boxes, and form the corresponding
graph G. The resulting solution is shown in Figure 3(a)-(e). The convergence of optimal
transport cost W̃ with m, and k (i.e., the time-discretization) is shown in Fig 3(f). The
k = 75 case takes about 2 × 104 seconds of computation time. It can be seen that the
computed solution closely follows the analytical solution shown in Fig. 2.

Next, we perform particle simulations with feedback controls extracted from the optimal
transport computation, using Eq. (47). We take p = 4 particles per box, and use Eq.
(47) to get state-dependent control commands for each particle. The results are shown
in Figure 4. About 95% of the particles get transported according the optimal transport
solution shown in Fig 3, while the rest are dispersed. Note that the control laws obtained
from optimal transport solution do not automatically guarantee feedback stabilization of
individual particles.

4.2. Optimal Transport in Time-Periodic Double-Gyre system. Now we consider
a measure transport problem for the time-periodic double-gyre system [52]. This chaotic
dynamical system has been analyzed using several computational tools related to transport
and mixing [64, 81, 29, 73, 32]. The controlled equations we consider as follows,

ẋ = −πA sin(πf(x, t)) cos(πy) + u1, (57a)

ẏ = πA cos(πf(x, t)) sin(πy)
df(x, t)

dx
+ u2, (57b)

where f(x, t) = β sin(ωt)x2 + (1− 2β sin(ωt))x is the time-periodic forcing in the system.
Since the above system with drift has control vector fields g1(x, y) = [1 0]ᵀ, and g2(x, y) =
[0 1]ᵀ, that span the tangent space R2, it satisfies condition 2 of Theorem 3.7. By Theorem

18



(a) t=0 (b) t=0.25

(c) t=0.5 (d) t=0.75

(e) t=0.95
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(f)

Figure 3. (a)-(e) The optimal transport solution in the Grushin plane using graph based
algorithm between a measure whose support is the disk Ω = {(x, y)|x2 + (y − .8)2 < .152},
and delta measure at the origin. The parameters are m = 104, k = 75. (f) Convergence of
optimal transport cost with number of time discretization steps k and grid size m.

3.11, the corresponding optimal transport problem for this system with drift is well-posed,
since there exists a transport between any pair of measures.

The phase space is X = [0 2]× [0 1]. We first describe the dynamics of the uncontrolled
(u1 = u2 = 0) system. For the trivial case of β = 0 (i.e. no time-dependent forcing), the phase
space is divided into two invariant sets, i.e., the left and right halves of the rectangular phase
space (‘gyres’), by a heteroclinic connection between fixed points x1 = (1, 1) and x2 = (0, 1).
For non-zero β, the Poincare map F of the system, obtained by integrating the dynamics
over one time period τ of f , describes an autonomous discrete-time system. The heteroclinic

19



(a) t=0 (b) t=0.1

(c) t=0.25 (d) t=0.5

(e) t=0.75 (f) t=0.95

Figure 4. Particle trajectories with feedback control computed using Eq. (47) from the
optimal transport solution in the Grushin plane. Each box contained in the support of
uniform initial measure µ0 is initially populated with 4 particles.

connection is broken in this case, and results in a heteroclinic tangle. This heteroclinic tangle
leads to transport between left and right sides via lobe-dynamics.

We choose parameters A = 0.25, β = 0.25, ω = 2π, such that the time-period of the flow is
τ = 1. To get insight into the phase space transport due to heteroclinic tangles, the theory of
lobe dynamics [52] is useful. Lobe dynamics techniques allows one to quantify the transport
between sets separated by invariant manifolds, and their transversal intersections. In figure 5,
the unstable manifold of x1 ≈ (0.919, 1), Ux1 , and the stable manifold of x2 ≈ (1.081, 0), Sx2
are shown in green and white respectively. The lobe labeled ’A’, its pre-image F−1(A) and
image F (A) are also shown. Consider the segment L = Ux1(x1 → F (P1))∪Sx2(F (P1)→ x2).
Then L divides phase space X into two regions. The points that get mapped from left to
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right region in one iteration of F are precisely those in set A. Hence, the amount of mass
transport from left to right side of L is m̄(A). While our algorithm for optimal transport

Figure 5. Invariant manifolds and lobe-dynamics in the double-gyre system (reproduced
from Ref. [39]).

can be applied between any arbitrary pair of measures, it is instructive to choose a pair of
measures which are ‘distinguished’ for the given system. Here, we choose almost-invariant
sets as in Ref. [39].

In Figure 5, two almost-invariant sets, A1 and A2 are also shown. We choose the initial and
final measures to be uniform measures supported on A1 and A2, respectively. Both measures
are normalized to sum to unity. We solve the the optimal transport problem by discretizing
X into m = 60 × 30 boxes for different time horizons tf . For each tf , we choose k such

that ∆t =
tf
k

=
1

40
. We use a piecewise-constant approximation of the time-dependent drift

vector field, i.e., g0(x, tj + δt) ≈ g0(x, tj) ∀ δt ≤ ∆t, j ≤ k, for computing the corresponding
generator using Eq. (19). The computation time for obtaining solution in CVX for the
tf = 1 case is 9×103 seconds, while the tf = 10 case takes 7.5×104 seconds, and the tf = 15
takes about 105 seconds. Our simulations are repeated with a finer grid-size m = 100 × 50
to verify that our results are nearly independent of m.

In Fig. 6, we show the optimal transport sequence for tf = τ = 1. In other words, the
transport is constrained to be completed in one time-period of the uncontrolled flow. Due to
the short time-horizon, all of the mass is pushed across the invariant manifolds separating
the the two gyres. In Fig. 7, the optimal transport sequence for the more interesting case
with tf = 10 is shown. The transport process in this case is completely different than the
tf = 1 case. We observe that the transport occurs in a ‘quantized’ manner, i.e. packets
of mass are transported, one at a time, via lobe-dynamics from left gyre to the right gyre.
The number of such packets exactly equal the number of time-periods in the time-horizon of
the transport problem, i.e. 10 in this case. Hence, while the global transport is being done
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by the natural dynamics via lobes, the role of control is to gather the mass in pre-images
of the those lobes. For instance, in Figs 7((b)-(e)), the transport of one such packet via
the sequence F−1(A) → A → F (A) → F 2(A) is shown. The mechanism is essentially the
same for other time-horizons that we analyzed, tf = 2, 5, 8, 12.5 & 15. The increasing use of
‘natural’ chaotic lobe-dynamics of the uncontrolled system during optimal transport should
reflect in the optimal transport cost. This cost, W̃ , decreases rapidly as the time-horizon tf is
increased, as shown in Fig. 8. Hence, the optimal transport solution discovers efficient paths
in this chaotic system, where ‘going with the flow’ is the best option. This result provides a
continuous-time control interpretation of the results of the discrete-time switching algorithm
in Ref. [39].

(a) t = 0 (b) t = 0.25

(c) t = 0.5 (d) t = 0.75

(e) t = 1

Figure 6. Optimal transport in the periodic double gyre system (Eqs.(57a-57b)) between

measures shown in (a) and (e) for tf = 1. The parameters are m = 1800,∆t =
1

40
.
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4.3. Optimal Transport for Unicycle Model. Finally, we consider optimal transport in
a three-dimensional non-holonomic system, called the ‘unicycle’ model. This system is a toy
model for vehicle kinematics, and is used extensively in vehicle path planning and control
[58, 4]. The states are cartesian coordinates (x, y) ∈ R2, and orientation θ ∈ S1 of the
unicycle. The system equations on M = S1 ×R2 are given by

θ̇ = u1,

ẋ = u2 cos θ,

ẏ = u2 sin θ,

where u1 is the steering speed, and u2 is the translation speed. The above system is a drift-
less system with control vector fields g1(θ, x, y) = [1 0 0]ᵀ, g2(θ, x, y) = [0 cos θ sin θ]ᵀ. These

do not span the tangent space TxM , but their Lie-algebra does, i.e. Liex

{
gi : i ∈ {1, 2}

}
=

TxM . This can be seen by noting that the Lie-bracket [g1, g2] = [0 −sin θ cos θ]ᵀ does not lie
in span{g1, g2}. Hence, this system satisfies condition 1 of Theorem 3.7. By Theorem 3.10,
the corresponding optimal transport problem for this driftless system is well-posed. The op-
timal control problem has been studied for various cost functions, and endpoint conditions
[49, 47, 46]. The techniques from geometric mechanics, specifically Lie-Poisson reduction [9],
have been successfully used to reduce the optimal control problem to a three-dimensional
non-canonical Hamiltonian system. For this three-dimensional system, two conserved quan-
tities can be found, and hence, the optimal controls (u1(t), u2(t)) can be solved explicitly in
terms of Jacobi elliptic functions.

To study the optimal transport problem for the unicycle model, take the control cost to
be quadratic, i.e. d(z1, z2) = infUz2z1

∫ 1

0

√
u2

1 + u2
2dt. We compute optimal transport solutions

for two scenarios. In the first case, µ0 is chosen to be a measure supported on box containing
(0, 0.5, 0), and µ1 is chosen to be uniform measure supported on the union of boxes containing
(1, 0, 0) and (1, 1, 0). In the second case, µ0 is chosen to be a measure supported on box
containing (0, 0.5, 0), and µ1 is chosen to be a uniform measure supported on the union of
boxes containing (1, 1, π

2
) and (1, 0, 3π

2
). We use m = 253 boxes to discretize the 3D phase

space M , and tf = 1 with k = 20 equally-spaced time steps, for both cases. The computation
in CVX takes about 6 × 104 seconds. The initial and final measures for the two cases are
depicted in Fig 9. The optimal transport solution for the first case is shown in Fig. 10.
Since the final orientation is prescribed to be along the x−axis, this leads to a splitting of
the measure half-way in the transport, and steering of the two halves horizontally to their
final positions. The optimal transport solution for the second case is shown in Fig. 11. The
solution in this case is qualitatively different from the first case. The two halves split and
then move vertically towards final positions.

5. Conclusions and Future Directions. A set-oriented graph-based computational frame-
work for continuous-time optimal transport over nonlinear dynamical systems has been de-
veloped. In the control systems setting, this framework generalizes the concept of optimal
transport on graphs from that of a single integrator to control-affine nonlinear systems. This
is accomplished by exploiting recent work on set-oriented infinitesimal generator approach
for nonlinear dynamical systems. The controllability of measures over graphs is related to the
connectivity of the ‘controlled’ graph, and is proved to be a consequence of controllability of
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the underlying control system. This work connects set-oriented operator-theoretic methods
in dynamical systems with optimal mass transportation theory, and opens up new directions
in design of efficient feedback control strategies for nonlinear multi-agent and swarm systems
operating in nonlinear ambient flow fields.

Application of our set-oriented framework to larger domains, longer time-horizons and/or
higher dimensional systems will require improvement in computational efficiency. Using
efficient phase space discretization techniques, such as those employed in GAIO [17], one
can hope to improve the efficiency of the resulting optimal transport algorithms, and apply
the framework to higher dimensional dynamical systems. Graph pruning algorithms can be
employed to remove edges which are not likely to be used [42].

Solutions to the optimal transport problem in the double-gyre system elucidate the role
played by invariant manifolds, lobe-dynamics and almost-invariant sets in efficient transport
of phase-space distributions. While it is known that invariant manifolds and lobes act as
low-energy ‘channels’ in the phase-space, our results give new qualitative and quantitative
information about their role in problems of transport of distributions or swarms of agents.
Application of this framework to more complicated arbitrary time-varying flows should pro-
vide similar insights into the role of Lagrangian coherent structures and coherent sets. This
can lead to development of efficient swarm planning and control strategies for realistic ap-
plications in ocean and air-borne systems. Moreover, using our framework, the relative
importance of such objects can be studied for different types of controls.

Furthermore, recent methods in obtaining Lagrangian coherent structures and coherent
sets in finite-time non-autonomous systems have used variational formulations of transport
under nonlinear dynamics [41] or dynamic versions of the Laplacian [31]. It would be fruit-
ful to develop connections of these formulations with optimal mass transportation theory,
extending the connections already identified in the Hamiltonian dynamics case [8]. For in-
stance, one could define a controlled version of almost-invariant sets or coherent sets, by
defining a control dynamic Laplacian, analogous to the control infinitesimal-generators as
developed in the current work, or control Lyapunov measures developed in Ref. [76].

Connections with work in the closely related area of occupation measures [51] and Lya-
punov measures [76] also need to be explored, especially in context of obtaining feedback
control laws from the control laws obtained from optimal transport solutions. The feedback
control laws constructed as solutions to the optimal transport problem guide the measure
along shortest paths corresponding to solutions of the corresponding sub-Riemannian prob-
lem. Hence, it needs to be explored in what sense these laws can be used for feedback
stabilization of an individual control-affine system. Moreover, the numerical approach in the
current paper could also be adapted to construct time-independent feedback control laws for
such systems.
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(a) t = 0 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 8.5

(g) t = 9 (h) t = 10

Figure 7. Optimal transport in the periodic double gyre system between measures shown

in (a) and (h) for tf = 10,∆t =
1

40
. The optimal transport solution shows a quantization

phenomenon. Ten ‘packets’ are transported via lobe-dynamics from the left side to the right
side of the domain. (b)-(e) The transport of third packet to right side via the sequence
F−1(A) → A → F (A) → F 2(A).(f)-(g) The last packet gets transported to the right side.
Animation available at: https://www.youtube.com/watch?v=Pu7sCkpm4RY
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Figure 8. The cost of optimal transport between two measures supported on two AIS
for the double-gyre system, as a function of time-horizon of the problem.

(a) Case 1 (b) Case 2

Figure 9. Initial and final measures shown on (x, y) plane for two cases of optimal
transport in the unicycle model. The green arrows indicate the third coordinate θ. (a) µ0

is supported on (0, 0.5, 0), µ1 is supported on (1, 0, 0) and (1, 1, 0). (b) µ0 is supported on
(0, 0.5, 0), µ1 is supported on (1, 0, 3π2 ) and (1, 1, π2 ).
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(a) t=0 (b) t=0.2

(c) t=0.5 (d) t=0.7

(e) t=0.8 (f) t=1

Figure 10. The optimal transport solution of unicycle model shown in the x− y plane
for case 1. The grid size is m = 253, and k = 20.
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(a) t=0 (b) t=0.2

(c) t=0.5 (d) t=0.7

(e) t=0.8 (f) t=1

Figure 11. The optimal transport solution of unicycle model shown in the x− y plane
for case 2. The grid size is m = 253, and k = 20.
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Figure 12. Illustration of the proof of Theorem 3.7. The existence of an trajectory
f approximating a curve γ connecting Bv to Bw, obtained by piecewise constant control,
is guaranteed by the small time local controllability. By continuity, this leads to non-zero
transition rates, and hence strong connectivity of the control graph Gc.

Appendix A. Proof of Theorem 3.7.

Proof. Let v, w ∈ {1, 2....m} be such that v 6= w and B̄v ∩ B̄w has non-zero (d − 1)−
dimensional (Hausdorff) measure. Consider points x0 ∈ int(Bv) and x1 ∈ int(Bw). Due
to connectedness of M there exists a continuous path γ : [0, 1] → M such that γ(0) = x0,
γ(1) = x1 and γ(t) ∈ Bv ∪Bw ∀t ∈ [0, 1]. From the Lie bracket condition of the vector fields,
it follows that the system is small-time locally controllable at every x ∈ int(M). Then, we
can approximate the path γ using a trajectory of the control system, using a sequence of
piecewise-constant control inputs.

To construct such a sequence, let us denote the flow map for time period t under an au-
tonomous vector field X by etX . Then, for each ε > 0 there exists k ∈ N large enough,
a sequence of time intervals t1, t2......tk satisfying

∑k
i=1 ti = 1, constant control inputs

u1, u2, .....uk ∈ R, a set of indices ηi ∈ {1, 2....n} selecting the corresponding control vec-
tor field gηi , and an approximating path, f : [0, 1]→M satisfying ‖γ(z)− f(z)‖2

2 ≤ ε for all
z ∈ [0, 1]. The path f(z) for z ∈ [0, 1] can be written using concatenation of flow under the
action of chosen sequence of control vector fields :

f(z =
∑j

i=1 ti + τ) = eτu
j+1gηj+1 ◦ ...... ◦ etjujgηj ◦ et1u1gη1x0, for each j ∈ {0, 1, ...k} and

τ ∈ [0, tj+1]. Here, the case j = 0 means f(τ) = eτu
1gη1x0 for all τ ∈ [0, t1].

Let z∗ ∈ (0, 1) be such that f(z∗) ∈ ∂Bv and there exists c ∈ (0, z∗) small enough such
that f(z∗ − c) ∈ int(Bv) and f(z∗ + c) ∈ int(Bw). Then, clearly nvw · gr(x) 6= 0 for some
r ∈ {1, 2....n} and some x in an open neighborhood of f(z∗) that is completely contained in
Bv ∪Bw, assuming γ and ε are chosen appropriately (i.e. avoiding crossings of γ and f over
corners of Bv and Bw). If not, f(z∗ + δ) ∈ ∂Bi for all δ ∈ (0, c] since the non-existence of
such a point c with the desired property in the neighborhood of f(z∗) implies one cannot use
a concatenation of flows associated with the control vector fields to leave the set ∂Bv, which
leads to a contradiction to the assumed property of small time local controllability. From
continuity of the vector field gr, there exists a small enough neighborhood, Nx of x such
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that nvw · gr(y) 6= 0 for all y ∈ Nx. Hence, this implies Asr(e) 6= 0 for e = v → w for some
s ∈ {+,−}. Due to continuity of the vector field gr at x, it also follows that Asr(e) = Asr(ē).
Hence, the connectivity of the graph Gc follows. Case 2 just follows from the assumption

that span

{
gi(x) : i ∈ {1, 2....n}

}
= TxM at each x ∈ int(M).
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5. Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows: in metric spaces and in the space

of probability measures, Springer Science & Business Media, 2008.
6. Jean-David Benamou and Yann Brenier, A computational fluid mechanics solution to the Monge-

Kantorovich mass transfer problem, Numerische Mathematik 84 (2000), no. 3, 375–393.
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