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Abstract
In remote sensing systems, exact knowledge of the sensor locations is critical for generating
focused images. In order to accurately locate misplaced or perturbed sensors from their
received signal data, we proposed a robust sensor localization method based on low-rank
Euclidean distance matrix (EDM) reconstruction. To this end, an EDM of sensors and
objects is defined and partially initialized by computing distances between the inaccurate
sensor locations and distances from the sensors to the objects using signal coherence analysis.
We then decompose the noisy EDM with missing entries into a low-rank EDM corresponding
to true sensor locations and a sparse matrix of distance errors by solving a constrained
optimization problem using the alternating direction method of multipliers (ADMM). We
verify our method with simulations on a uniform linear array with unknown perturbations
up to several wavelengths.
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ABSTRACT

In remote sensing systems, exact knowledge of the sensor lo-
cations is critical for generating focused images. In order to
accurately locate misplaced or perturbed sensors from their
received signal data, we proposed a robust sensor localization
method based on low-rank Euclidean distance matrix (EDM)
reconstruction. To this end, an EDM of sensors and objects
is defined and partially initialized by computing distances be-
tween the inaccurate sensor locations and distances from the
sensors to the objects using signal coherence analysis. We
then decompose the noisy EDM with missing entries into a
low-rank EDM corresponding to true sensor locations and a
sparse matrix of distance errors by solving a constrained op-
timization problem using the alternating direction method of
multipliers (ADMM). We verify our method with simulations
on a uniform linear array with unknown perturbations up to
several wavelengths.

Index Terms— Sensor localization, Euclidean distance
matrix (EDM), auto-focus imaging, sparsity

1. INTRODUCTION

In remote sensing systems, sensor locations play a crucial
role in the imaging process. When sensor locations are ex-
actly known, we may generate a well focused image of the
region of interest from received data by compensating the
phase change of received data relative to the source signal
in the inverse imaging process. However, in practice sensor
location errors may be several multiples of the source sig-
nal wavelength due to misplacements, poor calibrations, or
random perturbations, especially for distributed systems or
moving platforms such as airborne or vehicle mounted radar
systems. These sensor location errors, if not well estimated,
typically lead to out-of-focus or even meaningless imaging
results. Therefore, it is desirable to accurately locate sensors
in order to realize focused imaging.

Auto-focus has been a challenging problem in remote
sensing using different sensor modalities. Location or mo-
tion compensation based methods seek to compensate sensor
location errors such that different location-induced phase er-
rors can be corrected. If the sensor location errors are much
smaller than the source wavelength, the location-induced out-

of-focus problem may be solved by sparsity-driven auto-focus
algorithms, which model the auto-focus imaging problem as
an optimization problem with a perturbed projection matrix
and a constraint on the sparsity of reconstructed image [1–3].
The resulting solution, however, includes an error that is
related to the location mismatch [4,5]. A global optimal solu-
tion is only achievable when location errors are much smaller
than the central frequency wavelength and with a good initial-
ization. When location errors are greater than the wavelength,
this method may not converge to a focused imaging result.

Inspired by the recent work of Euclidean distance ma-
trix (EDM) [6] in indoor radar imaging and that of robust
principal component analysis [7, 8], we propose a novel ro-
bust location estimation method to conquer the sensor local-
ization problem in autofocus imaging, especially for over-
wavelength location errors. To this end, a noisy EDM of
sensors and objects under detection is partially initialized as
follows. Distances between the sensors are computed using
the ideal sensor locations, distances between the sensors and
the objects are estimated by analyzing the correlation of re-
ceived data, and distances between the objects remain un-
known since there is no direct information to estimate them.
It is clear that distances between sensors are with errors de-
pending on the level of sensor perturbations. While distances
between sensors and objects are generally accurate when the
signal-to-noise ratio is high. However, we note that in some
cases the distance between a sensor to one object may be
treated as the distance between the sensor to another object,
causing a spike error in the EDM matrix. Our objective here is
then to recover the underlying low-rank EDM from this noisy
distance matrix with missing entries. Motivated by the work
of robust PCA problem with missing data [8], we employ the
ADMM method [9] to decompose the noisy EDM into two
parts, one is a low rank EDM corresponding to the true sen-
sor and scattering object locations, the other is the sparse part
corresponding to the location errors.

2. PROPOSED METHOD BASED ON EDM

2.1. Background

Consider a collection of N points {x1,x2, ...,xN} in the d-
dimensional Euclidean space, where xi ∈ Rd. The squared
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Fig. 1. Setup of random sensor array imaging.

Eulidean distance between xi and xj is given by

‖xi − xj‖2 = xT
i xi − 2xT

i xj + xT
j xj . (1)

The corresponding Euclidean distance matrix (EDM) of
{xi}i=1,...,N is defined as

E =[‖xi − xj‖2]

=1diag(XTX)T − 2XTX + diag(XTX)1T , (2)

where X = [x1,x2, ...,xN ] ∈ Rd×N . We can see that in (2),
the EDM is the sum of three matrices, which are of rank 1, d,
and 1 repectively. Therefore, the rank of the EDM is at most
d + 2. For 2-D or 3-D imaging problems, the rank is at most
4 (for d = 2) or 5 (for d = 3), respectively, regardless how
many sensors are included in X.

It is also straightforward to demonstrate that any transla-
tion, rotation, or reflection transform of X will lead to the
same EDM [6]. Therefore, given an EDM, there is no unique
solution for the point coordinates. However, given a reference
point, a possible solution can be achieved by the following
process. Let x1 = 0 be the origin, and e1 be the first column
of E. The Gram matrix of X can be computed using EDM as

G = XTX = −1

2
(E− 1eT

1 − e11
T ). (3)

Using the singular value decomposition (SVD)

G = UTΛU, (4)

where
Λ = diag(λ1, ..., λN ), (5)

with eigenvalues sorted in the order of decreasing magnitude,
we can reconstruct a point set X̂ from the original EDM as
follows

X̂ = [diag(
√
λ1, ...,

√
λd),0d×(N−d)]U

T . (6)

2.2. Noisy EDM formation

For simplicity, we consider a 2-D array imaging problem in
which a mono-static radar is moving along a predesigned tra-
jectory to detect K static objects situated in a region of in-
terest (ROI), as shown in Fig. 1. We assume the trajectory

is a straight line and the radar acts as a virtual uniform linear
array of N sensors, represented by the red dots in Fig. 1. In
order to accurately locate sensors, we treat each sensor and
each object in the ROI as a point of interest to build an EDM
of them. The idea is that we first build a noisy and incom-
plete EDM according to measurements and prior information
about the sensors. Then we recover a low-rank EDM based
on this noisy EDM. the low-rank EDM is determined, the sen-
sor locations as well as the object locations can be explored
accordingly given a reference point.

Let P (ωm) be the frequency-domain source signal emit-
ted by the mono-static radar. The signal received by radar
sensor located at the nth perturbed location r̃n can be mod-
eled as a superposition of radar echoes of all objects in the
area of interest as follows

Y (ωm, r̃n) =

K∑
k=1

P (ωm)S(ωm, lk)e−jωm
2‖r̃n−lk‖

c , (7)

where S(ωm, lk) is the equivalent complex-valued impulse

response of the object at location lk, and e−jωm
2‖r̃n−lk‖

c

presents the phase change of received radar echo relative
to the radar source signal after propagating a distance of
2 ‖r̃n − lk‖ at speed c.

Let Φ ∈ R(N+K)×(N+K) be the noisy EDM of sensors
and objects. We estimate its entries using the following pro-
cess. First, according to (7) , the phase change of received
echo relative to the transmitted source signal reflects the dis-
tance between the sensor and the corresponding object. For
a wide-band source signal, the phase change is characterized
by a time shift between the source signal and received signal.
This time shift can be effectively estimated by computing the
cross-correlation (CC) between the two time-domain signals
or computed equivalently in the frequency domain. The max-
imum of the cross-correlation function indicates the point in
time where the signals are best aligned, i.e.,

τ̃n,k = argmaxτ

∫
y(t, r̃n, lk) · p(t+ τ)dt

= argmaxτF
−1{(ỹnk(−jωt))∗ � p(−jω(t+ τ))}, (8)

where� represents element-wised product. The (n,N+k)th

entry of Φ is estimated by

φn,N+k =

(
τ̃n,k · c

2

)2

. (9)

Second, the Euclidean distance between sensors can be
estimated using the ideal sensor locations {rn} as

φn1,n2
= ‖rn1

− rn2
‖2, for 0 < n1, n2 < N. (10)

Since we have no clear information about the object lo-
cations so far, the corresponding distances remain unknown,
meaning the estimated EDM is only partially observed. In ad-
dition, as (8) is generally not concave, multiple local maxima
may exist, potentially causing spike errors in the estimated
EDM. All these issues will be tackled in our robust sensor
localization method.



2.3. Robust EDM analysis

The robust principal component analysis (RPCA) method [7]
aims to solve the following problem. Given Φ = E + S,
where E and S are unknown, but E is known to be low rank
and S is known to be sparse, recover E and S. In our case, Φ
is partially estimated using measurements and prior informa-
tion of sensor locations. Our objective is then to recover the
underlying low-rank E, which is defined as

E = [‖xi − xj‖2], (11)

where ∀xi,xj ∈ {r̃1, ..., r̃N , l1, ..., lK}.
To solve this problem, we aim to minimize a constrained

cost function for robust sensor localization based on EDM

min{r̃n},{lk}f =
γ

2
‖(Φ−E− S)�M‖2F +

|vec{S�M}|1 +
σ

2

∑
n

‖r̃n − rn‖2,

s.t. ‖r̃n − r̃n+1‖ < ε(λ),

1

N

N∑
n=1

r̃n =
1

N

N∑
n=1

rn,

N∑
n=1

(r̃n − ¯̃r)× (rn − r̄) = 0, (12)

where M is a binary matrix corresponding to the partial ob-
served entries in Φ, in particular, with ones corresponding
to the distances between sensors and objects, and zeros else-
where; ¯̃r and r̄ represent the centers of perturbed and ideal
sensor locations, respectively. The 2-D vector cross product
is defined as follows

r1 × r2 = (x1, y1)× (x2, y2) , x1y2 − x2y1. (13)

In (12), we seek a robust solution of sensor locations by
imposing sparsity on the distance error matrix S. The regu-
larizing term controls how close the perturbed sensors are to
their ideal designed locations. Considering that the EDM is
invariant with translation, rotation and reflection, we add con-
straints of references to make sure the solution converges to
what we expected in the model. The first constraint requires
two neighbor sensors to be close to each other. The second
and the third constraints force the center and the orientation
of the perturbed sensors are aligned to the ideal designed sen-
sors, respectively. To solve this optimization problem, we use
the alternating direction method of multipliers (ADMM), see
Appendix 5 for details.

3. NUMERICAL EXPERIMENT

To verify our method, we consider a mono-static radar imag-
ing problem with simulation setup depicted in Fig. 1, in which
a total of N = 51 sensors are used to image K = 3 static ob-
jects in the ROI. The mono-static antenna is designed to form
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Fig. 2. (a) Source pulse emitted by the transmitter; (b) Simu-
lated radar echoes with noise.
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Fig. 3. (a) Estimated EDM using radar echoes and ideal
sensor locations, (b) Reconstructed low-rank EDM using our
proposed method, (c) Recovered sparse errors of estimated
EDM, and (d) True EDM for comparison.

a uniform linear array as indicated by the red dots. However,
the actual element locations are perturbed, as indicated by the
black x-marks, with up to 10 times the center wavelength of
the transmitted source signal. The time-domain source pulse
is illustrated in Fig. 2 (a), and the received echoes are simu-
lated using the free-space Green’s function with added white
Gaussian noise, as shown in Fig. 2 (b) .

In our sensor localization method, an EDM is first es-
timated using measured signals and prior information about
sensor locations, as shown in Fig. 3 (a). By solving the op-
timization problem in (12), an underlying low-rank EDM is
recovered, as shown in Fig. 3 (b), with sparse error compo-
nents shown in Fig. 3 (c). For comparison, we present the
true EDM of perturbed sensors in Fig. 3 (d). We observe that
the recovered EDM is very close to the true EDM, especially
those squared distances between sensors. The corresponding
recovered sensor and object locations are shown in Fig. 4 (a),
which are very well aligned with the true perturbed sensor and
object locations. However, if we use the least squares method
to estimate sensor locations based on distances observed in Φ,
some of the sensor locations exhibit errors much larger than
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Fig. 4. (a) Estimated locations using our proposed method;
(b) Estimated locations using the least squares method.

the source wavelength, as shown in Fig. 4 (b).

4. CONCLUSIONS

We propose a robust sensor localization approach based on
Euclidean matrix. Our approach seeks to reconstruct a low-
rank Euclidean distance matrix (EDM) of true perturbed sen-
sor locations from a noisy EDM estimate with missing entries
using the ADMM method. Simulation results demonstrate
that our method significantly improves the performance in lo-
calizing sensors of moving platforms compared to the least
squares method.

5. APPENDIX

The augmented Lagrangian function is

L
(
E,S, {r̃n}, {lk}, {µeij}, {µεn}, µc, µo, zn, r̄, ort

)
=
γ

2
‖(Φ−E− S)�M‖2F + |vec{S�M}|1

+
σr

2

∑
n

‖r̃n − rn‖2 + (‖r̄ − 1

N

∑
n

rn‖2) + o2rt

+
∑
ij

[
−µeij(Eij − ‖r̃i − r̃j‖2) +

σeij
2

(Eij − ‖r̃i − r̃j‖2)2
]

+

N∑
n=1

[−µεn(‖r̃n − r̃n+1‖+ zn − ε)]

+

N∑
n=1

[
σεn
2

(‖r̃n − r̃n+1‖+ zn − ε)2
]

−µc( 1

N

N∑
n=1

‖r̃n − r̄‖) +
σc

2
(

1

N

N∑
n=1

‖r̃n − r̄‖)2

−µo
[
N∑
n=1

(r̃n − ¯̃r)× (rn − r̄)− ort

]

+
σo

2

[
N∑
n=1

(r̃n − ¯̃r)× (rn − r̄)− ort

]2
. (14)

The corresponding update equations follow steps

For m = 1, ...,M,

minL(·)→ {Em,Sm, {r̃n}m, {lk}m, {r̄}m, {ort}m}

{zn}m = max(
µε

σε
− ‖r̃n − r̃n+1‖+ ε, 0)

µeij ← µeij − σeij(Eij − ‖r̃i − r̃j‖2)

µεn ← µεn − σεn(‖r̃n − r̃n+1‖+ zn − ε)

µc ← µc − σc( 1

N

N∑
n=1

‖r̃n − r̄‖)

µo ← µo − σo
(

N∑
n=1

(r̃n − ¯̃r)× (rn − r̄)− ort

)
. (15)
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