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GNSS Ambiguity Resolution by Adaptive Mixture
Kalman Filter

Karl Berntorp1, Avishai Weiss1, and Stefano Di Cairano1

Abstract—The precision of global navigation satellite systems
(GNSSs) relies heavily on accurate carrier phase ambiguity
resolution. The ambiguities are known to take integer values,
but the set of ambiguity values is unbounded. We propose a
mixture Kalman filter solution to GNSS ambiguity resolution.
By marginalizing out the set of ambiguities and exploiting
a likelihood proposal for generating the ambiguities, we can
bound the possible values to a tight and dense set of integers,
which allows for extracting the integer solution as a maximum-
likelihood estimate from a mixture Kalman filter. We verify the
efficacy of the approach in simulation including a comparison
with a well-known integer least-squares based method. The
results indicate that our proposed switched mixture Kalman filter
repeatedly finds the correct integers in cases where the other
method fails.

I. INTRODUCTION

Global navigation satellite systems (GNSS), such as GPS,
Galileo, and QZSS, are used in many positioning and nav-
igation applications world-wide, and GNSS receivers can
be found, for example, in airplanes, cars, and cell phones.
Generally, a GNSS receiver determines its position by tri-
angulation using two types of measurements from several
satellites orbiting the earth: pseudorange measurements and
carrier phase measurements. The pseudorange measurement
(or code measurement) is the range or distance between a
GNSS receiver and each of a set of satellites and is determined
by multiplying the signal travel time (from the satellite to
the receiver) by the speed of light. Pseudoranges are inexact
because they include errors due to, for instance, satellite clock
timing error, ionospheric and tropospheric refraction effects,
receiver tracking noise, and multipath error. To eliminate or
reduce these errors, differential corrections are used in many
GNSS applications [1]. The carrier phase measurement is
obtained by integrating a reconstructed carrier of the signal
as it arrives at the receiver. The carrier signal observations
are more precise than the pseudorange measurements, and can
be tracked with millimeter precision [2] within a wavelength.
However, because of an unknown number of carrier cycles
in transit between the satellite and the receiver when the
receiver starts tracking the carrier phase of the signal, there
is an integer ambiguity in the carrier phase measurement.
Hence, correct integer ambiguity resolution is pivotal for high-
precision GNSS.

An overview of traditional approaches for ambiguity res-
olution can be found in [3], and a summary of integer
estimation theory is presented in [4]. Many GNSS ambiguity
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resolution methods are based on two-stage approaches. First an
estimation of a float-valued ambiguity, which forms the basis
for a search for the integer value based on the float estimates.
Subsequently, the two methods are often independent on each
other. The method in [5] uses a Kalman filter approach to
estimate the float ambiguity together with the state, whereas
other methods use least squares [4]. The least-squares ambigu-
ity decorrelation method (LAMBDA) [6]–[8] solves an integer
least squares (ILS) problem in a two-stage procedure, starting
from the real-valued least-squares solution (e.g., obtained from
the Kalman filter). The first step comprises modifying the
original ILS problem by decorrelating the ambiguities, and
then searching for the optimal integers over a hyper-ellipsoidal
region. The LAMBDA method has been further developed
into the modified LAMBDA (MLAMBDA) [9], and related
approaches can be found in [10], [11].

In this paper, we formulate the GNSS ambiguity resolution
problem in a Bayesian framework as a joint GNSS receiver
state and ambiguity parameter estimation problem. By exploit-
ing marginalization, we can solve for the GNSS receiver state
using a mixture Kalman filter, where each Kalman filter is
conditioned on a particular possible fixed ambiguity for each
satellite. The approach employs the marginalized particle filter
[12] to determine the possible ambiguities.

Bayesian approaches have been considered before in the
context of GNSS ambiguity resolution, see for example [13],
which presents a solution similar to the case of fixed multiple
models, and [14], which uses Bayesian statistics to derive
confidence regions for a GPS application. An overview of
multiple-model methods for GNSS ambiguity resolution can
be found in [15]. For instance, [16] uses fixed multiple-model
Kalman filters, where the ambiguities are the integers the
models depend on. A similar approach is found in [17], where
each of the filters uses a different set of ambiguities, and
switched multiple-model estimators for detection of cycle slip
(sudden loss of lock-up of the carrier signal) are found in
[18]. A difficulty with multiple-model approaches is that the
ambiguities can take any integer value, and straightforward
application of a multiple-model approach is therefore compu-
tationally intractable. In [15], a procedure using the LAMBDA
method to search for the integers to use in the different models
is mentioned, starting from the float solution. However, this
procedure then needs to be restarted as soon as a cycle slip or
loss of contact with the satellite occurs (e.g., in urban areas).

Our approach differs from previous work in that we for-
mulate the estimation problem in a particle-filtering context,
where we marginalize out the ambiguities. Particle filters have



been considered in relation to GNSS ambiguity resolution be-
fore. An early work is [19], which, however, does not consider
the GNSS receiver state. The work in [20] uses particle filter-
ing for combined inertial measurement aided GPS positioning,
and [21], [22] both apply particle filtering for estimating the
joint GNSS receiver state and ambiguities. However, estimat-
ing the joint state and ambiguities in a particle filter leads to
an unnecessarily high-dimensional estimation problem, which
is problematic in a real-time application because of the curse
of dimensionality. Any motion model of the ambiguities is
highly uncertain due to the unboundedness of the ambiguity
set and lack of knowledge of how and when the ambiguities
change. In our approach, by leveraging the optimal proposal
density for the ambiguities, which for the uncertain ambiguity
model corresponds to likelihood sampling, we can statistically
bound the possible range of ambiguities and execute a mixture
Kalman filter. The number of Kalman filters is made adaptive
on the possible range of ambiguities. Hence, as the estimator
narrows the ambiguity set, the number of particles decrease.
In a simulation study, we show that our method correctly finds
the integer ambiguities and can automatically detect cycle slip.
Furthermore, a comparison study indicates that our method
finds the correct integers in cases where other methods fail,
and that the computational times are on the same order as
previous approaches.

II. PROBLEM SETUP

The pseudorange code and carrier phase measurements of
a satellite measure the distance between the satellite and the
target receiver. In our setup, we consider the pseudorange code
and carrier phase measurements from the jth satellite to the
receiver r at each time tk at step (epoch) k modeled as [1],
[4], [19], [21], [23],

P jk = ρjk + c(δTk − δtjk) + Ijk

T jk + εjk, (1a)

Φjk = ρjk + c(δtk − δtjk)− Ijk
T jk + λnj + ηjk, (1b)

with notation as in Table I. The distance between the receiver
and the jth satellite is defined as

ρj =

√
(pjX − pX,r)2 + (pjY − pY,r)2 + (pjZ − pZ,r)2, (2)

where pj = [pjX pjY pjZ ]T and pr = [pX,r pY,r pZ,r]
T are the

coordinates of the jth satellite and the receiver r, respectively,
in the world-aligned coordinate frame. By utilizing a base
receiver b mounted at a known location broadcasting to the
original receiver r most of the sources of error can be removed,
at least approximately. If we consider the observation equation
(1) for the two receivers and form the difference between them
(single differencing), the error due to the satellite clock bias
can be eliminated. Furthermore, double differentiation, that
is, the single difference between receivers differenced again
between two satellites, can be used to eliminate, or suppress,

the other sources of error [21], [23]. The receiver clock error
terms also vanish due to the single and double differentiation.

Let the single-differenced observation equations (1a) and
(1b) between the receivers b and r observing satellite j at time
step k be denoted with ∆P jbr,k = P jb,k − P

j
r,k and ∆Φjbr,k =

Φjb,k − Φjr,k, respectively. We introduce the double-difference
operator ∇∆(·)jlbr,k for the double difference of two satellites
j and l, which yields

∇∆P jlbr,k = ∆P jbr,k −∆P lbr,k

= ∇∆ρjlbr,k +∇∆Ijlbr,k +∇∆εjlbr,k, (3a)

∇∆Φjlbr,k = ∆Φjbr,k −∆Φlbr,k

= ∇∆ρjlbr,k −∇∆Ijlbr,k + λ∇∆njlbr +∇∆ηjlbr,k.

(3b)

Furthermore, for short distances between the two receivers
(e.g., 30 km), ionospheric errors are small under double
differencing, leading to

∇∆P jlbr,k ≈ ∇∆ρjlbr,k +∇∆εjlbr,k, (4a)

∇∆Φjlbr,k ≈ ∇∆ρjlbr,k + λ∇∆njlbr +∇∆ηjlbr,k. (4b)

Subsequently, we will use observation equation (4) and leave
(3) and other extensions, such as multipath effects, to future
work. Furthermore, for notational convenience we will drop
the use of ∇∆ and write

P jlbr,k = ρjlbr,k + εjlbr,k, (5a)

Φjlbr,k = ρjlbr,k + λnjlbr,k + ηjlbr,k, (5b)

where ρjlbr,k = (ρjr,k − ρjb,k) − (ρlr,k − ρlb,k) and similar for
the other quantities. We assume that the measurement noise
εjlbr and ηjlbr are zero-mean Gaussian distributed with known
covariance σε, ση (where σε � ση [1], [21]), that is,[

εjlbr,k
ηjlbr,k

]
∼ N

(
0,

[
σε 0
0 ση

])
. (6)

We assume that there are M − 1 double-differenced observa-
tions (5), that is, the measurement vector y ∈ R2(M−1) and
the vector of integer ambiguities n ∈ ZM−1.

The objective in this paper is to resolve the unknown
receiver position pr,k at each time step k and the set of
unknown integer ambiguities n from the measurements y0:k =
{y0, . . . ,yk}. While the integer ambiguities are typically con-
stant for extended periods of time, they may change abruptly
as soon as a loss-of-lock of tracking of the satellite occurs,
for instance, due to shadowing effects in urban areas or cycle
slip.

III. GNSS INTEGER AMBIGUITY AND POSITION
RESOLUTION

This section presents the proposed method for joint position-
ing and integer ambiguity resolution. We approach the problem
in a fully Bayesian context and rely on a mixture Kalman filter
approach with adaptation of the number of Kalman filters to
the uncertainty in the ambiguity estimates.



TABLE I
NOTATION FOR THE CODE AND PSEUDORANGE MEASUREMENT

EQUATIONS.

Notation Description Unit

P Code observation m
ρ Distance between the receiver and the satellite m
c Speed of light m/s
δT Receiver clock bias s
δt Satellite clock bias s
I Ionospheric delay m
T Tropospheric delay m
ε Code observation noise m
λ Carrier wavelength m
Φ Carrier phase observation m
n Integer ambiguity cycles
η Carrier observation noise m

A. Estimation Model

We consider the case of kinematic positioning in short
baseline conditions, where ionospheric delays can be ignored.
Without loss of generality, the first satellite is assumed to be
the reference satellite, that is, j = 1. We form the observation
equations at each time step k based on the double-differenced
measurements (5),

yk =
[
P 12
br,k . . . P 1M

br,k Φ12
br,k . . . Φ1M

br,k

]T
, (7)

and the corresponding measurement model is

yk = hk + λn̄k + ek, (8)

where

hk =
[
ρ12br,k . . . ρ1Mbr,k ρ12br,k . . . ρ1Mbr,k

]T
, (9a)

n̄k =
[
0 . . . 0 nT

k

]T
, (9b)

nk =
[
n12br,k . . . n1M

br,k

]T
, (9c)

e =
[
ε12br,k . . . ε1Mbr,k η12br,k . . . η1Mbr,k

]T
. (9d)

We assume a motion model of the moving receiver as

xk+1 = Fkxk +Bkwxk,k, (10)

where Fk is the state-transition matrix and Bk is the noise-
transition matrix. Motion model (10) includes general-purpose
kinematic motion models where little is known about the
moving object. In the evaluation of our method in Sec. IV, we
use a constant-acceleration (CA) model with the state vector

xk =
[
pr,k vr,k ar,k

]T
, (11)

where the components are the receiver position, velocity, and
acceleration, respectively. However, note that our approach
is not limited to this model. It is rather used for evaluation
purposes in this paper. Using a zero-order hold sampling with
sampling time Ts, the CA model is [24]

xk+1 =

I TsI
T 2
s

2 I
0 I TsI
0 0 I

xk +

T
3
s

6 I
T 2
s

2 I
TsI

wx,k, (12)

where wx,k ∼ N (0,Qx,k) is Gaussian distributed with
covariance Qx,k. The estimation problem includes the state
vector x, which for our CA model is in x ∈ R9, and
the ambiguity vector n ∈ RM−1. The estimation model
consisting of (8) and (10) is nonlinear in the position due to
the observation equations. The observations are linear in the
ambiguity vector. However, a difficulty is that any dynamic
evolution model of the integer ambiguities is unknown, since
there can be abrupt changes in the ambiguity values from one
time step to another. To reflect the uncertainty in the time
evolution of the ambiguities, we describe the ambiguity with
the random walk model

nk+1 = nk +wn,k, wn,k ∼ N (0,Qn), (13)

whereQn dominates nk in determining nk+1 (i.e., the motion
model contains little information about the ambiguity in the
next time step). In a Bayesian formulation, we write (13) as

nk+1 ∼ p(nk+1|nk). (14)

B. Bounding the Range of Ambiguities

We leverage marginalized particle filtering for bounding
the possible range of each of the ambiguities. Based on the
bounded ranges, we fix the sets of integers and execute Kalman
filters for each of the sets.

To bound the range of ambiguities, we start with the joint
density p(xk,n0:k|y0:k) of state xk and ambiguity trajectory
n0:k, which we can decompose as

p(xk,n0:k|y0:k) = p(xk|n0:k,y0:k)p(n0:k|y0:k). (15)

In resolving (15), we first estimate p(n0:k|y0:k) with a particle
filter using a set of N weighted particles, which results in the
approximation

p(n0:k|y0:k) ≈
N∑
i=1

qikδ(n
i
0:k − n0:k). (16)

In (16), δ(·) is the Dirac delta mass and qik is the associated
weight for the ith particle given the measurements y0:k.

Given the ambiguity set {n0:k}Ni=1, we execute constrained
extended Kalman filters to determine p(xk|n0:k,y0:k), one
for each particle. The first term on the right-hand side of (15)
equals

p(xk|n0:k,y0:k) = N (xk; x̂k|k(n0:k),Pk|k(n0:k)), (17)

where N
(
xk;µ,Υ

)
is the Gaussian probability density func-

tion given mean µ and covariance matrix Υ, x̂k|k(n0:k) is the
state estimate given the ambiguity trajectory n0:k and mea-
surements y0:k, and Pk|k(n0:k) is its associated covariance.
For brevity, we make the dependence on the ambiguity implicit
in the following. The mean and covariance of the conditional



probability density function (17) using the EKF is given by
the following set of equations [12],

x̂k|k = x̂k|k−1 +Kk(yk − hk − λn̄k), (18a)
Pk|k = Pk|k−1 −KkHkPk|k−1, (18b)

Sk = HkPk|k−1H
T
k +Rk, (18c)

Kk = Pk|k−1H
T
k S
−1
k , (18d)

Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

, (18e)

and the one-step prediction of the mean and covariance are
given by

x̂k+1|k = Fkx̂k|k, (19a)

Pk+1|k = FkPk|kF
T
k +Qx,k. (19b)

A key design choice in the particle filter is the proposal
density π(nk|nik−1,y0:k). The standard choice is to use the
prior (14), that is, π(nk|nik−1,y0:k) = p(nk|nk−1). However,
the prediction model of the ambiguities is uninformative and
the result would be that we need a huge amount of particles
to ensure coverage of the true ambiguity vector. Instead, we
choose the conditional distribution as proposal density,

π(nk|nik−1,y0:k) = p(nk|nik−1,y0:k). (20)

The weight update in the particle filter is given by

qik =
p(yk|nk,y0:k−1)p(nk|nik−1)

π(nk|nik−1,y0:k)
qik−1. (21)

Inserting (20) into (21) and using the identity

p(nk|nik−1,y0:k) =
p(yk|nk,y0:k−1)p(nk|nik−1)

p(yk|nik−1,y0:k−1)
(22)

leads to the weight update

qik ∝ p(yk|nik−1,y0:k−1)qik−1. (23)

The proposal (20) is optimal in the sense that it minimizes the
effect of the sampling on the weights, that is, the weights will
be unaffected by nik, whereas other alternatives add variance
to the weights [24]. It is generally difficult to sample from
(20). However, the observation equation (8) is linear and
Gaussian in the ambiguity vector n, which is one of the few
cases where exact sampling is possible [25]. For a linear and
Gaussian observation equation, the optimal proposal (20) for
a marginalized particle filter can be formulated as

p(nk|nik−1,y0:k) ≈ N
(
nk; n̂ik, (Σ

i
k)−1

)
(24a)

n̂ik = nik−1 +Ki
k(yk − ŷik|k−1), (24b)

Σi
k =

(
(Sik)−1 + (Qn)−1

)−1
, (24c)

Ki
k = Qn(Qn + Sk)−1, (24d)

ŷik|k−1 = h(x̂ik|k−1) + λn̄ik, (24e)

where Sk is obtained from (18c). The likelihood for the weight
update (23) becomes

p(yk|nik−1,y0:k−1) =

∫
p(yk,xk|nik−1,y0:k−1) dxk

=

∫
p(yk|nik−1,xk)p(xk|y0:k−1) dxk

≈ N
(
yk|ŷik|k−1,Qn + Sk

)
, (25)

where ŷik|k−1 is obtained from (24e). Note that although the
optimal proposal (24a) and therefore also the likelihood (25)
are linear in the ambiguities, the covariance Sk is obtained
from the EKF recursion, which is approximate.

Using the proposal (24a), the generated ambiguities are
real valued. However, with the particle approximation (16)
of the posterior density of n, using the prediction (24a) and
weight update (23), we can bound the range of possible integer
ambiguities as follows. After resampling with replacement,
all particles have weight qik = 1/N and the particle filter
approximation becomes

p(nk|y0:k) ≈ p̂(nk|y0:k) =
1

N

N∑
i=1

δ(nik − nk). (26)

To get a measure of the tails of the distribution for a finite
number of particles, we convert the discrete representation (26)
to a continuous one using a kernel density smoother [26],

p̂K(nk|y0:k) =
1

N

N∑
i=1

Kh(nik − nk), (27)

where Kh(·) is the kernel density and h is the band-
width. Based on the continuous density p̂K(nk|y0:k), we
truncate (27), resulting in a continuous truncated density
p̂K,tr(nk|y0:k). The truncation can, for instance, be done using
the 3σ-rule for unimodal densities, or some other suitable
measure. This gives a finite set S of NS possible integer values
contained in the support of p̂K,tr(nk|y0:k), that is,

S = {n̄ ∈ ZM−1 : p̂K,tr(nk|y0:k) > 0}. (28)

Remark 1: In this paper we make the assumption that
the ambiguity prior (14) is uninformative, which means that
the process noise dominates over the dynamics and that
most information about the ambiguities is contained in the
measurements. For the proposal (24a), it means that

Σi
k =

(
(Sik)−1 + (Qn)−1

)−1 ≈ Sik,
that is, we are effectively sampling from the likelihood.

Remark 2: At first sight it may seem counterintuitive to
choose the ambiguities, which are linear both in the prediction
model and the measurement model, to be estimated with
the particle filter, especially since the observation equation
is nonlinear in the receiver position. However, if the ambi-
guities are known, which means that the measurements are
relatively highly informative about the receiver position, the
nonlinearities can be handled with a Kalman-type estimator.
Furthermore, using the ambiguities as particles leads to a



natural connection between marginalized particle filtering and
filter banks, as will be shown in the next section.

C. Ambiguity Resolution by Mixture Kalman Filter

Provided the NS possible integer values in (28), we can
execute a bank of NS extended Kalman filters (or some other
nonlinear estimator) to find the state vector xKF

k , where each
filter is conditioned on the fixed integer ambiguity.

The state posterior is expressed using the law of total
probability as a Gaussian mixture of NS components,

p(xKF
k |y0:k) =

NS∑
i=1

p(ni,xKF
k |y0:k)

=

NS∑
i=1

p(ni|y0:k)p(xKF
k |ni,y0:k)

=

NS∑
i=1

ωikN (xKF
k |x̂

KF,i
k|k ,P

i
k|k), (29)

where ωik = p(ni|y0:k) is the posterior probability of ni. The
recursions for x̂KF,i

k|k ,P
KF,i
k|k are in (18) with n̄ replaced with

ni. Note that ni in (29) is fixed for each Kalman filter, hence
the omission of index k. The probabilities can be computed
from Bayes’ rule

ωik = p(ni|y0:k) = p(yk|ni,y0:k−1)
p(ni|y0:k−1)

p(yk|y0:k−1)

∝ ωik−1N (yk|ŷik|k−1,S
i
k), (30)

where the predictions ŷik|k−1,S
i
k are given from the corre-

sponding Kalman filter. From (30), we choose the maximum
a posteriori estimate (MAP) nMAP to resolve the ambiguity,

nMAP = arg max
n

p(n|y0:k), (31)

which amounts to choosing the ambiguity ni with largest ωik.
The state estimate and corresponding covariance can either
be obtained by the corresponding MAP or by the minimum-
variance estimate [12]

x̂MV
k|k =

NS∑
i=1

ωikx̂
KF,i
k|k , (32a)

P MV
k|k =

NS∑
i=1

ωik

(
P i
k|k + (x̂KF,i

k|k − x̂
MV
k|k)(x̂KF,i

k|k − x̂
MV
k|k)T

)
.

(32b)

D. Algorithm Implementation

With the finite set of integers (28) and the mixture Kalman
filter solution (29) based on this fixed, finite set, we are now
ready to formulate the algorithm for joint ambiguity resolution
and positioning in Algorithm 1. The method is initialized
with N sets of states and ambiguities, with placeholders also
for the mixture Kalman filter states (Line 1). We execute a
prediction step of the ambiguities using (24a) (Line 7). If
the predicted ambiguities differ from the previous ones more
than some threshold γ (Line 9), compute the weights with

(23), from which we construct a continuous representation (27)
(Line 15). From (27) we bound the range of ambiguities and
fix NS < N integer values, for which we execute Kalman
filters (Line 22) to compute the MAP estimate (31) (Line 25)
and state estimates (32) (Line 26). Then, we generate new
samples {nik}Ni=1 (Lines 27–30) with indices {J(i)}Ni=1, and
restart the algorithm from Line 3.

There are a few design options in Algorithm 1. The number
of particles used in the prediction when determining whether
the ambiguities have changed (Lines 3–8) is a design choice
that in the current implementation is fixed to N , but there are
other alternatives, for instance, using NS or some other adap-
tation. In determining whether the ambiguities have changed
(Line 9), the distance function can be implemented in several
ways. In our implementation, we simply check the largest
difference in {‖nik − nik−1‖}Ni=1, but more sensible choices
are possible. For the choice of kernel (Line 15), there are a
number of options, from which we use a Gaussian kernel.
The initialization at Line 17 can, of course, be done in
several ways. In the simulation study, we choose the common
minimum-variance estimate over the particles for all filters.
At Line 28, we draw new indices to determine the ambiguity
difference in the next iteration. Here, the number of particles
can be related to NS instead of fixing it to N . Moreover, the
number N used at Line 27 does not need to be fixed—it can,
for instance, depend on NS .

IV. SIMULATION RESULTS

We present a numerical study where we have three double-
differenced satellite measurements in low-earth orbit, that
is, six measurements and three ambiguities. The satellites
measure the distance to a moving rover with sampling time
Ts = 0.1 s. The rover travels on the earth-ground plane
(pZ = 0) with nominal speed 5 m/s.

We compare with a two-stage approach based on first
executing an EKF to find the float ambiguities. Then, an
integer least squares is invoked, which given the float ambi-
guities, finds the integer ambiguities that are optimal in the
least-squares sense. The integer least squares solver is the
LAMBDA solver that is often used in GNSS applications, and
two-stage approaches are standard for ambiguity resolution
[4], [5], [21]. We denote this filter with EKF. We also compare
with an idealized implementation of the EKF that knows the
correct ambiguities at each time instant. Hence, this method
is impossible to implement in practice, but serves as ground-
truth of what can be achieved in terms of tracking performance
when the ambiguities are known.The ambiguities in both filters
are initialized to zero. The initial mean of the state is set to
the true mean of the moving rover, and the initial covariance
is

P0 =
[
100 100 1 1 1 0.1

]T
. (33)

The noise parameters are the same in both filters. The code
and phase measurement standard deviations are set to 0.5 m
and 0.1 m, respectively.

We present results for two use-cases. The first use-case
illustrates how the method performs under large initial position



Algorithm 1 Proposed method
1: Initialize: Generate {ni−1}Ni=1 ∼ p0(n0), {x̂i0|−1}

N
i=1 ∼

p0(x0), {P i
0|−1}

N
i=1 = P0, {x̂KF,i

0 }NSi=1 ∼ p0(x0),
{P KFi

0|−1}
NS
i=1 = P0 and set {wi−1}Ni=1 = 1/N .

2: for k = 0 to T do
3: for i = 1 to N do
4: Update {x̂ik|k−1,P

i
k|k−1} using (19).

5: Set ŷik|k−1 = h(x̂ik|k−1) + λnik.
6: Compute Sik from (18c).
7: Generate nik ∼ p(nk|nik−1,y0:k) from (24a).
8: end for
9: if dist({nik}Ni=1, {nik−1}Ni=1) > γ then

10: for i = 1 to N do
11: Update {x̂ik|k,P

i
k|k} from (18).

12: Update qik using (23) and (25).
13: end for
14: Resample particles to get equally weighted parti-

cles and distribution (26).
15: Compute p̂K(nk|y0:k) using (27).
16: Determine {ni}NSi=1 using (28).
17: Initialize {x̂KF,i

k|k−1}
NS
i=1, {P KF,i

k|k−1}
NS
i=1.

18: else
19: Update {x̂KF,i

k|k−1,P
KF,i
k|k−1}

NS
i=1 using (19).

20: end if
21: for i = 1 to NS do
22: Update {x̂KF,i

k|k ,P
KF,i
k|k } using (18).

23: Update weight ωik using (30).
24: end for
25: Compute nMAP using (31).
26: Compute {x̂MV

k|k,P
MV
k|k} using (32).

27: for i = 1 to N do
28: Draw index J(i) with probability ωJ(i)k .
29: end for
30: Set {nik, x̂ik|k,P

i
k|k}

N
i=1 = {nl, x̂KF,l

k|k ,P
KF,l
k|k }

J(N)
l=J(1).

31: end for

and ambiguity uncertainty, the transient performance, and the
second use-case is cycle-slip detection. The root-mean-square-
error (RMSE) at each time step and the time average of it are
here used as performance measures. Let xk,j and x̂k,j denote
the true and estimated quantity, respectively, at time index k
of the jth of K Monte-Carlo simulations. The RMSE at time
step k is then computed as

RMSEk =

√√√√ 1

NMC

NMC∑
j=1

‖xk,j − x̂k,j‖2. (34)

The time-averaged RMSE is retrieved by computing the mean
of the RMSE.

A. Transient Performance

Fig. 1 shows the position errors for the first 50 s for one
of the realizations, and Fig. 2 displays the corresponding
ambiguity estimation errors. The convergence of the proposed
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Fig. 1. Position errors for a 50 s excerpt from one realization.

method ALG 1 is considerably faster than for the two-stage
approach using the LAMBDA ILS solver in combination with
the EKF. Furthermore, whereas ALG 1 chooses the correct
integer estimates throughout, EKF fluctuates around the correct
value. In the simulations the initial position is generated
from a Gaussian distribution with covariance (33). The true
ambiguities are {n1, n2, n3} = {−220, 210, 175} but the
initial estimates are set to zero. Still, ALG 1 produces a position
estimate with error less than one wavelength (λ = 0.2 m)
within a few seconds.

Fig. 3 shows the position RMSE for NMC = 100 Monte-
Carlo executions. The convergence is faster for the proposed
method compared to the two-stage approach (EKF). Further-
more, the lower bounds set by EKFIDEAL are attained within
a few epochs.

Fig. 4 shows the adaptation of the number of ambiguity
combinations NS throughout the simulation. Starting from
400 particles, the number of combinations needed vary from
27 to about 500. The results indicate that the method self-
adapts quickly. For periods of time, NS = 33 = 27 ambiguity
combinations are sufficient for reliable estimation. However,
when the uncertainty grows, our method can adapt to the
situation and increase the number of combinations.

B. Cycle-Slip

Next we show the method’s capabilities of detecting and
compensating for cycle-slip. Fig. 5 displays the ambiguity
errors and Fig. 6 shows the corresponding position errors when
a cycle-slip in the satellites occur, one at a time. The proposed
method (ALG 1) detects the cycle-slip almost immediately
owing to the proposal used in the particle filter, and the
filter tracks the correct ambiguities throughout. Moreover, the
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Fig. 2. Ambiguity errors corresponding to Fig. 1. The true ambiguities are
{n1, n2, n3} = {−220, 210, 175} and the initial ambiguity estimate is set
to zero. The correct ambiguities are attained within 8 s in this realization.
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Fig. 3. Position RMSE for 100 Monte-Carlo executions. The proposed
method (red) reaches steady state faster than EKF due to the fast convergence
of the ambiguities, see Fig. 2.

results also indicate one of the shortcomings with a two-
stage approach where both rover states and ambiguities are
estimated with the EKF. When n1 changes, the two-stage
approach estimates for n2 and n3 are disturbed, and similar for
the other cycle-slip occasions. The reason for this unwanted
behavior is the coupling in the covariance matrix amongst the
different ambiguities. The cross terms yield a Kalman gain
that is nonzero in the elements corresponding to the cross
terms. This causes the EKF to erroneously correct n2 and n3
for changes in n1. Clearly, from Fig. 6, the position error
grows rapidly as a result of this. This behavior is not present
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Fig. 4. The adaptation of the number of ambiguity combinations NS from
one realization.
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Fig. 5. Ambiguities for cycle-slip in one of the satellite trackers.

in the particle filter approach, where the marginalization and
subsequent handling of the ambiguities by the particle filter
decorrelates the ambiguities. Note that although it is not clear
from the figure, EKF will eventually correct the positioning,
but with a long transient.

V. CONCLUSION

We addressed the GNSS positioning and ambiguity resolu-
tion problem and outlined a method based on particle filtering
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Fig. 6. Position errors for cycle-slip in one of the satellite trackers, corre-
sponding to Fig. 5.

and mixture Kalman filters. By modeling the ambiguities as
part of the nonlinear state in a marginalized approach, which
at the outset is counterintuitive since the ambiguities are linear
in the process and observation equations, we can use proposal
sampling to guide the ambiguities to their statistically correct
values. Then, we fix the ambiguities in such a way that the set
of possible values contains the true ambiguities, which allows
for directly finding the integer ambiguities from a mixture of
Kalman filters.

The simulation study shows promising results. The method
is robust to large initial uncertainties in both ambiguities and
receiver position, and the estimates converge within a few
seconds. Furthermore, the results indicate that the correct
ambiguities are indeed contained in the determined set of
integer ambiguities, meaning that should the estimate be off
for one iteration, for instance, due to a poor-quality measure-
ment, it can still recover. Cycle-slip is automatically handled
in the approach and the position estimates are insensitive
to the cycle-slip. Furthermore, cross-correlation between the
ambiguities, which is apparent in Kalman-type methods and
leads to periods of subpar estimation performance, is avoided.

In future work we will allow for loss of satellites, addition
of satellites, refine the method, and include estimation of
additional disturbances, such as ionospheric terms.
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