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Abstract
This paper considers terahertz (THz) imaging of multi-layer nonoverlapping contents with
compressed measurements. One issue here is the shadow effect from front layers to deep layers
due to the non-uniform penetrating illumination. In the case of nonoverlapping contents in
layered structures, the shadow effect can be utilized to improve recovery performance and
reduce the number of measurements. To this end, we propose several approaches based on the
total variation (TV) minimization principle and take into account individual-layer sparsity,
group sparsity over layers, and hierarchical group sparsity over layers to reduce the number of
measurements. Numerical evaluation confirms the effectiveness of the proposed approaches.
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ABSTRACT

This paper considers terahertz (THz) imaging of multi-layer non-
overlapping contents with compressed measurements. One issue
here is the shadow effect from front layers to deep layers due
to the non-uniform penetrating illumination. In the case of non-
overlapping contents in layered structures, the shadow effect can be
utilized to improve recovery performance and reduce the number of
measurements. To this end, we propose several approaches based on
the total variation (TV) minimization principle and take into account
individual-layer sparsity, group sparsity over layers, and hierarchical
group sparsity over layers to reduce the number of measurements.
Numerical evaluation confirms the effectiveness of the proposed
approaches.

Index Terms— Terahertz, multi-layer structure, content extrac-
tion, compressed measurements.

1. INTRODUCTION

Over the past two decades, there have been increased interests in
terahertz (THz) sensing using the time-domain spectroscopy (TDS)
in either a reflection or transmission mode, due to the broad ap-
plications in gas sensing, moisture analysis, non-destructive evalua-
tion, biomedical diagnosis, package inspection, and security screen-
ing [1]. By sending an ultra-short pulse (e.g., 1-2 picoseconds), the
THz-TDS system is able to inspect not only the top surface of the
sample but also its internal structure, either a defect underneath the
top layer or a multi-layer structure, due to its capability of penetrat-
ing a wide range of non-conducting materials.

The THz-TDS can operate in a raster or compressed scanning
mode [2, 3]. In the raster scanning mode, the sample under inspec-
tion is illuminated by a THz-TDS point source and a programmable
mechanical raster moves the sample in the plane perpendicular to the
incidental waveform in order to measure the two-dimensional sur-
face of the sample. Single-layer and multi-layer content extractions
have been tested in [4–6]. One issue here is, due to either irregu-
lar sample surfaces or vibration from the mechanical raster move, to
deal with depth variation and its induced delay variation from one
pixel to another.

On the other hand, the compressed scanning mode aims to re-
move the mechanical raster move and reduce the total acquisition
time. As shown in Fig. 1, a terahertz transmitter sends a terahertz
ultra-short pulse beam to a collimating lens. The collimated beam
passes through layered samples and is then modulated by a random
pattern with the help of a THz-band spatial light modulator (SLM),
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Fig. 1. THz compressed scanning setup for multi-layer imaging of
non-overlapping contents.

followed by a focusing lens and a single-pixel photoconductive de-
tector [7, 8]. In other words, only one measurement is formed for a
mask at a time. The compressed scanning process repeats with dif-
ferent realizations of random masks and collects multiple sequential
measurements. The sample image can then be recovered by sparsity-
driven minimization methods, e.g., the total variation (TV) mini-
mization method [7].

In this paper, we consider the use of compressed scanning mode
to extract non-overlapping contents from layered structures with
THz measurements. One issue here is the shadow effect due to the
non-uniform penetrating illumination from front layers to deep lay-
ers. In the case of non-overlapping contents over multiple layers, the
shadow effect can be utilized to improve the recovery performance
and reduce the number of measurements. We build the proposed
approaches on the TV minimization principle as a regularization
approach for noise reduction while preserving image edges, to pro-
mote the sparsity on the image gradient domain for the multi-layered
non-overlapping content extraction with compressed measurements.
Furthermore, we take into account individual-layer sparsity, group
sparsity over layers, and hierarchical group sparsity over layers to
reduce the number of measurements while maintaining the recovery
performance.

The remainder of this paper is organized as follows. Section 2
introduces the signal model for the multi-layer THz imaging. In Sec-
tion 3, several approaches based on the TV minimization are pro-
posed. Numerical results are provided in Section 4, followed by the
conclusion in Section 5.

2. SIGNAL MODEL

Let xl =
[
xl(1), xl(2), . . . , xl(N)

]T denote a reflectance vector by
stacking the columns of the two-dimensional reflectance matrix at
the l-th layer of the sample, where N is the number of total pixels at
each layer of the sample. As the THz source illuminates the sample
from a spatially encoded mask, the received measurements can be
described as

yl = Alxl + vl, (1)



Fig. 2. The shadow effect of non-overlapping content for front layers
to deep layers.

where Al =
[
al,1, . . . ,al,M

]T is the measurement matrix corre-
sponding to the l-th layer, vl =

[
vl(1), . . . , vl(M)

]T is the Gaus-
sian distributed noise with zero mean and an unknown variance σ2

l ,
i.e., vl ∼ N (0, σ2

l IM ), yl =
[
yl(1), . . . , yl(M)

]T , and M is the
number of measurements.

In practice, the THz-band SLM likely remains the same during
the electro-optic sampling process which leads to the same measure-
ment matrix A over all layers. Here, we assume the measurement
matrix Al is a function of the layer index as the measurement matrix
can absorb layer-dependent inter-reflections and surface irregularity.

It is noticed that the signal model of (1) can, in fact, describe
both raster and compressed scanning acquisitions:

• In the case of the raster scanning, i.e., each pixel is illumi-
nated and measured individually, we have M = N and A
reduces to a diagonal matrix with diagonal elements respon-
sible for the depth variation [6, Section III.I.4].

• In the case of the compressed scanning, e.g., the single-pixel
THz camera [7], we have M < N and each row of the mea-
surement matrix A corresponds to one random mask pattern
used to form one measurement ym.

In the case of layered structures, the shadow effect is present
due to the non-uniform penetrating illumination from front layers to
deeper layers. For instance, as shown in Fig. 2, two letters ‘M’ and
‘E’ are present at two non-overlapping areas in the first and second
layers, respectively. Due to different reflection coefficients and re-
flection index between the letter ‘M’ and the rest area of the first
layer, the penetrating illumination towards the second layer is hence
different, which causes a shadow letter ‘M’ in the second layer and,
subsequently, in the third layer. This shadow effect is also applied
to the letter ‘E’ in the second layer with its shadow letter in the third
layer.

3. PROPOSED APPROACHES

In this section, we utilize the TV, originally proposed in [9] as a
regularization approach for noise reduction while preserving image
edges, to promote the sparsity on the image gradient domain for the
multi-layered non-overlapping content extraction with compressed
measurements. Particularly, we consider several variants of the TV
over the multi-layer structure to enforce either individual-layer spar-
sity, group sparsity over layers, or hierarchical group sparsity over
layers to reduce the number of measurements while maintaining the
recovery performance.

3.1. TV Minimization over Individual Layers

First, a straightforward solution is, similar to [7], to apply the TV-
regularized minimization independently over each individual layer.
This solution can be formulated as follows

x̂l = arg min
xl

1

2
‖yl −Alxl‖22 + λl‖xl‖TV, (2)

where λl is the regularization parameter for the l-th layer, and ‖x‖TV

is a discrete TV (semi)-norm with two popular choices of 1) the
isotropic TV

‖x‖TV =

N∑
n=1

TVI(xn) =

N∑
n=1

√
(∆h

n(x))2 + (∆v
n(x))2, (3)

and 2) the anisotropic TV

‖x‖TV =

N∑
n=1

TVA(xn) =

N∑
n=1

[
|∆h

n(x)|+ |∆v
n(x)|

]
, (4)

with the operators ∆h
n(x) and ∆v

n(x) correspond to, respectively,
the horizontal and vertical first order differences at pixel n. Specif-
ically, ∆h

n(x) = xn − xh(n) and ∆v
n(x) = xn − xv(n) with h(n)

and v(n) denoting the nearest horizontal and vertical neighbors
of pixel n, respectively. Fast algorithms such as iterative shrink-
age/thresholding algorithms (ISTA) and its accelerated version
(FISTA) have been proposed to circumvent the non-smoothness
of the TV regularization term [10].

3.2. Group TV Minimization over Multiple Layers

It is seen that the solutions from (2) do not explore the shadow effect
and require more measurements for deep layers as the sparsity de-
creases over layers. To utilize the shadow effect, one can enforce the
group sparsity over layers such that the content in front layers always
appear in deep layers. One way to formulate this group sparsity over
layers can be described as follows

X̂ = arg min
X

∑
l

1

2
‖yl −Alxl‖22 + λ‖X‖GTV (5)

where X = [x1, · · · ,xL] ∈ RN×L groups all images over L lay-
ers, λ is the regularization parameter, ‖X‖GTV is the group TV over
multiple layers defined as

‖X‖GTV =

N∑
n=1

√√√√ L∑
l=1

[TVI(xln)]2

=
N∑

n=1

√√√√ L∑
l=1

(∆h
n(xl))2 + (∆v

n(xl))2, (6)

for the isotropic TV and

‖X‖GTV =

N∑
n=1

√√√√ L∑
l=1

[TVA(xln)]2

=

N∑
n=1

√√√√ L∑
l=1

[|∆h
n(x)|+ |∆v

n(x)|]2, (7)



for the anisotropic TV. It is easy to see that both group TV defi-

nitions are the `2,1 norm, i.e., ‖D‖2,1 =
∑N

n=1

√∑L
l=1D

2
n,l, of

the (isotropic or anisotropic) TV map D, i.e., Dn,l = TVI(xl(n))
or Dn,l = TVA(xl(n)). In other words, (5) encourages solutions
which yield layer-wise sparsity on the TV map of X.

It is also noted that, for a given pixel n, instead of 2 (horizontal
and vertical) gradients in the single-layer case, there are 2L gradients
overL layers. The isotropic group TV of (6) simply uses the `2 norm
over the expanded 2L gradients followed by the `1 norm over all
pixels. Inspired by this motivation, we introduce another version of
the anisotropic TV

‖X‖TV =

N∑
n=1

√√√√ L∑
l=1

[TVA(xln)]

=

N∑
n=1

√√√√ L∑
l=1

[|∆h
n(x)|+ |∆v

n(x)|], (8)

which uses the anisotropic definition, i.e., `1 norm, over the 2L gra-
dients followed by the `1 norm over pixels.

3.3. Hierarchical Group TV Minimization over Multiple Layers

In addition to the shadow effect, the non-overlapping assumption
imposes an additional feature over layers, i.e., the TV-domain spar-
sity extent increases over layers, i.e., S(TV(xl)) ⊂ S(TV(xl+1)),
where S(x) is the set of indices where the elements of x are non-
zeros. In fact, the combined shadow effect and non-overlapping as-
sumption introduces a hierarchical layer-wise structure in the TV
domain.

As an illustrative example of L = 3 in Fig. 3 where non-zero
and zero gradient denoted as color and gray arrows, respectively, two
pixels with non-zero (horizontal and vertical) gradients are present in
the upper left corner of the first layer and, due to the shadow effect,
the gradients of the same pixels at the second and third layers are also
non-zeros. At the second layer, two more pixels at the upper right
corner have non-zero gradients which results in the same pixels at the
third layer have non-zero gradients. Finally, at the third layer, two
more pixels at the lower right corner have non-zero gradients. From
this illustrative example, one can clearly see that the hierarchical
structure over layers. To be more precise, it is a nested group sparsity
pattern over layers in the TV domain.

The nested group structure can be mathematically formulated
as follows. Denote the l-th layer image as Xl ∈ RNr×Nc where
N = Nr × Nc, where xl is the vectorized version of Xl. We can
define the matrix ITV below indicating the smallest layer index where
a pixel has non-zero gradients

[ITV]nr,nc =

{
min

l
{TV([Xl]nr,nc) 6= 0}

0, if TV([Xl]nr,nc) = 0, l = 1, · · · , L
(9)

For the illustrative example in Fig. 3, the corresponding matrix ITV

is given at the right upper corner. For a given pixel at [nr, nc], the
nested group structure implies that

TV([Xl]nr,nc = 0, for all l < [ITV]nr,nc . (10)

In other words, all gradients at layers before the layer [ITV]nr,nc

are all zeros. On the other hand, the number of non-zero gradients

Fig. 3. Hierarchical group sparsity in the TV domain where colored
arrows represent non-zero (horizontal/vertical) gradients and grey
arrows denote zero gradients. The matrix ITV indicates the smallest
layer index where the pixel has non-zero gradients, and the matrix
HTV indicates the number of non-zero gradients over layers.

for the pixel at [nr, nc] over layers is equal to the number of layers
minus the corresponding smallest layer index in ITV.

[HTV]nr,nc = L− [ITV]nr,nc , if [ITV]nr,nc > 0. (11)

The corresponding HTV is also given in Fig. 3.
The hierarchical nested group structure has been utilized in the

hierarchical group LASSO [11] which uses hierarchical sparsity con-
straints directly in selecting solution variables and the hierarchi-
cal vector auto-regressive modeling [12] that imposes hierarchical
sparse correlation matrices over multiple lags. For the problem of
interest here, we introduce similar hierarchical sparsity constraints
to the TV domain. To describe the hierarchical group structure, we
define the following variables

Xl = [x1, · · · ,xl] ∈ RN×l (12)

D(Xl) = [d1,d2, · · · ,dl] ∈ RN×l (13)

where dl = TV(xl) = [TV(xl(1)), · · · ,TV(xl(N))]T denotes the
(isotropic or anisotropic) TV vector of xl at the l-th layer. Essen-
tially, D(Xl) groups the first l TV vectors for the first l layers. Note
that D1 = d1. Then the hierarchical group TV minimization over
multiple layers is defined as follows

X̂ = arg min
X

∑
l

1

2
‖yl −Alxl‖22 + λ‖X‖HGTV (14)

where

‖X‖HGTV =

N∑
n=1

L∑
l=1

‖D(Xl)‖2 (15)

with each ‖D(Xl)‖2 imposed for attaining the group structure from
the first layer to the l-th layer. We can rewrite

‖X‖HGTV =

N∑
n=1

‖D(XL)‖2 +

N∑
n=1

L−1∑
l=1

‖D(Xl)‖2 (16)

which shows the first item on the right is the same as the penalty
term in (6) or (7) used in the group TV minimization. Then addi-
tional penalty terms

∑N
n=1

∑L−1
l=1 ‖D(Xl)‖2 enforce extra sparsity

constraints when the layer index l becomes smaller. As a result, it
encourages more sparse solutions at the front layers than the deep
layers and, therefore, gives a solution with the nested group sparse
pattern in the TV domain.



Fig. 4. The recovered four letters along with shadow letters in L = 3
layers with proposed approaches when M/N = 0.5.

4. NUMERICAL RESULTS

In this section, numerical results are provided to evaluate all three
proposed approaches in terms of the success rate and normalized
mean squared error (NMSE) as a function of the compression ratio
M/N . Denote the three approaches, sequentially, as 1) I-TVM, 2)
G-TVM and 3) HG-TVM. To obtain the results, we run all three ap-
proaches with several choices of regularization parameter λ over a
broad interval and report the best result with the regularization pa-
rameter giving the smallest the estimation error with respect to the
ground truth.

Fig. 4 shows the recovery performance of L = 3 layers with
four non-overlapping letters when the number of measurements is
half of the number of pixels in each layer, i.e., M/N = 0.5. The
first row shows the performance of the individual TV minimization
(I-TVM) in Section. 3.1. One can observe good performance at the
first two layers along the shadow letter of ‘M’ in the second layer.
However, for the third layer, the shadow letters ‘M’ and ‘E’ are not
recovered and the two letters ‘A‘ and ‘L’ are visible with significant
background artifacts. As explained previously, with both shadow
letters from front layers and new letters in the third layer, the num-
ber of non-zero gradients in the third layer is significantly increased,
which in turns requires more measurements for improved perfor-
mance at deep layers. The second row gives the performance of the
group TV minimization (G-TVM) approach with the same number
of measurements. Compared with the I-TVM approach, the G-TVM
shows improved performance in the third layer by imposing layer-
wise group constraints. Nevertheless, layer-wise group constraints
introduce visible background artifacts in the first and second layers.
The best performance across all three layers is obtained by the hi-
erarchical group TV minimization (HG-TVM) approach shown in
the bottom row where all four letters and shadow letters are fully
recovered with the minimum artifacts.

The performance is further quantified in terms of the success
rate and NMSE by using the Monte-Carlo simulation. The NMSE
for each layer is defined as ‖x̂l − xl‖22/‖xl‖22 and the Monte-Carlo
trail is considered to be a success if the layer-wise NMSE is less than
a threshold, i.e., 10−5 in our simulation. In each Monte-Carlo run,
the measurement matrix Al is generated as independent Gaussian

Fig. 5. Performance comparison in terms of the success rate (top
row) and NMSE (bottom row) as a function of the compression ratio
M/N for all three layers.

matrices with zero mean and unit variance. Fig. 5 shows the two per-
formance metrics for the proposed approaches over all three layers.
For the I-TVM, the success rate curve (denoted as blue curves with
dots) moves towards higher compression ratios from the first layer to
the third layer. This observation is in line with the qualitative results
shown in Fig. 4, where the deeper layers with more shadow letters
requires higher compression ratios and larger number of measure-
ments. The G-TVM (denoted as red curves with diamonds) shows
the worst performance for the first two layers as more background
artifacts are introduced due to the group structure constraints. At the
third layer, the G-TVM is better than the I-TVM. Finally, the HG-
TVM shows worse performance than the I-TVM at the first layer but
the best performance over the second and third layers.

5. CONCLUSION

This paper investigated THz imaging of multi-layer non-overlapping
contents and, particularly, utilized the shadow effect to improve the
recovery performance for deep layers with increased number of
shadow letters from front layers. Our approach to the problem of
interest was built on the total variation minimization principle and
exploited the hierarchical (nested) group structure in the total vari-
ation domain over layers. The proposed hierarchical group total
variation minimization approach achieved the best trade-off perfor-
mance across all three layers in the considered examples.
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