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Abstract
We present a sensor-fusion approach to real-time estimation of the offsets and noise character-
istics found in lowcost automotive-grade sensors. Based on recent developments in adaptive
particle filtering, we develop a method for online learning of the, possibly time-varying, noise
statistics in the inertial and steering-wheel sensors, where we model the offsets as Gaussian
random variables. The paper contains verification against several simulation and experimen-
tal data sets compared to ground truth, which shows that our method is capable of bias-free
estimation of the sensor characteristics. The results also indicate that the computational cost
is feasible for implementation on computationally limited embedded hardware.
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Offset and Noise Estimation of Automotive-Grade Sensors Using
Adaptive Particle Filtering

Karl Berntorp1 and Stefano Di Cairano1

Abstract— We present a sensor-fusion approach to real-time
estimation of the offsets and noise characteristics found in low-
cost automotive-grade sensors. Based on recent developments
in adaptive particle filtering, we develop a method for online
learning of the, possibly time-varying, noise statistics in the
inertial and steering-wheel sensors, where we model the offsets
as Gaussian random variables. The paper contains verification
against several simulation and experimental data sets compared
to ground truth, which shows that our method is capable of
bias-free estimation of the sensor characteristics. The results
also indicate that the computational cost is feasible for imple-
mentation on computationally limited embedded hardware.

I. INTRODUCTION

Several of the sensors found in the current generation
of production vehicles are typically of low cost and as a
consequence prone to time-varying offset and scale errors
[1], and may have relatively low signal-to-noise ratio. For
instance, the lateral acceleration and heading-rate measure-
ments are known to have drift and large noise in the sensor
measurements, leading to measurements that are only reliable
for prediction over a very limited time interval. Similarly, the
sensor measuring the steering-wheel angle has an offset error
that, when used for dead reckoning in a vehicle model, leads
to prediction errors that accumulate over time.

The active safety systems developed in the past (e.g.,
electronic stability control [2] and anti-lock braking systems
[3]) have been focused on aiding the driver over relatively
short time intervals. However, even for those safety systems,
accurate state estimation is more important than advanced
control algorithms [1]. The recent surge for enabling new
autonomous capabilities [4]–[7] implies a need for sensor
information that can be used over longer time intervals to
reliably predict the vehicle motion.

Offset estimation methods for the steering wheel and yaw
rate found in production vehicles are typically based on aver-
aging to compensate for the yaw rate and steering wheel bias.
However, this leads to performance that is sometimes more
than one order of magnitude away from the next-generation
requirements [8]. Various methods have been proposed to
improve the offset compensation in the steering-wheel angle
and/or inertial measurements. The method in [9] estimates
the yaw-rate offset in a state-augmented Kalman filter based
on a kinematic vehicle model, where the yaw-rate offset is
modeled as a random walk. The approach in [8] extends this
to also include estimation of the steering offset in a linear
regression. Oftentimes, the bias of the inertial sensors are
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integrated and solved for in an estimation algorithm targeted
for a specific application [1], [10]–[13]. However, this has
the drawback that the same tasks are repeated in different
filters, which is computationally inefficient. Also, it implies
that each estimator becomes unnecessarily complex, which
might have implications on observability and feasibility of
the approach.

In this paper, we develop a method for real-time es-
timation of the offset and sensor-noise characteristics of
the acceleration, gyro, and steering-wheel measurements.
While our primary focus is the lateral dynamics, the method
developed here can be applied to either lateral or longitudinal
dynamics, or to the two combined. We model the sensor
measurements as Gaussian random variables with unknown
mean and covariance, and the task is to estimate these un-
known quantities in real time. The vehicle dynamics and the
measurements are described by a state-space model, with the
noise statistics as the unknown parameters in the model. The
resulting estimation problem is non-Gaussian and includes
both the vehicle state trajectory and the parameters, which
introduces dynamic coupling between state and parameters.
Furthermore, because of the biased and unknown noise,
approximate estimation methods are required.

We use particle filtering [14] for solving our nonlinear
non-Gaussian estimation problem, which has previously been
used in several automotive applications (see, e.g., [15], [16]).
A common way to estimate slowly time-varying parameters,
is to augment the state vector [10], [17]. However, this
leads to an increased state dimension that is problematic for
particle filters, since the number of propagated particles and
hence the computational burden increases exponentially with
the dimensions, and the computational capabilities of auto-
motive micro-controllers that run the estimation algorithm
are very limited. Instead, we rely on marginalization [18]
and propagation of the sufficient statistics of the noise
parameters, conditioned on the estimated vehicle states, by
exploiting the concept of conjugate priors [19].

II. MODELING AND PROBLEM FORMULATION

Our algorithm is focused on estimating the offsets during
normal driving. We therefore model the vehicle dynamics
by a single-track (i.e., bicycle) model [20], in which the
two wheels on each axle are lumped together, where the
vehicle operates in the linear region of the tire-force curve,
and where planar motion is assumed. This paper focuses on
the sensors mainly related to the lateral vehicle dynamics,
but our approach can also handle the combined longitudinal
and lateral setting.



In the following, F y is the lateral tire force, α is the
wheel-slip angle, ψ is the yaw, δ is the steering angle at
the front wheel and subscripts f, r denote front and rear,
respectively. The state vector is x =

[
vY ψ̇

]T
, where vY

is the lateral velocity of the vehicle, and ψ̇ is the yaw rate.
From the assumption of driving in the linear regime of the
tire-force curve, the lateral tire force can be expressed as a
linear function of the slip angle α, F y ≈ Cyα, where Cy is
the lateral stiffness. The slip angles are approximated as

αf ≈ δ −
vY + lf ψ̇

vX
, αr ≈

lrψ̇ − vY

vX
, (1)

where lr and lf are the distance from the center of mass
to the front and rear wheel, respecitlvey. In (1), we use the
velocity at the center of mass instead of the velocity at the
center of the wheel. The equations of motion are [12]

mv̇Y = −mvX ψ̇ + Cyf

(
δ − vY + lf ψ̇

vX

)
+ Cyr

lrψ̇ − vY

vX
,

(2a)

Iψ̈ = lfC
y
f

(
δ − vY + lf ψ̇

vX

)
− lrCyr

lrψ̇ − vY

vX
, (2b)

where m is the vehicle mass and I is the inertia. Model (2) is
nonlinear in vX and there are bilinearities between states and
parameters. The longitudinal velocity vX is assumed known.
This is consistent with many navigation systems, where dead
reckoning is used to decrease state dimension. In this work,
we determine vX from the wheel rotation rates given by the
wheel-speed sensors.

A. Estimation Model

The steering angle δ at the wheel is usually not directly
measured. Furthermore, the Ackermann steering configura-
tion causes a slight deviation between the left and right
wheel. We assume a single-track model, where δ is modeled
as the average between the left and right wheel angles.
In general, δ can be calculated from a static map of the
measured steering-wheel angle. However, the resulting mea-
surement of δ is known to be subject to an offset, which in
some cases can even be time varying. An objective with the
present contribution is therefore to estimate the offset. To
this end, we decompose the steering angle into one known
nominal part and one unknown part,

δ = δm + ∆δ, (3)

where δm is the measured value of the steering angle, and
where ∆δ is the, possibly time-varying, offset. We model

wk := ∆δ (4)

as random process noise acting on the otherwise determin-
istic vehicle dynamics. The noise term wk is modeled as
Gaussian distributed according to wk ∼ N (µk, σ

2
k), where

µk and σk are the unknown, usually time varying, mean and
standard deviation. Inserting (3) into (2) leads to

xk+1 = f(xk,uk) + g(xk,uk)wk, (5)

where uk = [vX δm]T.
We are also interested in estimating the time-varying

offsets in the acceleration and gyro measurements, as well
as their corresponding variances. The measurement model
therefore incorporates the measurements of the lateral accel-
eration, aYm, and the yaw rate ψ̇m, forming the measurement
vector yk = [aYm ψ̇m]T. To relate yk to the states, note that
aY can be extracted from the right-hand side of (2a), after
dividing with the vehicle mass. The yaw-rate measurement
is directly related to the yaw rate.

Similar to the steering offset (4), we model the measure-
ment noise ek as Gaussian with unknown mean bk (the IMU
bias) and covariance Rk according to ek ∼ N (bk,Rk). The
measurement model can be written as

yk = h(xk,uk) + d(xk,uk)(δm + wk) + ek. (6)

The joint Gaussian distribution of the steering offset
wk and measurement noise ēk can be written as w̄k =[
wT
k ēT

k

]T ∼ N (µk,Σk), where we have introduced the
short-hand notation ēk = d(xk,uk)wk + ek and

µk =

[
µw,k

dkµw,k + bk

]
, Σk =

[
σ2
k σ2

kd
T
k

dkσ
2 dkσ

2
kd

T
k +R

]
.

(7)
In (7), dk := dk(xk,uk). Thus, the noise sources are
dependent. In this work we need to estimate the process-
noise statistics µk and σk and measurement-noise statistics
bk and Rk, together with the unknown state trajectory.

Observability can be analyzed by augmenting the dynamic
model (5) with a random walk model of the steering offset
and bias, and derive the observability Gramian by lineariza-
tion. In our case, there are three states and four offset
parameters to estimate, implying seven quantities to estimate
in total. However, it can be shown that the Gramian has rank
six, which implies that the system is not fully observable. To
remedy this, we utilize the fact that the angular velocities of
the rear wheels can be converted to virtual measurements of
the yaw rate according to

ψ̇virt =
ω

(r)
r r − ω(l)

r r

lT
, (8)

where lT is the distance between the rear left and rear right
wheel and ω

(l)
r , ω(r)

r , are the rotation rates for the rear
left and rear right wheel, respectively. With the additional
measurement (8), it can be shown that the Gramian is
nonsingular, and hence the system is weakly observable.
This work assumes that the virtual measurement (8) is
Gaussian distributed with zero mean and a priori determined
variance σ2

virt, and we denote the full measurement vector
ȳk = [yT

k ψ̇virt]
T. In practice, measurements using the wheel

rotation speed have scale errors due to differences between
the true and estimated wheel radius r. This is not considered
here but we refer to [16] for one possible way to estimate
the tire radii of the different wheels.

Remark 1: It is common to model the bias vector bk as
a random walk and extend the state vector, as mentioned in
the introduction, and the covariance Rk of the measurement



noise is typically also determined a priori. However, deter-
mining the covariance a priori can be a tedious exercise.
Similarly, also the process noise of the bias random walk
can be determined a priori, which can be time consuming.
Unmodeled effects can lead to differences between the
effective measurement noise and the sensor specifications.
Hence, we include the bias and variances in the estimation
problem formulation.

B. Problem Formulation

We want to recursively estimate the steering offset and the
noise statistics of the inertial measurements. In a Bayesian
setting, this can be expressed as learning the parameters
θk := {µw,k, bk, σk,Rk} of the Gaussian noise wk, ek.
We approach this problem in the following way. Given
the system model (5)–(8), and dependent Gaussian noise
between wk and ēk characterized by (7), where the unknown
parameters θk may be time varying, we recursively estimate

p(θk|ȳ0:k), (9a)
p(xk|ȳ0:k). (9b)

Eqs. (9a) and (9b) are coupled, which will be apparent in
the derivation of the proposed solution, because (9a) depends
on the state trajectory and the density (9b) depends on the
parameter estimates.

III. MARGINALIZED PARTICLE FILTER FOR SENSOR
ESTIMATION

This section focuses on determining the densities in (9).
We formulate the joint estimation in a Bayesian framework
as approximating the joint filtering density p(x0:k,θk|ȳ0:k),
that is, the joint posterior conditioned on all measurements
from time index 0 to k. We decompose

p(x0:k,θk|ȳ0:k) = p(θk|x0:kȳ0:k)p(x0:k|ȳ0:k), (10)

and recursively estimate the densities in (10).

A. State Estimation

We approximate the posterior of the state trajectory with
a particle filter as

p(x0:k|ȳ0:k) ≈
N∑
i=1

qikδ(x0:k − xi0:k), (11)

where δ(·) is the Dirac delta mass and qik is the impor-
tance weight for the ith state trajectory sample xi0:k. The
approximate distribution (11) is propagated with a sequential
importance resampling (SIR) based particle filter [14]. In
general, the particles are sampled using a proposal distri-
bution π(xk+1|xi0:k, ȳ0:k+1), which starts from the particles
at the previous time step. For dependent noise, the weight
update is performed as [21]

qik ∝ qik−1

p(ȳk|xi0:k, ȳ0:k−1)p(xik|xi0:k−1, ȳ0:k−1)

π(xik|xi0:k−1, ȳ0:k)
, (12)

where p(ȳk|xi0:k, ȳ0:k−1) is the likelihood. If the proposal is
chosen equal to p(xik|xi0:k−1, ȳ0:k−1), (12) simplifies to

qik ∝ qik−1p(ȳk|xi0:k, ȳ0:k−1). (13)

Hence, to obtain new weights, we need to evaluate

p(ȳk|xi0:k, ȳ0:k−1), (14a)

p(xik+1|xi0:k, ȳ0:k). (14b)

B. Parameter Estimation

According to (5) and (6), knowing both the state and mea-
surement trajectory leads to full knowledge about w̄0:k =
[w0:k ē0:k]T. The posterior for the noise parameters can
therefore be rewritten using Bayes’ rule as

p(θk|x0:k,y0:k) = p(θk|w̄0:k) ∝ p(w̄k|θk)p(θk|w̄0:k−1).
(15)

One of the assumptions is that the noise given the noise
parameters; that is, p(w̄k|θk) in (15), is Gaussian. Therefore,
we can utilize the concept of conjugate priors. If a prior
distribution belongs to the same family as the posterior
distribution, the prior is said to be conjugate to the particular
likelihood. For multivariate Normal data w̄ ∈ Rd with un-
known mean µ and covariance Σ, a Normal-inverse-Wishart
distribution defines the conjugate prior [22], p(µk,Σk) :=
NiW(γk|k, µ̂k|k,Λk|k, νk|k), through the model

µk|Σk ∼ N (µ̂k|k,Σk),

Σk ∼ iW(νk|k,Λk|k)

∝ |Σk|−
1
2 (νk|k+d+1)e(−

1
2 tr(Λk|kΣ

−1
k ),

where tr(·) is the trace operator. We compute the statistics
Sk|k := (γk|k, µ̂k|k,Λk|k, νk|k) for each particle as (see [23])

γk|k =
γk|k−1

1 + γk|k−1
, (16a)

µ̂k|k = µ̂k|k−1 + γk|kzk, (16b)
νk|k = νk|k−1 + 1, (16c)

Λk|k = Λk|k−1 +
1

1 + γk|k−1
zkz

T
k , (16d)

zk = w̄k − µ̂k|k−1, (16e)

where the data w̄k for each particle is generated by

w̄i
k =

[
wik
eik

]
=

[
g(xik,uk)−†(xik+1 − f(xik,uk))
yk − h(xik,uk)− d(xik,uk)µiw,k

]
, (17)

and in which g−† is the pseudo-inverse of g. Hence, a key
task in this paper is how to generate the particles in (17) to
update the parameters. For slowly time-varying parameters,
the prediction step consists of

γk|k−1 =
1

λ
γk−1|k−1, (18a)

µ̂k|k−1 = µ̂k−1|k−1, (18b)
νk|k−1 = λνk−1|k−1, (18c)
Λk|k−1 = λΛk−1|k−1, (18d)



where λ ∈ (0, 1] introduces exponential forgetting. Since we
know the dependence structure (7), the scale matrix Λk can
be decomposed as

Λk =

[
Λw,k Λw,kd

T
k

dkΛw,k dkΛw,kd
T
k + Λe,k

]
, (19)

implying that it suffices to propagate Λw,k and Λe in
(16d) and (18d). Further, for a Normal-inverse-Wishart prior,
the predictive distribution of the data w̄ is a Student-t,
St(µ̂k|k−1, Λ̃k|k−1, νk|k−1 − d+ 1), with

Λ̃k|k−1 =
1 + γk|k−1

νk|k−1 − d+ 1
Λk|k−1.

If the predictive distribution p(θk|w̄0:k−1) in (15) is a
Normal-inverse-Wishart distribution, from (15), (16), also
the posterior is Normal-inverse Wishart, p(θk|x0:k,y0:k) =
NiW(µ̂k|k,Λk|k, νk|k). To obtain estimates of the mean and
covariance of the noise processes, we rewrite the marginal
(9a) as

p(θk|ȳ0:k) =

∫
p(θk|x0:k,y0:k)p(x0:k|ȳ0:k)dx0:k

≈
N∑
i=1

qikp(θk|xi0:k, ȳ0:k), (20)

which has complexity O(N). Based on (20), the unknown
parameters can be extracted; for example, the estimate of bk
and Rk can be found as

b̂k =

N∑
i=1

qikb̂
i
k|k, (21a)

R̂k =

N∑
i=1

qik

(
1

ν̃k|k
Λi
k|k + (b̂ik|k − b̂k)(b̂ik|k − b̂k)T

)
,

(21b)

and similarly for µ̂w,k, σ̂k, where ν̃k|k = νk|k − d− 1.

C. Noise Marginalization

Consider first the likelihood (14a) resulting in the weight
update (13), and note that the noise processes of the inertial
sensors and the steering-wheel angle are independent of
ψ̇virt. Hence, from the state-space model (5) and (6), the
knowledge of x0:k and y0:k gives full knowledge of the un-
known noise sequence ē0:k. The property of transformations
of variables in densities [24] gives that

p(yk|x0:k,y0:k−1) ∝ p(ēk(yk,xk)|ē0:k−1). (22)

We marginalize out the noise parameters as

p(yk|x0:k,y0:k−1) =

∫
p(yk|θk,xk)

· p(θk|x0:k−1,y0:k−1) dθk. (23)

Eq. (23) is the integral of the product of a Gaussian distribu-
tion and a Normal-inverse-Wishart distribution. Hence, (23)
is a Student-t distribution [22], implying that

p(ēk(yk,xk)|ē0:k−1) = St(µ̂ē,k|k−1, Λ̃ē,k|k−1, ν̃k|k−1),

with ν̃k|k−1 = νk|k−1 − d+ 1, and mean and scaling

µ̂ē,k|k−1 = dkµ̂w,k|k−1 + b̂k|k−1,

Λ̃ē,k|k−1 =
1 + γk|k−1

ν̃k|k−1

(
dkΛw,k|k−1d

T
k + Λe,k|k−1

)
.

The full measurement noise also contains a scalar component
eψ̇ due to the virtual measurement (8), which is zero-mean
Gaussian. However, this leads to a mixture of a Gaussian and
Student-t distribution, whose density has no closed form. An
approach to resolve this is to resort to moment matching;
that is, we model the full measurement noise as a Student-t
distribution with a common degree of freedom,[
ēk
eψ̇

]
∼ St

([
µ̂ē,k|k−1

0

]
,

[
Λ̃ē,k|k−1 0

0T Λvirt)

]
, ν̃k|k−1

)
,

(24)
where

Λvirt =
ν̃k|k−1 − 2

ν̃k|k−1
σ2

virt.

The Student-t converges to the Gaussian as the degrees of
freedom tend to infinity. Hence, from lim

ν→∞
St(µ,Λ, ν) =

N (µ,Λ) and the update formulas (16c) and (18c), it follows
that we recover the Gaussian measurement noise of the vir-
tual measurement with precision determined by the forgetting
factor. Hence, the measurement update (13) is done by

qik ∝ qik−1St(µ∗, Λ̃∗, ν̃), (25)

which can be evaluated analytically, where

µ∗ = hk + dkµ̂w,k|k−1 + bk,

Λ̃∗ =
1 + γk|k−1

ν̃k|k−1

(
dkΛw,k|k−1d

T
k + Λe,k|k−1

)
+

ν̃k|k−1 − 2

ν̃k|k−1
σ2

virt.

The prediction step (14b) is resolved in a similar way,

p(xk+1|x0:k, ȳ0:k) ∝ p(g−†k (xk+1 − fk)|x0:k, ȳ0:k)

= p(g−†k (xk+1 − fk)|ē0:k)

= p(wk(xk+1)|ē0:k). (26)

By integrating over the noise parameters in (14b),

p(xk+1|x0:k, ȳ0:k) =

∫
p(xk+1|θk,x0:k, ȳ0:k)

· p(θk|x0:k, ȳ0:k) dθk. (27)

The integrand in (27) is the product of a Gaussian and
a Normal-inverse-Wishart distribution, which is a Student-
t distribution. Combining with (26), we obtain a Student-t
distribution for wk as

p(wk(xk+1)|ē0:k) = St(µ̂∗k, Λ̃
∗
k, ν
∗
k), (28)



where

ν∗k = νk|k−1 − d+ 1 + dy,

µ∗k = µ̂w,k|k−1 + dkΛw,k|k−1Λ̃
−1
ē,k|k−1zk,

Λ̃∗k =
νk|k−1 − d+ 1 + zkΛ̃

−1
ē,k|k−1z

T
k

νk|k−1 − dy + 1

(
Λw,k|k−1

− dkΛw,k|k−1Λ̃
−1
ē,k|k−1ΛT

w,k|k−1d
T
k

)
,

zk = ēk − µ̂ē,k|k−1.

In the implementation, the process noise is generated from
(28) and used in (5) to generate samples {xik+1}Ni=1. The
samples from (28) are used directly in the (17) for wk.
Algorithm 1 summarizes the method.
Algorithm 1 Pseudo-code of the estimation algorithm

Initialize: Set {xi0}Ni=1 ∼ p0(x0), {qi0}Ni=1 = 1/N ,
{Si0}Ni=1 = {γi0, µ̄i0,Λi

w,0, ν
i
0}

1: for k ← 0 to T do
2: for i ∈ {1, . . . , N} do
3: Update weight q̄ik using (25).
4: Update noise statistics Sik|k using (16).
5: end for
6: Normalize weights as qik = q̄ik/(

∑N
i=1 q̄

i
k).

7: Compute Neff = 1/(
∑N
i=1(qik)2)

8: if Neff ≤ Nthr then
9: Resample particles and copy the corresponding

statistics. Set {qik}Ni=1 = 1/N .
10: end if
11: Compute state estimates xk =

∑N
i=1 q

i
kx

i
k.

12: Compute estimates of noise parameters using (21).
13: for i ∈ {1, . . . , N} do
14: Predict noise statistics Sik+1|k using (18).
15: Sample wi

k from (28).
16: Predict state xik+1 using (5).
17: end for
18: end for

IV. RESULTS

We evaluate the algorithm on synthetic and real data.
The synthetic data is generated by feeding the single-track
model (2) with the measured steering-wheel angle and wheel
speeds, and by adding offsets in the steering-wheel angle and
inertial sensors. For experimental validation, we have used
a mid-size SUV, equipped with industry-grade validation
equipment to gather data, and collected several different data
sets. The known parameters in the vehicle model has been
extracted from data sheets and bench testing.

A. Simulation Results

The statistics of the Normal-inverse-Wishart is initialized
as zero-mean with the estimated standard deviations set to
be roughly twice of the true standard deviation, and the
forgetting factor is set to λ = 0.995. Fig. 1 shows the
estimated standard deviations for the lateral acceleration and
the gyro in red and the true values in black. After the initial
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Fig. 1. Estimated standard deviations (red) and true values (black) of the
lateral acceleration and gyro in simulation for N = 100 particles.
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Fig. 2. The estimated bias (red) and true bias (black) in simulation for
N = 100 particles.

transients, the estimates converge to their true values. Setting
the forgetting factor to a lower value or the initial variances
to larger values leads to faster convergence (at the cost of
larger fluctuations in steady state). The estimated offsets are
shown in Fig. 2. There is a cross-dependence between the
steering offset and the measurement offsets, especially the
acceleration measurement. However, the estimator is able to
estimate the offsets closely.

B. Experimental Results

For the experimental results, the steering-wheel angle
offset has been obtained by an offline procedure, in which
the (assumed constant) steering-wheel offset that minimizes
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Fig. 3. Estimated steering-wheel offset (red) and the ground truth (black),
as obtained by an offline optimization-based procedure, in experiments for
N = 500 particles. The results from three data sets are overlaid in the plot.
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Fig. 4. The estimated yaw rate (red) for N = 500 particles, measured
yaw rate (green), and the black line is the true yaw rate.

the errors between the ground truth inertial measurements
and the predicted vehicle trajectory has been obtained.

Fig. 3 displays the estimated steering-angle offset (red) for
three different data sets. The true value as obtained by the
offline procedure are in black. After the initial transients, the
estimated offset converges very close to the true offset. The
algorithm repeatedly finds values very close to each other,
even for different data sets.

In Fig. 4 we show the measured and true yaw rate,
respectively, together with the estimated yaw rate. The initial
values of the bias samples are set to zero. We do not have
ground truth for the bias, which is a slowly time-varying
process. However, by comparing the measured yaw rate with
the yaw rate from the validation equipment (a very high-cost,
high-precision fiber-optic gyro), we can see the instantaneous
errors between them. The plot shows the results after the
initial transients of the bias parameters. The estimated yaw
rate follows the validation sensor quite closely.

V. CONCLUSION

We developed a method for estimation of the offset
and noise characteristics found in low-cost automotive-grade
sensors. The offset and noise of the different sensors are
related through the vehicle state trajectory and the associated
estimation problem is non-Gaussian. We provided a method
based on marginalized particle filtering to solve the problem.
Tests on simulation and experimental data sets verified that
the method can accurately estimate both the offsets and
sensor variances.
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