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Approximate Noise-Adaptive Filtering Using Student-t Distributions

Karl Berntorp1 and Stefano Di Cairano1

Abstract— We present an adaptive method for Bayesian
filtering of linear state-space models with unknown noise
statistics. The proposed method makes use of separation of the
state and parameter posterior at each time step recursively for
subsequent approximate inference. The filter exploits properties
of the inverse-Wishart and the Student-t distributions and has
relations to recent results from outlier-robust filtering. The
method is well suited to platforms with limited computational
resources because of its simplicity. Simulation results show that
the proposed method can correctly estimate the measurement-
noise statistics under large initial errors, in addition to being
robust to outliers in the measurement and process noise.

I. INTRODUCTION

The Kalman filter (KF) is the standard tool for state
estimation in linear state-space models [1]. It is the best
linear unbiased filter in the minimum-variance sense, and for
Gaussian noise it is the optimal Bayesian filter [2]. The clas-
sical formulation of the KF assumes that the noise processes
are Gaussian and have known mean and covariance, which
can be severely limiting. Model uncertainties and possible
data outliers affect the performance of the KF, and in many
practical cases the model parameters are unknown, or at
least uncertain. For instance, in navigation systems where
inertial sensing and/or GPS is used [3], the noise statistics
often have temporal dependence that cannot be determined
a priori. Other examples are changing noise statistics due
to linearization errors in approximated nonlinear models,
environment dependent sensor statistics, and outliers in un-
reliable sensors that the Gaussian distribution handles poorly
because of its low probability mass in the tails. The noise
parameters determine the reliability of the different parts
of the model and are therefore of particular importance for
the filter performance. However, manual tuning of the noise
parameters, as is often done in practice, can be a challenging,
time consuming, and tedious task.

This paper develops a computationally efficient Bayesian
approach for joint estimation of the state and the parameters
of the noise for linear state-space models. The formal solu-
tion to the joint state and noise-parameter filtering problem
is intractable and approximate solutions are necessary. Our
proposed method is based on intermediate Student-t approx-
imations of the state posterior, to account for the uncertainty
of the noise parameters. We use the conjugacy of the Normal-
inverse Wishart (NiW) distribution to the Gaussian likelihood
[4], and exploit that the posterior predictive distribution
of the NiW is Student-t distributed [5]. This connects the
parameter and state estimates and motivates the intermediate
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Student-t approximations of the state posterior. The resulting
filtering equations for the state are similar to the KF, except
for a nonlinear dependence on the measurement. Our method
has limited computational demands and is therefore well
suited for embedded implementations.

One of the early works on adaptive KF for noise identifi-
cation is [6], and an example of variational Bayesian (VB)
methods for inference on systems with uncertain parameters
can be found in [7]. These methods can be extended to the
nonlinear setting in the spirit of the extended KF (EKF) and
the unscented KF (UKF). Another alternative to handle non-
linearities is to resort to particle filtering (PF) [8], [9]. PF can
achieve arbitrary precision, but at the price of a higher com-
putational cost than the KF-type filters. Approaches based on
variational approximations and the Student-t distribution can
be found in [10], [11]. Our proposed method is similar to
the Student-t filtering method in [12] in that we make use of
intermediate Student-t approximations of the state posterior
to achieve a readily implementable algorithm. Because of its
relations to outlier-robust filtering, our proposed algorithm
is expected to avoid some of the robustness issues with
the Gaussian-noise assumption [12], which we verify in our
numerical validation. We make a simplifying approximation
by separating the state and parameter posterior, similar to
what has previously been proposed in VB approaches (see,
e.g., [7]). An important distinction is that we propagate the
state posterior using Student-t distributions, which makes
for a natural connection with the NiW distribution, whose
predictive density is a Student-t.

Notation: With p(xk|y0:k), we mean the posterior density
function of the state xk at time index k conditioned on the
measurement sequence y0:k := {y0, . . . ,yk}. Throughout,
for a vector x, x ∼ N (µ,Σ) indicates that x is Gaussian
distributed with mean µ and covariance Σ, and |Σ| is the
determinant of the matrix Σ. The notation St(µ,Υ, ν) means
the multivariate Student-t distribution with mean µ, scaling
Υ, and ν degrees of freedom. The notation NiW(γ,µ,Λ, ν)
denotes the NiW distribution with statistics (hyperparame-
ters) summarized in S := (γ,µ,Λ, ν). Similarly, iW(Λ, ν)
means the iW distribution with hyperparameters S := (Λ, ν).
The notation ẑk|m denotes the estimate of z at time index k
given measurements up to time index m.

II. PROBLEM DEFINITION

This paper considers adaptive Bayesian inference for
discrete-time linear state-space models

xk+1 = Akxk +wk, (1a)
yk = Ckxk + ek, (1b)



where xk ∈ Rn is the state at time step k and yk ∈ Rm
is the measurement. The model is specified by the state-
transition matrix Ak ∈ Rn×n, measurement matrix Ck ∈
Rn×m, and the noise sources wk, ek. The process noise
wk ∼ N (µw,k,Σw,k) is Gaussian distributed with mean
µw,k and covariance Σwk,k. Similarly, the measurement
noise ek ∼ N (µe,k,Σe,k) is Gaussian distributed with mean
µe,k and covariance Σe,k. The noise sources are individually
independent, but wk and ek can be dependent. Dependence
between wk and ek frequently arises in engineering ap-
plications, such as inertial navigation, target tracking, or
automotive applications [13], [14], often as a consequence
of discretization of a continuous-time system.

Denote the parameters of the process and measurement
noise with θk = {µk,Σk}, where µk = [µw,k µe,k]T

and where Σk is the (at least partially) unknown covariance
matrix

Σk =

[
Σw,k Σwe,k

Σew,k Σe,k

]
. (2)

In its most general formulation, all entities in θk are un-
known.

The Bayesian filtering for model (1) with unknown θk
amounts to computing p(xk,θk|y0:k). Recursive expressions
for the filtering problem consist of a prediction step [2]

p(xk,θk|y0:k−1) =

∫
p(xk,θk|xk−1,θk−1)

· p(xk−1,θk−1|y0:k−1) dxk−1dθk−1 (3)

and a measurement update according to Bayes’ rule yielding
the filtering posterior

p(xk,θk|y0:k) =
p(yk,xk,θk|y0:k−1)

p(yk|y0:k−1)
, (4)

where p(yk|y0:k−1) is a normalization constant,

p(yk|y0:k−1) =

∫
p(yk|xk,θk)p(xk,θk|y0:k−1) dxkdθk.

(5)
The integrations involved in (3)–(5) are in general not analyt-
ically tractable, and hence may require a significant amount
of computations that may not be available in embedded com-
puting platforms. In the following, we perform approximate
inference by using properties of the Student-t distribution
and suitable heuristics of the parameter distribution.

III. NOISE-ADAPTIVE FILTERING BY INTERMEDIATE
STUDENT-T APPROXIMATIONS

The key assumption in our approach is that we can
approximate the conditional distribution p(xk,θk|y0:k) in (4)
at each time step k as the product of a Student-t distribution
and an iW distribution,1

p(xk,θk|y0:k) ≈ St(xk|x̂k|k,Pk|k, ν′k)

· iW(θk|Λk|k, νk|k). (6)

For later convenience, we first give some preliminaries and
useful results.

1In cases where also the mean vector is unknown, we replace the iW
with the NiW distribution.
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Fig. 1. Illustration of how the Student-t approaches a Gaussian as the
degrees of freedom increase.

A. Preliminaries

For further details about the results on Student-t distribu-
tions that we outline here, see, for example, [15]. A Student-t
density of a random variable x is characterized by the mean
x̂, the scale matrix Υ, and the scalar degrees of freedom
ν, where a lower value of ν results in a heavier tail of the
distribution. As the number of degrees of freedom increase,
the Student-t approaches the Gaussian distribution (Fig. 1).
The probability density function of a Student-t is [12]

St(x|x̂,Υ, ν) =
Γ(ν+n2 )

Γ(ν2 )

1

(πν)n/2
1√

det(Υ)

·
(

1 +
1

ν
(x− x̂)TΥ−1(x− x̂)

)−n+ν
2

, (7)

where the covariance matrix cov(x) is given by

cov(x) =
ν

ν − 2
Υ.

For linear transformations of Student-t distributions, the
mean and scale matrix are transformed similar to the pa-
rameters in the Gaussian case. Two useful properties of
conditional Student-t distributions used in this paper are that
for partitioned vectors x = [xT

1 xT
2 ]T where x1 ∈ Rn1 ,

x2 ∈ Rn2 with the joint density

p(x1,x2) = St

([
x1

x2

]∣∣∣∣[x̂1

x̂2

]
,

[
Υ1 Υ12

Υ21 Υ2

]
, ν

)
, (8)

the marginal density is given by

p(x1) = St(x1|x̂1,Υ1, ν), (9)

and the conditional density is given by

p(x1|x2) = St(x1|x̂1|2,Υ
′
1|2, ν1|2), (10)

where

x̂1|2 = x̂1 + Υ12Υ−12 (x2 − x̂2), (11a)

Υ1|2 = Υ1 −Υ12Υ−12 Υ21, (11b)

Υ′1|2 =
ν + (x2 − x̂2)Υ−12 (x2 − x̂2)T

ν + n2
Υ1|2, (11c)

ν1|2 = ν + n2. (11d)



Note the similarity of (11a) and (11b) with the KF update
equations. The NiW distribution as used in this work is
defined through a hierarchical distribution according to [5]

µk|Σk ∼ N (µ̂k,Σk), (12a)
Σk ∼ iW(νk,Λk)

∝ |Σk|−
1
2 (νk+d+1)e(−

1
2 tr(ΛkΣ

−1
k )), (12b)

where d is the dimension of the data and where the definition
of the iW distribution is given by (12b).

There are several reasons for approximating the con-
ditional distribution p(xk,θk|y0:k) according to (6). For
instance, the iW (NiW) distribution is the conjugate prior
to the Gaussian likelihood. That is, for an iW prior p(θ) and
a Gaussian likelihood p(w̄|θ), the posterior

p(θ|w̄) ∝ p(w̄|θ)p(θ) (13)

is also NiW distributed [5]. Leveraging the conjugacy of
the NiW relative to a Gaussian likelihood leads to several
algorithmic simplifications. In (12) the unknown Σk appears
on the right-hand side. However, due to the conjugacy of the
iW to the Gaussian likelihood it is possible to marginalize
out Σk. The one-step prediction of the sufficient statistics
can be calculated as [16], [17]

γk+1 =
1

λ
γk, (14a)

µk+1 = µk, (14b)
νk+1 = λνk, (14c)
Λk+1 = λΛk, (14d)

where λ ∈ [0, 1] produces exponential forgetting and de-
termines how fast the parameters are allowed to change.
In the case of iW priors, (14a) and (14b) can be ignored.
Furthermore, for an (N)iW prior, the predictive distribution
of the data w̄ is Student-t distributed with νk−d+1 degrees
of freedom and scale matrix

Λ̃k =
1

νk − d+ 1
Λk.

This property is important since it forms the basis for why
our proposed method makes the assumption of Student-t
distributed state posterior.

B. Approximation of State Posterior by Student-t

The starting point for updating the state estimate is a
Student-t assumption (7) of the state filtering distribution as

p(xk|y0:k) = St(xk|x̂k|k,Pk|k, ν′k). (15)

Time Update: To obtain the prediction density p(xk+1|y0:k)
of the state, we write

p(xk+1|y0:k) =

∫
p(xk+1,xk|y0:k)p(xk|y0:k) dxk. (16)

The joint density p(xk+1,xk|y0:k) is a product of Student-t
densities. If we assume that the joint density can be written

as a joint Student-t density with a common degree of freedom
ηk, for uncorrelated noise processes we obtain

p(xk,wk|y0:k) ≈

St

([
xk
wk

]∣∣∣∣[ x̂k|kµ̂wk,k

]
,

[
Pk|k 0

0 Σw,k

]
, ηk

)
, (17)

from which it follows by rules of linear transformations of
Student-t distributed vectors that

p(xk+1,xk|y0:k) ≈

St

([
xk
xk+1

]∣∣∣∣[ x̂k|kx̂k+1|k

]
,

[
Pk|k Pk|kA

T
k

AkPk|k Pk+1|k

]
, ηk

)
, (18)

which leads to the filter updates

x̂k+1|k = Akx̂k|k, (19a)

Pk+1|k = AkPk|kA
T
k + Σw,k, (19b)

of the mean and scale matrix. Instead, for dependent noise
processes it follows from (10), (11) that the time update is

x̂k+1|k = Akx̂k|k + µ̂w,k + Σwe,kΣ
−1
e,k(yk − ŷk|k),

(20a)

P ′k+1|k = ĀkPk|kĀ
T
k + Σw,k

−Σwe,kΣ
−1
e,kΣew,k, (20b)

Pk+1|k =
ηk + (yk − ŷk|k)Σ−1e,k(yk − ŷk|k)T

ηk + n2
P ′k+1|k,

(20c)
η′k = ηk +m, (20d)

where Āk = Ak − Σwe,kΣ
−1
e,kCk. Hence, (19) ((20) for

dependent noise) provides the parameters of

p(xk+1|y0:k) = St(xk|x̂k|k,Pk+1|k, η
′
k). (21)

The time-update equations (19) and (20) are very similar to
the KF time updates for independent and dependent noise
processes, respectively. However, the scale matrix update
(20c) also contains a factor that is quadratically dependent
on the measurement.

Remark 1: The degree of freedom ηk in (18) can be
chosen in several ways. A simple way that preserves the
heaviest tails (and hence makes the algorithm more robust
to outliers) is to choose ηk = min(νk, ν

′
k).

Measurement Update: For the measurement update,
the Student-t distribution (21) must be combined with
p(yk|xk,y0:k−1) by the expansion

p(yk|xk,y0:k−1) =

∫
p(yk|θk,xk)p(θk|xk,y0:k−1) dθk.

(22)
Since the integrand of (22) by assumption is a prod-
uct of a Gaussian distribution and an (N)iW distribution,
p(yk|xk,y0:k−1) is Student-t distributed. Hence, the mea-
surement update, similar to the time update, consists of the



product of two Student-t densities. By approximating the
joint density between xk and ek as a joint Student-t density

p(xk, ek|y0:k−1) ≈

St

([
xk
ek

]∣∣∣∣[x̂k|k−1µ̂k

]
,

[
Pk|k−1 0

0 Σe,k

]
, η′′k

)
, (23)

we obtain the joint density in Bayes’ rule (4) as

p(xk,yk|y0:k−1) ≈

St

([
xk
yk

]∣∣∣∣[x̂k|k−1ŷk

]
,

[
Pk|k−1 Pk|k−1C

T
k

CkPk|k−1 Sk

]
, η′′k

)
.

(24)

Utilizing the results on conditional densities (10), (11), the
measurement update step becomes

x̂k|k = x̂k|k−1 + µ̂e,k +Kk(yk − ŷk|k−1), (25a)

P ′k|k = Pk|k−1 −KkSkK
T
k , (25b)

Pk|k =
η′k + (yk − ŷk|k−1)S−1k (yk − ŷk|k−1)T

η′k +m
P ′k|k,

(25c)
ν′k = η′′k +m, (25d)

with Sk = CkPk|k−1C
T
k + Σe,k. Thus, (25) gives the state

filtering posterior (15).
Similar to the prediction step, the parameter η′′k in (23)

needs to be chosen. One possibility is η′′k = νk − d + 1.
This choice is intuitive since the predictive distribution of
the (N)iW is a Student-t with degrees of freedom νk−d+1,
where νk increases with time. In both the time update
and measurement update, limiting the degree of freedom
gives increased robustness in the algorithm. However, it
also prevents the algorithm from approaching a Gaussian
distribution. With η′′k = νk−d+1 and for a forgetting factor
λ < 1, the degree of freedom will converge to an equilibrium.
At equilibrium, νk = νk−1 and if (14c) is used for predicting
the degree of freedom it follows that lim

k→∞
νk = 1/(1− λ).

C. Parameter Update

For the update of the parameter distribution, we employ
fixed-point iterations [7], [11]. The measurement noise pa-
rameters can be updated as

γk|k =
γk

1 + γk
, (26a)

µ̂e,k|k = µ̂e,k + γkek, (26b)
νk|k = νk + 1, (26c)

Λe,k|k = Λe,k +CkPk|kC
T
k +

1

1 + γk
eke

T
k , (26d)

ek = yk −Ckx̂k|k − µ̂e,k (26e)

where (26a) and (26b) are ignored and γk = 0 if the iW
is used as a parameter prior. For unknown process-noise
parameters, the VB update of the covariance involves [18]

Λk|k = Λk + E((xk −Akxk−1)(xk −Akxk−1)T). (27)

Hence, the process noise statistics can be updated by

γk|k =
γk

1 + γk
, (28a)

µ̂w,k|k = µ̂w,k + γkzk, (28b)
νk|k = νk + 1, (28c)

Λw,k|k = Λw,k + Pk|k −AkPk|k−1A
T
k +

1

1 + γk
zkz

T
k ,

(28d)
zk = x̂k|k − x̂k|k−1 − µ̂w,k (28e)

where the first two equations are ignored and γk = 0 for
known mean. If the noise processes are dependent, the pre-
diction of the state and scale matrix are done using (20). The
case for fully unknown parameters can be updated similarly
but is omitted due to lack of space. One iteration of the
algorithm is summarized in Algorithm 1 for the special case
of unknown measurement noise covariance and independent
noise, and with a predetermined number J (typically J ≈ 1)
of fixed-point iterations of the parameter update.

Algorithm 1 Pseudo-code of the estimation algorithm

1: Predict state posterior using (19).
2: Predict noise statistics using (14c), (14d).
3: Set ŷk = Ckxk|k−1, x̂(0)

k|k = x̂k|k−1, P (0)
k|k =

Pk|k−1, νk|k = νk + 1, Σ
(0)
e,k = Λe,k/(νk|k −

m− 1).
4: for j ← 1 to J do
5: Update state posterior using (25) resulting in

x
(j)
k|k,P

(j)
k|k .

6: Update parameters using (26d) with x(j)
k|k,P

(j)
k|k .

7: Set Σ
(j)
e,k = Λ

(j)
e,k|k/(νk|k −m− 1).

8: end for
9: Set x̂k|k = x

(J)
k|k , Pk|k = P

(J)
k|k ,Σe,k|k =

Λ
(J)
e,k|k/(νk|k −m− 1).

IV. NUMERICAL RESULTS

We evaluate the proposed noise-adaptive Student-t filter
on a tracking example using a generic motion model, with
outlier-corrupted measurement and process noise. We con-
sider the problem of tracking an object moving in the Carte-
sian two-dimensional plane while estimating the unknown
measurement-noise covariance. The state vector consists of
the position and velocity vector of the object. The object
moves according to a constant-velocity model [19]. The
sampling time is Ts = 1 s and the simulation lasts for
T = 4000 s. The motion model is linear

xk+1 = diag(F ,F )xk +Bwk, wk ∼ N (0,Q), (29)

where diag(·) is a diagonal matrix with the arguments on
the diagonal, Q = diag(σ2

w, σ
2
w), and

F =

[
1 Ts
0 1

]
, B =


T 2
s /2 0
Ts 0
0 T 2

s /2
0 Ts

 .
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Fig. 2. Estimated values of the first row of the measurement covariance
matrix for 10 Monte-Carlo simulations, using a forgetting factor λ = 0.98.

The measurements are generated by

yk =

[
1 0 0 0
0 0 1 0

]
xk + ek. (30)

The measurement noise is nominally distributed as ek ∼
N (0,Rk), where

Rk = σ2
e

(
2− cos

(
4πk

T

))
·
[
5 1
1 5

]
. (31)

The nominal noise parameters are given by σ2
w = 3, σ2

e = 2.
The prior for the initial state is assumed Gaussian with
mean and covariance given by x0 = [0 5 0 5]T, P0 =
diag([302 302 302 302]T), the initial degrees of freedom
and scale matrix are ν0 = 5, Λ0 = (ν0 − 3)R0, and we
use J = 1 number of fixed-point iterations. Fig. 2 displays
the estimates of the first row of the measurement covariance
matrix for 10 Monte-Carlo simulations, λ = 0.98, and with
the time-varying noise parameters (31).

To assess the performance of the proposed filter against
other filters, we simulate three different scenarios, each
with 1000 Monte-Carlo simulations. In the first scenario,
we execute the filters using the nominal noise parameters
given by (31). In the second scenario, we assume that the
measurement noise is corrupted by outliers. We simulate
an outlier as generated by a Gaussian distribution with the
covariance matrix 100Rk. In this scenario, the measurement
noise is generated from

ek =

{
N (0,Rk) with probability 0.995
N (0, 100Rk) with probability 0.005

In the third scenario we also assume that the process noise
is subject to outliers, in which case the process noise is
generated from

wk =

{
N (0,Q) with probability 0.995
N (0, 100Q) with probability 0.005

The third scenario is relevant in situations when sensor
measurements are used as inputs to the motion model.

We compare the proposed Algorithm 1 against

• KF1: A KF that knows the nominal covariance matrices
of both the process and measurement noise, but does
not know anything about the outliers.

• KF2: a KF that knows the nominal covariance matrices
and the instances at which outliers occur and can adjust
its process and measurement noise accordingly. This
filter solves the Bayesian filtering recursions and is the
best available algorithm, but infeasible to implement in
practice because of its assumption of known outliers.
This filter serves as benchmark for the given problem.

• ST: The student-t filter in [12], which knows the nominal
covariance (31) but is not aware of the outliers, similar
to KF1. This method is designed to be robust to out-
liers but assumes known noise covariances, and should
therefore always perform better than our proposed filter
when outliers are present.

• VB: The adaptive KF proposed in [20], which does
online covariance estimation. This filter assumes a
Gaussian state posterior at each step.

• ST-A: The adaptive student-t filter proposed in this paper
and given by Algorithm 1, which is designed to be
robust to outliers and does not assume knowledge of
the covariances, but rather estimates them concurrently.

In our proposed ST-A, we set the number of degrees of
freedom in the prediction step (18) to ηk = ν0 = 5. We
compare the different filters in terms of the average of
the time-averaged root-mean square error (ARMSE) of the
position estimates over all Monte-Carlo simulations, where
the RMSE for Monte-Carlo simulation j is given by

RMSE(j) =

√√√√( 1

T + 1

T∑
k=0

‖C(x̂jk|k − x
j
k)‖2

)
, (32)

in which x̂jk|k denotes the filtered state estimate (mean)
for Monte-Carlo simulation j at time k. The RMSE for
the covariance matrix is taken as the square root of the
average Frobenius norm square normalized by the number
of elements [17],

ER(j) =

(
1

m2(T + 1)

T∑
k=0

Tr
(

(R̂j
k|k −R

j
k)2
))1/4

. (33)

Tables I–III show the three different scenarios The first
three filters already know the covariance matrices and the
corresponding error terms are not given in the tables. Without
outliers (Table I) KF1 and KF2 (which are the same in
this scenario) perform best, as expected. When comparing
the proposed ST-A (Algorithm 1) with VB, our method
performs slightly better, although the difference is small.
It is interesting to note that without outliers, the proposed
ST-A performs better than ST in terms of ARMSE, despite
that ST knows the covariance matrices. The reason is that
ST retains a small degree of freedom throughout, whereas
our method only retains the small degree of freedom in
the prediction step. Hence, as time evolves the degrees of
freedom of the measurement update step in our method will
converge to a value determined by the forgetting factor (c.f.



TABLE I
UNKNOWN MEASUREMENT NOISE COVARIANCE WITHOUT OUTLIERS.

THE TIME-AVERAGED RMSES AND THE RESPECTIVE STANDARD

DEVIATIONS ARE SHOWN.

Filter ARMSE AER

KF1 3.671± 0.064
KF2 3.671± 0.064
ST 3.851± 0.076
VB 3.685± 0.061 1.727± 0.060
ST-A 3.680± 0.062 1.679± 0.068

TABLE II
UNKNOWN MEASUREMENT NOISE COVARIANCE WITH MEASUREMENT

NOISE OUTLIERS. THE TIME-AVERAGED RMSES AND THE RESPECTIVE

STANDARD DEVIATIONS ARE SHOWN.

Filter ARMSE AER

KF1 4.511± 0.264
KF2 3.702± 0.065
ST 4.281± 0.151
VB 5.997± 1.526 7.649± 3.562
ST-A 4.448± 0.246 3.450± 0.556

Sec. III-B), which better approximates the true (Gaussian)
noise distribution than ST.

For the case of measurement outliers (Table II), the
Student-t filter ST in [12] performs better than KF1. Sim-
ilarly, the proposed method ST-A outperforms VB thanks
to its propagation of Student-t distributions instead of the
Gaussian assumption in VB. For instance, the RMSE of
the covariance estimates are decreased by more than 50%
when comparing ST-A with VB. Despite not knowing the
measurement covariance and hence needing to estimate it,
ST-A achieves performance very close to ST, which knows
the nominal covariance matrices. Moreover, the proposed
ST-A performs better than KF1 even though KF1 knows
the nominal covariance matrices. The inherent robustness to
disturbances in our proposed method is further pronounced
when also incorporating process-noise outliers, whose results
can be seen in Table III. With outliers in both noise sources,
the position RMSE is decreased by more than 30% when
comparing ST-A and VB.

V. CONCLUSION

We presented an approximate method for noise-adaptive
filtering robust to outliers in the noise processes. By lever-
aging properties of the predictive distributions of the NiW

TABLE III
UNKNOWN MEASUREMENT NOISE COVARIANCE WITH MEASUREMENT

AND PROCESS NOISE OUTLIERS. THE TIME-AVERAGED RMSES AND

THE RESPECTIVE STANDARD DEVIATIONS ARE SHOWN.

Filter ARMSE AER

KF1 5.101± 0.321
KF2 3.718± 0.066
ST 4.596± 0.188
VB 6.949± 2.196 8.954± 5.144
ST-A 4.993± 0.292 4.387± 0.565

(iW) distribution, we can model the joint state and parameter
posterior at each step as the product of a Student-t distri-
bution and an NiW distribution, which leads to analytic,
although approximate, expressions. Since we propagate the
state posterior using a Student-t approximation, the algorithm
simplifies due to the connection to the NiW distribution. A
Monte-Carlo evaluation on a benchmark example showed im-
provements over a recent adaptive filter, as well as robustness
of the method to outliers. The results were obtained using
synthetic data. It is future work to evaluate and refine the
method for applications on real-world data.
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