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Abstract
Last-mile transportation (LMT) refers to any service that moves passengers from a hub of
mass transportation (MT), such as air, boat, bus, or train, to destinations, such as a home
or an office. In this paper, we introduce the problem of scheduling passengers jointly on MT
and LMT services, with passengers sharing a car, van, or autonomous pod of limited capacity
for LMT. Passenger itineraries are determined so as to minimize total transit time for all
passengers, with each passenger arriving at the destination within a specified time window.
The transit time includes the time spent traveling through both services and, possibly, waiting
time for transferring between the services. We provide an integer linear programming (ILP)
formulation for this problem. Since the ILMTP is NP-hard and problem instances of practical
size are often difficult to solve, we study a restricted version where MT trips are uniform,
all passengers have time windows of a common size, and LMT vehicles visit one destination
per trip. We prove that there is an optimal solution that sorts and groups passengers by
their deadlines and, based on this result, we propose a constructive grouping heuristic and
local search operators to generate high-quality solutions. The resulting groups are optimally
scheduled in a few seconds using another ILP formulation. Numerical results indicate that
the solutions obtained by this heuristic are often close to optimal and that warm-starting the
ILP solver with such solutions decreases the overall computational times significantly.
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Abstract

Last-mile transportation (LMT) refers to any service that
moves passengers from a hub of mass transportation (MT),
such as air, boat, bus, or train, to destinations, such as a
home or an office. In this paper, we introduce the problem
of scheduling passengers jointly on MT and LMT services,
with passengers sharing a car, van, or autonomous pod of lim-
ited capacity for LMT. Passenger itineraries are determined
so as to minimize total transit time for all passengers, with
each passenger arriving at the destination within a specified
time window. The transit time includes the time spent trav-
eling through both services and, possibly, waiting time for
transferring between the services. We provide an integer lin-
ear programming (ILP) formulation for this problem. Since
the ILMTP is NP-hard and problem instances of practical
size are often difficult to solve, we study a restricted version
where MT trips are uniform, all passengers have time win-
dows of a common size, and LMT vehicles visit one destina-
tion per trip. We prove that there is an optimal solution that
sorts and groups passengers by their deadlines and, based on
this result, we propose a constructive grouping heuristic and
local search operators to generate high-quality solutions. The
resulting groups are optimally scheduled in a few seconds us-
ing another ILP formulation. Numerical results indicate that
the solutions obtained by this heuristic are often close to opti-
mal and that warm-starting the ILP solver with such solutions
decreases the overall computational times significantly.

Introduction
Last-mile transportation (LMT) is defined as the ser-
vice that delivers people from the hub of a mass trans-
portation (MT) service to each passenger’s final destina-
tion. The MT service can be one of air, boat, bus, or
train. The LMT service can be facilitated by bike (Liu,
Jiang, and Cheng 2012), car (Shaheen 2004; Thien
2013), autonomous pods (Shen, Zhang, and Zhao 2017)
(see also http://www.ukautodrive.com/, http:
//www.innovaevcarshare.com/), or personal rapid
transit systems. Though the term LMT has also been used
for the movement of goods in supply chains, home-delivery
systems, and telecommunications, we will restrict our atten-
tion in this paper exclusively to the transportation of people.
A LMT service expands the access of MT to an area wider
than that defined as “walking distance” of a transportation
hub. Interest in the design and operation of LMT has grown

tremendously in the past decade. This has been driven pri-
marily by three factors (Wang 2017): (i) governmental push
to reduce congestion and air pollution; (ii) increasing aging
population in cities; and (iii) providing mobility for the dif-
ferently abled and school children.

Figure 1: Schematic of the integrated LMT system (images
licensed from shutterstock.com).

Figure 1 shows a typical scenario for the operation of the
MT service in conjunction with the LMT. All passengers of
the LMT service start their journey on the MT from one of
the stations served by a train, and request automated trans-
portation to the buildings within a time-window. The build-
ings B1-B10 can represent offices for different companies
that are co-located in an industrial park, or residential build-
ings in a neighborhood. The buildings can be accessed by
paths that are shared by both pedestrians and LMT vehicles.
For convenience, we will refer to the vehicle providing LMT
service as a commuter vehicle (CV). The CVs are typically
parked at a terminal (T0) at which passengers arrive from
trains and proceed to their respective destination buildings
by sharing a ride in a CV. The LMT service may represent
the morning commute to the office or the evening commute
back to residences. Once all the passengers are delivered to
their destinations, the CVs return back to the terminal for
subsequent trips.

We envision an operational scenario such as in Figure 2,
whereby the passengers indicate their origin station, desti-
nation building, and the desired time-window of arrival at
the destination. This information is assumed to be available
to the scheduler well in advance of scheduling decisions.



Figure 2: Schematic representation of the interaction be-
tween the passengers in the system, the scheduler and the
CVs (images licensed from shutterstock.com)

For instance, consider the situation where the buildings rep-
resent offices and the passengers enter requests through a
smartphone app on the evening of the previous day. Once all
requests have been received, the scheduler determines for
each user: (i) the train to board at their origin station; (ii) the
CV to board at T0, (iii) the time the CV will depart from T0,
and (iv) the time of arrival at the destination building. The
scheduler also communicates to the different CVs the routes,
start times, and list of passengers. The choice of route deter-
mines the times of arrival of passengers at their destination
and the total time spent by the passengers in the CV.

Note that the first-mile operation, wherein the passengers
first ride on CVs to reach a hub of a MT service, can be
easily accommodated in an analogous manner. Furthermore,
the requests need not be provided in advance and can instead
be communicated to the scheduler in a just-in-time manner,
but we do not address such online variants in this work.

In this paper, we introduce the Integrated Last-Mile
Transportation Problem (ILMTP). The ILMTP is defined as
the problem of scheduling passengers jointly on the MT and
LMT services so that the passengers reach their destinations
within specified time-windows and the total transit time for
all passengers is minimized. We assume that the information
about passengers is available in advance. The transit time in-
cludes the time spent traveling in the transportation vehicles
in addition to any time spent waiting for the LMT service.
In determining the schedules on the LMT service, the prob-
lem also determines the set of groups that share a ride in a
CV. Thus, the time spent by the passengers in the CV de-
pends on the co-passengers. To the best of our knowledge,
this general version has not been addressed in the literature.

We introduce a constructive heuristic and a local search
method to group passengers for LMT trips, which based
on this grouping are then optimally scheduled in a few sec-
onds by an Integer Linear Programming (ILP) solver. These
groups preserve the invariant that each group has a single
destination and that the deadlines of the passengers across
groups going to the same destination can be sorted in nonde-
creasing order. We show that there is always an optimal so-

lution with such a structure if all passengers have time win-
dows of the same size, all MT trips serve all stations with
uniform trip times, and each LMT trip has a single destina-
tion. We present computational results restricted to solutions
of this form and compare them with a general lower bound.

Related Work
The ILMTP can be broadly viewed as an instance of routing
and scheduling with time-windows. We survey the relevant
literature and describe the key differences with the problem
studied in this paper.

Last-Mile Transportation Problem
The literature on last-mile transportation has been mostly
focused on the LMT service, without much consideration
to the MT system. Seminal work in this area dates back
to the 1960s and has focused mostly on freight transporta-
tion (see Wang (2017) for a discussion). For passenger
transportation, a number of case studies have analyzed the
last-mile problem in different contexts, such as a bicycle-
sharing program in Beijing (Liu, Jiang, and Cheng 2012).
Wang (2017) is the first work to consider routing and
scheduling in the LMT service. The paper also considered
the minimization of total travel time and proposed a heuristic
approach for constructing solutions. More recently, Mahéo,
Kilby, and Hentenryck (2018) consider the design of a pub-
lic transit system that includes multiple modes of transporta-
tion, however the authors did not consider scheduling as-
pects. The ILMTP is a strict generalization of Wang (2017),
in that we consider time-windows for arrival and scheduling
on the MT service. Furthermore, it also complements the
work of Mahéo, Kilby, and Hentenryck (2018) by focusing
exclusively on the scheduling aspects of multi-modal trans-
portation.

Personal Rapid Transit
Personal Rapid Transit (PRT) has similarities to the last-
mile problem and has attracted significant attention in the
past decade. Research has been conducted on PRT sys-
tem control frameworks (Anderson 1998), financial assess-
ments (Bly and Teychenne 2005; Berger et al. 2011), perfor-
mance approximations (Lees-Miller, Hammersley, and Dav-
enport 2009; Lees-Miller, Hammersley, and Wilson 2010)
and case studies (Mueller and Sgouridis 2011). However,
none of these papers have addressed last-mile operational
issues.

Demand Responsive Transit
A large body of research has been devoted to demand re-
sponsive transit (DRT), which is another type of on-demand
service. Some papers focus on DRT concept discussions,
practical implementation, and assessment of simulations in
case studies (Brake, Nelson, and Wright 2004; Horn 2002b;
Mageean and Nelson 2003; Palmer, Dessouky, and Abdel-
maguid 2004; Quadrifoglio, Dessouky, and Ordón̈ez 2008).
Models have been developed to assist in system design
and regulation (e.g., Daganzo 1978, Diana, Dessouky, and
Xia 2006, Wilson and Hendrickson 1980). Routing options



in specific contexts have also been considered (Chevrier,
Jourdan, and Dhaenens 2012; Horn 2002a)). The LMT can
be viewed as a specific variant of a broadly defined DRT
concept—namely, a demand responsive transportation sys-
tem that addresses last-mile service requests with batch pas-
senger demand and a shared passenger origin. Unlike most
papers in the DRT literature, we also focus on routing and
scheduling on the MT and LMT from an optimization and
operational perspective.

Vehicle Routing & Dial-a-Ride Problems
Vehicle routing problems have long been studied, and they
comprise a large body of literature. The vehicle routing
problem with time windows (VRPTW) has been the subject
of intensive study, with many heuristic and exact optimiza-
tion approaches suggested in the literature. A thorough re-
view of the VRPTW literature can be found in (Toth and
Vigo 2014). The dial-a-ride problem (DARP) and related
variations have also been extensively investigated (Cordeau
and Laporte 2007; Jaw et al. 1986; Lei, Laporte, and Guo
2012). As argued by (Wang 2017), the VRPTW focuses on
reducing operating costs while ILMTP aims to improve the
level-of-service by minimizing total passenger transit time.

In summary, ILMTP has the following features that dis-
tinguishes it from previous studies in the literature: (1) joint
scheduling of passengers on the MT and LMT services; (2)
time-windows on arrival at destination; (3) common last-
mile origin (which is also the vehicle depot); and (4) min-
imization of the total passenger transit time.

Problem Formulation
In this section we introduce notation relevant to ILMTP and
present an optimization model. For ease of exposition, we
will assume for the rest of the paper that the MT corresponds
to trains that arrive at T0. The problem data, summarized in
Table 1, can be divided into those associated with: (i) the
MT service, (ii) the LMT service, and (iii) the passengers.
The set U(s) represents the set of all possible MT service
options that are available for passengers from station s to
the terminal T0. The MT services that are identical in travel
time to reach T0 but leave at different times are treated as
distinct MT service options in U . The set U(s) includes the
possibility of passengers transferring between trains in order
to travel from s to T0. A user that leaves from s on a MT
service u ∈ U(s) has a travel time of (tT0(s)− tstart(u, s))
on the MT service to reach T0. If a user does not leave on
the CV until time t, then the user spends (t− tT0(u, s)) time
waiting at T0. For commuting in the CVs, the travel time for
the passengers depends on: (i) the route choice on the CV,
and (ii) the number of stops on the route prior to their des-
tination. Without loss of generality, we abstract loading and
unloading times as part of the pre-computed routes, since
routes with stops that are not actually used are suboptimal.

The decision variables in the formulation are:
• yp,u ∈ {0, 1}: is 1 if passenger p is assigned to train ser-

vice u ∈ U(s(p));
• zp,r,t ∈ {0, 1}: is 1 if passenger p is assigned to CV route
r ∈ R (with b(p) ∈ B(r)) and departs at time t ∈ T ;

T planning horizon for the problem
Mass Transportation (MT) Service
S set of boarding stations for passengers
T0 the alighting station for passengers
U(s) the set of all MT services that serve s
tstart(u, s) time that MT service u ∈ U(s) leaves s
tT0(u) time that MT service u ∈ U(s) reaches T0

Passengers
P set of passengers
s(p) origin station of p ∈ P
b(p) destination of p ∈ P
rel(p) earliest time of arrival for p ∈ P
ded(p) latest time of arrival for p ∈ P

Last-Mile Transportation (LMT) Service
C set of commuter vehicles
CV max capacity of CV
R the set of routes for the CV
B(r) the set of stops served on LMT route r ∈ R
τ travel(r, b) travel time on CV to reach b ∈ B(r) from T0 on route r
τtrip(r) round trip time for a CV to return to T0 on route r

Table 1: Problem data for the ILMTP.

• nT0,t: number of CVs at T0 at time t ∈ T ;
• nr,t ∈ {1, . . . , |C|}: number of CVs that are assigned to

route r and depart at time t ∈ T ; and
• τp: transit time for passenger p ∈ P .

We first describe the constraints in the problem that model
operational requirements. The total transit time for each pas-
senger p ∈ P is

τp =
∑
r∈R

∑
t∈T

(t+ τ travel(r, b(p))) · zp,r,t

−
∑

u∈U(s(p))

tstart(u) · yp,u.
(1a)

Next we model that each passenger p ∈ P is assigned to
exactly one u on the MT service and has an unique CV route
r and start time t:∑

u∈U(s(p))

yp,u = 1,
∑
r∈R

∑
p∈P

zp,r,t = 1. (1b)

The following constraints ensure that each passenger starts
on a CV trip after arriving to T0 :∑

t≤tT0(u)

zp,r,t ≤ 1− yp,u ∀ p ∈ P, u ∈ U(s(p)). (1c)

The time-windows on the arrivals are imposed using

rel(p) ≤
∑
r∈R

∑
t∈T

(t+ τ travel(r, b(p)) · zp,r,t ≤ ded(p). (1d)

The availability of CVs at T0 for transporting passengers
are modeled using time-difference equations in (1e). This
formulation was presented by Wang (2017) and is frequently
used in modeling cumulative scheduling problems.

nT0,t =nT0,t−1 +
∑
r∈R

nr,t−τtrip(r) −
∑
r∈R

nr,t ∀ t ∈ T

nT0,0 =|C|.
(1e)



Constraint (1e) states that the number of CVs in T0 at t is
the sum of three components: number of CVs in T0 at time
t − 1; number of CVs returning to T0 upon completion of
trips started at time t − τtrip(r) for each route r; and the
negative of the number of CVs leaving T0 on trips at time t.

Finally, the capacity of the CVs are modeled using∑
p∈P

zp,r,t ≤CV max · nr,t∑
p∈P

zp,r,t ≥CV max · (nr,t − 1)

 ∀ r ∈ R, t ∈ T . (1f)

An optimization formulation modeling ILMTP is thus

min
∑
p∈P

τp s.t. (1a)− (1f). (2)

To the best of our knowledge, this is the first optimization
formulation for the ILMTP. The ILMTP is a generaliza-
tion of the problem considered in (Wang 2017), which was
shown to be NP-Hard. Hence, the ILMTP is NP-Hard.

Theoretical Results
In this section, we analyze the structure of optimal solutions
to the ILMTP under the following assumptions:
Assumption 1. The MT services in u ∈ U are identical
and serve all boarding stations; i.e. U(s) = U for all s ∈ S
and tT0(u) − tstart(u, s) = tT0(u′) − tstart(u′, s) for all
u, u′ ∈ U(s) and s ∈ S.
Assumption 2. Each LMT trip serves a single destination.
Assumption 3. For all pairs of passengers p1, p2 ∈ P ,
ded(p1)− rel(p1) = ded(p2)− rel(p2).

Although Assumptions 1-3 are restrictive, the analysis in
this section shows that there exists an optimal solution satis-
fying a particular ordering property. We exploit this in devis-
ing an heuristic, which we show through experimental eval-
uation is effective at identifying high-quality solutions.

Prior to presenting the technical results, additional nota-
tion is in order. We define a group to be a set of passen-
gers that ride together in a CV on their LMT trip. Thus,
a group consists of passengers having: the same start time
on a common CV; cardinality less than the capacity of the
CV; and a common destination (by Assumption 2). For any
solution, let G1, . . . , GL denote the partitioning of passen-
gers into groups. Let G(pj) be the group that contains pas-
sengers pj . We assume, without loss of generality, that the
passengers are ordered as p1, . . . , p|P| so that i < j ⇐⇒
rel(pi) ≤ rel(pj). Denote by CVT(G`) the time that the
CV for group G` reaches the destination building.

We begin the analysis with some preliminary results.
Lemma 1. All passengers in a group have the same wait
time between services in an optimal solution to the ILMTP.

Proof. Due to Assumption 1, in any optimal solution, all
passengers arrive with the latest MT service that arrives at
T0 prior to their departure time on the CV. Hence, their wait
times are the same.

Following Lemma 1, let TT0(G`) denote the time that G`
reaches T0 on the MT in an optimal solution to ILMTP.

Lemma 2. Let G1, . . . , GL be the groupings in an optimal
solution to an ILMTP instance. If passengers p1, p2 are such
that b(p1) = b(p2) and G(p1) 6= G(p2), then exchang-
ing passengers p1 and p2 between groups G(p1) and G(p2)
(holding all else equal) does not affect the solution value.

Proof. For each passenger p, let τp be the original total tran-
sit time and τ ′p be the resulting total transit time for that
passenger. The only change to the objective function is the
change in the total transit times for these two passengers. In
particular, the resulting transit times for the passengers are
τ ′p1 = τp1 +∆2−∆1 and τ ′p2 = τp2 +∆1−∆2 where ∆i =
CVT(G(pi)) − TT0(G(pi)). The net change in the objec-
tive function value is

(
τ ′p1 + τ ′p2

)
− (τp1 + τp2) = 0.

Lemma 2 states that we can exchange passengers between
groups that are going to the same destination without affect-
ing the objective. Note that Lemma 2 does not make any
claim on the feasibility of the groupings after the exchange.

Lemma 3. For any optimal solution and any group G`, let
pi1 , pi2 ∈ G`, for 1 ≤ i1 < i2 ≤ |P|. If |G`| < CV max,
then for any i with i1 < i < i2, moving passenger pi into
group G` preserves feasibility.

Proof. We need only show that rel(pi) ≤ CVT(G`) ≤
ded(pi). The first inequality follows because rel(pi) ≤
rel(pi2), by the assumption on the ordering of the pas-
sengers, and rel(pi2) ≤ CVT(G`), by the feasibility of
the original solution. The second inequality follows because
CVT(G`) ≤ ded(pi1), by the feasibility of the solution,
and ded(pi1) ≤ ded(pi), by the assumption on the order-
ing of the passengers, together with Assumption 3.

We now state and prove, in Theorem 1, the main result
of the section, which shows that an optimal solution exists
where the passengers in a group have consecutive deadlines.

Theorem 1. Suppose the passengers {p1, . . . , pn} have
identical destinations and are ordered so that i ≤ j ⇐⇒
rel(pi) ≤ rel(pj). For any ILMTP instance there is an
optimal solution with groupings G1, . . . , GL for which if
pj , pj+k ∈ G`, for some j ∈ {1, . . . , n− 2} , k ≥ 2 with
j + k ≤ n, and ` ∈ {1, . . . ,L}, then pj+1 ∈ G`.

Proof. By way of contradiction, suppose there exists an in-
stance for which there is no optimal solution satisfying the
condition of the theorem. Consider the optimal solution for
which the smallest index j that violates this condition is
maximized. Let j∗ be the smallest index in this solution
for which there exists a k with G(pj∗) = G(pj∗+k) and
G(pj∗+1) 6= G(pj∗). Let k∗ be such an index k, G` =
G(pj∗) and G`′ = G(pj∗+1). We first show that j ≥ j∗ + 1

for all {j | pj ∈ G`′}. Suppose not; let ĵ = arg max{j | pj ∈
G`′ , pj+1 /∈ G`′ , j < j∗ + 1} (which will be non-empty
by assumption). Then passenger indices j′, j′ + k′ with
j′ = ĵ, k′ = j∗ + 1 − ĵ satisfy pj′ , pj′+k′ ∈ G`′ and
pj′+1 /∈ G`′ are a set of indices violating the claim of the



theorem, contradicting the minimality of j∗. Hence, (j∗+1)
is the minimum index among all pj ∈ G`′ .

In the remainder of the proof, we construct another solu-
tion in which the index j∗ does not violate the claims of the
theorem. This contradicts the maximality of j∗ among all
optimal solutions, thereby establishing the result.

Conditioning on the relative values of the departure times
of the CVs for G` and G`′ , first consider the case where
CVT(G`) ≤ CVT(G`′). We claim that exchanging the
group assignment of pj∗+1 and pj∗+k∗ and holding all else
equal results in another feasible solution. We need only show
that (a) rel(pj∗+1) ≤ CVT(G`) ≤ ded(pj∗+1) and (b)
rel(pj∗+k∗) ≤ CVT(G`′) ≤ ded(pj∗+k∗). (a) follows
directly from Lemma 3 with i1 = j∗, i2 = j∗ + k∗ and
i = j∗ + 1. The first inequality in (b) follows because
rel(pj∗+k∗) ≤ CVT(G`), by the feasibility of the origi-
nal solution, and CVT(G`) ≤ CVT(G`′), by assumption.
The second inequality in (b) holds because ded(pj∗+1) ≤
CVT(G`′), by the feasibility of the original solution and
ded(pj∗+1) ≤ ded(pj∗+k∗), by the ordering of passengers.
Furthermore, by Lemma 2 the objective function remains
unchanged by this exchange, and is therefore optimal. If the
resulting solution satisfies the claim of this theorem, then the
claim holds. If not, then the claim of this theorem is violated
for another j > j∗; contradicting the maximality of j∗.

We now consider the alternative case where CVT(G`) >
CVT(G`′). The exchange from the previous case may not
work because putting passenger pj∗+k∗ into group G`′ may
not be feasible. Additionally, if there exist k′ > 0 passen-
gers in G` with indices lower than j∗ then these passengers
must be pj∗−k′ , . . . , pj∗−1. If not, it would contradict the as-
sumption of j∗ as the smallest index in the optimal solution
violating the claim of this theorem. Define k′ so that pj∗−k′
is the minimum indexed passenger in group G`, which is 0
if pj∗ is the minimum indexed passenger.

Consider the following two-step exchange—for i =
0, . . . , k′, move each passenger pj∗−i from G` into G`′ .
Then, move the k′ + 1 passengers with the highest indices
in the resulting G`′ into G`. The resulting groups have the
same cardinality as they originally had, and so by Lemma 2
the objective values remain the same.

We now show that the resulting solution is valid and then
show that the choice of optimal solution contradicts the max-
imality assumption on the selection of j∗, which concludes
the proof. Any passenger pi ∈ G` with index i ≤ j∗ can be
moved to G`′ without violating pi’s arrival time window be-
cause rel(pi) ≤ rel(pj∗+1) ≤ CVT(G`′) < CVT(G`)
and ded(pi) ≥ CVT(G`) > CVT(G`′). Additionally, any
passenger p ∈ G`′ can be moved to G` without violating
the arrival time windows because rel(p) ≤ CVT(G`′) <
CVT(G`) and ded(p) ≥ ded(pj∗) ≥ CVT(G`). Hence,
the resulting solution is also optimal. Finally, if the resulting
solution violates the claim of this theorem, then the smallest
index must be larger than j∗. This again contradicts the max-
imality of j∗ among all optimal solutions, as assumed.

Note that we can independently reorganize the set of pas-
sengers for each destination to be sorted as indicated in The-
orem 1. The result can thus be extended to instances with

multiple destinations, with the additional assumption that
each CV is restricted to carry passengers going to a com-
mon building (Assumption 2).

Algorithm
We describe an algorithmic framework for constructing a
heuristic solution and improving it with local search.

The heuristic construction comprises three phases: (i)
sorting the passengers; (ii) grouping them; and (iii) assign-
ing groups to vehicles and scheduling the LMT trips.

Sorting the Passengers
We define a bijection ordp : {1, . . . , |P|} → P such that

ded
(
ordp(i)

)
≤ ded

(
ordp(j)

)
, 1 ≤ i < j ≤ |P|.

The intuition is that passengers with similar arrival dead-
lines can be grouped and served together.

Grouping the Passengers
Algorithm 1 defines groups of passengers with common des-
tination by traversing the set of passengers as sorted by
ordp. For each passenger p = ordp(i) that does not
have a group yet, i.e., Groupedi = False, the loop start-
ing at line 2 creates a new group g. Then the loop starting
at line 6 verifies if each of the next ungrouped passengers
q = ordp(j) for j > i can be added to group g. Since
the passengers are added as ordered by ordp, their dead-
lines are nondecreasing and the verification that the earliest
arrival time for q is before the latest time for p in line 9
suffices to determine if the resulting group is feasible for a
single destination.

input: Set of passengers P and their sorting ordp
output: Set of groups G

1 Set: G ← ∅ and Groupedi ← False for i = 1, . . . , |P|.
2 for i← 1, . . . , |P| do
3 if not Groupedi then
4 Set p← ordp(i) and g ← {p}
5 Set j ← i+ 1

6 while j ≤ |P| and |g| < CV max do
7 if not Groupedj then
8 Set q ← ordp(j)

9 if rel(q) < ded(p) and b(p) = b(q) then
10 Set g ← g ∪ {q} and Groupedj ← True

11 end
12 end
13 Set j ← j + 1

14 end
15 Set G ← G ∪ {g}
16 end
17 end

Algorithm 1: Groups the passengers by destination

Optimal Scheduling of the Groups
We now present an ILP formulation to obtain an optimal
schedule of groups on MT and LMT for a given grouping
of passengers for the LMT trips. For ease of exposition, we



begin by describing some sets that can be pre-computed for
a fixed grouping.

The set of feasible start times on CVs for a group g ∈ G
using route r can be computed as

T (g, r) :=

{
t

∣∣∣∣∣ (t+ τ travel(r, b(p))) ∈ [rel(p),ded(p)]

∀ p ∈ g

}
.

We use binary variables xg,r,t ∈ {0, 1} to represent the
start time t for group g on a CV route r, i.e.

xg,r,t =

{
1 if group g uses route r and starts at t
0 otherwise

∀ g ∈ G, r ∈ R(g), t ∈ T (g, r),

where R(g) is the set of CV routes that stop at destinations
of passengers in g; i.e.

R(g) := {r ∈ R | b(p) ∈ B(r)∀ p ∈ g } .

To model the use of CVs by different groups, we compute
a set defining the groups, routes, and start times directly af-
fecting the number of CVs used at each time instant t as

V(t) :=
{
(g, r, t′) | t ∈ [t′, t′ + τtrip(g, r)]

}
.

Each of these is a subset of the indices of decision variables
and its use will be clear in the upcoming formulation.

The exact ILP modeling the optimal scheduling of pas-
sengers on CVs for LMT service is as follows:

min
∑
g∈G

∑
r∈R(g)

∑
t∈T (g,r)

αg,r,t · xg,r,t (3a)

s.t.
∑

r∈R(g)

∑
t∈T (g,r)

xg,r,t = 1 ∀ g ∈ G (3b)

∑
(g,r,t′)∈V(t)

xg,r,t′ ≤ |C| ∀ t ∈ T . (3c)

The objective coefficient αg,r,t is defined as

αg,r,t :=
∑
p∈g

(
t+ τ travel(r, b(p))− tstart(umin(t, s(p)))

)
,

where umin(t, s(p)) := arg min
u∈U(s(p)):tT0(u)≤t

(t− tstart(u)).

Constraint (3b) imposes that each group is assigned to ex-
actly one CV route and start time. Constraint (3c) ensures
that the number of groups that are on the LMT service at
any time is less than or equal to the total number of CVs.

For a given optimal solution x∗g,r,t to (3), we can obtain
an optimal assignment of routes r∗ : G → R and start times
t∗ : G → T for groups on CVs as follows:

r∗(g) = r ⇐⇒ x∗g,r,t = 1 and t∗(g) = t ⇐⇒ x∗g,r,t = 1.

The optimal MT services u∗ : P → U are then obtained as

u∗(p) = umin(t∗(g), s(p), ) where g : p ∈ g.

Formulation (3) does not explicitly assign a CV to any of
the groups. The CV assignments can be determined once the
solution is given by Algorithm 2. The algorithm makes use
of a priority queue veh queue consisting of (v, t) pairs,
where v is index of the CV and t is time that the CV is avail-
able at T0 for servicing a group. The pairs with lower t have

input: Set of vehicles C, group sorting ord, route choice r∗(g)
output: Mapping veh : G → C

1 veh queue ← ∅
2 for v ∈ C do
3 veh queue.push

(
(v, 0)

)
4 end
5 for i← 1, . . . , |G| do
6 (v, t)← veh queue.pop()
7 g ← ord(i)

8 veh(g)← v

9 veh queue.push
(
(v, t+ τtrip(g, r∗(g)) + 1)

)
10 end

Algorithm 2: Assigns vehicles to scheduled groups

higher priority in the queue. Let ord : G → {1, . . . , |G|}
be a mapping that sorts G in ascending order of t∗(g), i.e.

ord(g) ≤ ord(g′) ⇐⇒ t∗(g) ≤ t∗(g′).

Algorithm 2 returns a mapping veh : G → C such that
veh(g) is the vehicle assigned to service the group g.

Some comments regarding formulation (3) are in order.
In contrast to formulation (2), the time indices in formula-
tion (3) for each group are restricted to the intersection of
possible departures for all passengers in the group, hence
making the formulation more tractable. Furthermore, for-
mulation (3) also avoids the combinatorial explosion in the
number of routes, which takes all possible subsets ofCV max

stops. It is possible to define smaller formulations in both
cases by modeling time with continuous variables instead
of indexing binary variables, as discussed by Floudas and
Lin (2004). However, Balas (1985) has shown that the lin-
ear relaxation of such formulations is the weakest possi-
ble, thereby pushing the solution process towards a time-
consuming enumeration of alternatives that does not truly
benefit from the ILP techniques that mathematical optimiza-
tion solvers exploit.

Lower Bounds
This section describes lower bounds on MT and LMT trip
times per passenger as well as on the sum of wait and LMT
trip times per passenger and per group of passengers. We use
these bounds to evaluate the quality of solutions and also to
direct the local search methods as described next.

The minimum MT trip time per passenger is defined as

MMT(p) := min
{
tT0(u)− tstart

(
u, s(p)

)
| u ∈ U

(
s(p)

)}
.

In turn, the minimum LMT trip time is given by

MLM(p) := min
{
τ travel(r, b(p)) | r ∈ R, b(p) ∈ B(r)}.

For convenience, we define a function corresponding to the
minimum waiting time if a passenger coming from station s
leaves the terminal in the time window [ta, tb]:

MWT(s, ta, tb) := min
{
ta − tT0(u) |u ∈ U(s), tT0(u) ≤ tb

}
.

This waiting time is implied by the set of MT trips that
can bring a passenger from s to the terminal within [ta, tb].



In turn, the time window may be restricted according to the
passengers that are grouped together.

For each passenger p, we can compute the minimum wait-
ing time if the passenger takes the shortest travel time as

MPWT(p) := MWT
(
s(p),rel(p)−MLM(p),

ded(p)−MLM(p)

)
.

Note that this is not a bound on the waiting time, since
passenger p could wait less if taking a longer LMT trip.
However, trading waiting for trip time would never lead to a
smaller sum of both, and thus the combined bound is valid.
We can therefore obtain a lower bound LB that combines the
trip times and the wait times for each passenger as

LB :=
∑
p∈P

MMT(p) + MLM(p) + MPWT(p). (4)

If the number of CVs is large enough to define groups where
no passenger delays another and all groups can be scheduled
at the most convenient time for its passengers, then LB cor-
responds to the value of the optimal solution. When this is
not the case, we need to account for the tighter departure
time windows defined by each group.

For a group of passengers g, the minimum wait time of
each passenger p ∈ g if taking a trip of shortest time is

MGWT(g, p) := MWT

s(p),max
q∈g

(rel(q)−MMT(q)),

min
q∈g

(ded(q)−MMT(q))

 .

Whenever MGWT(g, p) > MPWT(p) for some p ∈ g, then
some passenger in g \ {p} is delaying p. While the former
expressions define a lower bound per passenger, the latter is
used to decide which groups to modify by local search.

Break-and-Shift Local Search
Algorithm 1 aims to create as few groups as possible, each
with many passengers. This can increase total waiting time
because the CV fleet may be underutilized. Hence, we define
a local search method to iteratively modify these groups by
breaking them and swapping passengers.

We define a local search to address this, which loops be-
tween two operations: (i) breaking groups where one pas-
senger delays another; and (ii) shifting passengers to groups
with earlier departure times when this is feasible and no de-
lay is implied. These operations are performed on sets of
groups that arrive through MT trips at the same time to T0
according to an optimal solution of (3). If the LMT trips
take less than the inter-arrival time of MT, operation (i) can
result in as many groups as the number of CVs (|C|). The
fragmented groups resulting from operation (i) can be reor-
ganized differently by operation (ii), whereby some groups
might vanish. In such a case, we are able to repeat a loop
with both operations once more. Hence, we define a set of
MT arrival times as

T :=
{
tT0(u) | u ∈ U(s), s ∈ S

}
and the groups corresponding to each t ∈ T is

Gt :=
{
g ∈ G | t = max

{
tT0(u) | u ∈ U , tT0(u) ≤ t∗(g)

}}
.

For convenience, we denote the set of passengers on each
group g as g :=

{
g(1), . . . , g(|g|)

}
, with ded

(
g(i)

)
≤

ded
(
g(j)

)
for i ≤ j. Furthermore, let Gb denote the set

of groups with all passengers heading to b, and let Gb :={
gb1, . . . , g

b
|Gb|

}
with t∗(gbi ) ≤ t∗(gbj) for i ≤ j. Algo-

rithm 3 describes operation (i), which breaks down some
groups in Gt. Staring with a set Ht corresponding to Gt,
the procedure loops over each group g ∈ Gt, attempting to
break them to increase the objective value of the solution.
If the total number of groups is still smaller than the num-
ber of CVs and the earliest passenger g(1) has to wait more
with the group than alone, the group is broken before the
first passenger g(i) that causes the delay, thereby replacing
g with two groups in Ht. Algorithm 4 describes operation
(ii), which moves passengers between consecutive groups.
In this case, Hb begins empty, we refer to the next group to
be added to Hb as h, and we loop on Gb to construct this set
Hb. We define the first group in Gb as the initial incumbent
group h and, while possible, we keep adding passengers to it
by looping on the subsequent groups. We either empty these
groups on h and proceed to the next one, or else fill h to ca-
pacity. In the latter case, we add h to Hb and reassign h as
h′, which consists of the remaining passengers from the last
group of Gb that we iterated on.

In order to avoid infeasibility when breaking and reorga-
nizing the groups, one can solve (3) after each modification.
For efficiency, we have found that it was sufficient to apply
both operators until either there was no change in the groups
or the groups resulted in an infeasible schedule.

input: A subset of groupsGt ∈ G
output: A fragmented setHt with same passengers

1 SetHt ← Gt

2 foreach g ∈ Gt do
3 if |Ht| < |C| & MGWT

(
g, g(1)

)
> MPWT

(
g(1)

)
then

4 for i← 2, . . . , |g| do
5 if MPWT

(
g(i)

)
> MPWT

(
g(1)

)
then

6 Set g′ ← {g(1), . . . , g(i− 1)}
7 Set g′′ ← {g(i), . . . , g(|g|)}
8 SetHt ←

(
Ht \ {g}

)
∪ {g′, g′′}

9 break
10 end
11 end
12 if |Ht| = |C| then
13 break
14 end
15 end
16 end

Algorithm 3: Breaks groups with co-passenger delays

Experiments
We present numerical experiments in the setting of Figure 1.
The passengers originate from a set of 4 stations and desire
to reach one of the buildings in B1-B10 within a specified
time-window. U consists of MT services that reach T0 ev-
ery 15 minutes and the travel time between stations is 5 min-
utes. We assume that the CVs are all parked at T0 and return
back to T0 after dropping off all passengers. The CVs take 1
minute to go between T0-B1, T0-B10, and all pairs of build-



input: A subset of groupsGb ∈ G
output: A reorganized setHb with same passengers

1 SetHb ← ∅, h← gb1
2 for i← 2, . . . , |Gb| do
3 if |h| = CV max then
4 SetHb ← Hb ∪ {h}, h← gbi
5 end
6 if |h| < CV max then
7 for j ← 1, . . . ,min{CV max − |h|, |gbi |} do
8 Set p← gbi (j)

9 if rel(p) ≤ ded
(
h(1)

)
&

MGWT
(
h ∪ {p}, h(1)

)
= MGWT

(
h, h(1)

)
then

10 Set h← h ∪ {p}
11 end
12 end
13 h′ ← gbi \ h
14 if |h′| > 0 then
15 SetHb ← Hb ∪ {h}, h← h′

16 end
17 end
18 end
19 Hb ← Hb ∪ {h}

Algorithm 4: Reorganizes passenger groups

ings that are adjacent on the shaded track, except for B5-B6
which takes 2 minutes. The CVs are restricted to move along
the shaded region shown in Figure 1. We also assume that a
CV spends 0.5 minutes at a building where they drop passen-
gers. As a result, the time that a passenger reaches the des-
tination depends on co-passengers in the CV that have prior
destinations. The modeling of drop-off time is important in
applications where the capacity of CV max is small, typi-
cally ≤ 5. Inspired by the application to corporate-campus
settings, we use a small number of destinations. This may
not be the case in all applications, where one might expect
the number of destinations for the LMT service to be in the
same order as the number of passengers, thus making the
problem harder to solve. In those cases, however, we believe
that the suggestion by Mahéo, Kilby, and Hentenryck (2018)
to treat last-mile stops as aggregations of several passenger
destinations, such as bus stops, is a reasonable compromise.
Hence, the chosen number of destinations is of minor impor-
tance.

In the experiments performed, we restrict the passengers
to be grouped according to their destination. The set of pos-
sible CV round-trip movements considered are (in the se-
quence of building visits)

{T0, B1, B2, . . . , B9, B10, T0}, {T0, B10, B9, . . . , B2, B1, T0}

{T0, B1, B2, B3, B8, B9, B10, T0}, {T0, B10, B9, B8, B3, B2, B1, T0}

{T0, B1, . . . , B3, B8, B7, . . . , B3, B8, . . . , B10, T0}

{T0, B10, . . . , B8, B3, B4, . . . , B8, B3, . . . , B1, T0}.

On each of the CV round-trip movements, a stop at the first
occurrence of the building is considered a route r for the CV.
Thus,R consists of 52 (= 10 + 10 + 6 + 6 + 10 + 10) routes.
From an optimality perspective, we expect the CVs to typi-
cally use only the shortest route to the destination. However,
in a few instances the passengers with earliest deadlines are
assigned to longer routes so that they arrive to their destina-

tions at the start of the time-windows. Removing this option
can result in infeasibility.

To test the algorithms described, we generated 10 scenar-
ios consisting of 600 passengers. The desired earliest time
(rel(p)) of arrival for the passengers is assumed to be uni-
formly distributed over 1 hour, in increments of 30 seconds.
For each passenger, the origin and destination station are
drawn uniformly and independently at random from the four
stations and 10 buildings, as shown in Figure 1. We assume
that the length of time windows (ded(p) − rel(p)) are
identical for all the passengers; the values are set by as-
signing, if t′ is the requested arrival time for a passenger,
rel(p) = t′ − K/2 and ded(p) = t′ + K/2, for a fixed
K > 0. We test the impact of K and the number of CVs
by varying K ∈ {5, 10, 20} and |C| ∈ {30, 40, 50, 60},
resulting in 12 different configurations, and thus 120 dif-
ferent instances. All experiments were run on a machine
with an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz and
32 GB RAM. All algorithms were implemented in Python
2.7.6 and the ILPs are solved using Gurobi 7.5.1.

Table 2 presents a summary of the results. The first
two columns report the size of the time windows and the
number of CVs, respectively. Column UBred = (UB0 −
UBH)/(UB0 − LB∗) × 100 is the percent decrease in the
optimality gap between the initial solution obtained using
the heuristic (UB0) and the final (UBH ) solution resulting
from the local search procedure, over the best known lower
bound (LB∗) obtained by Gurobi solving model (2) with
a time limit of 10 minutes, averaged over all instances in
that configuration. A 100% reduction means the entire op-
timality gap is closed. It is clear that the heuristic is able to
obtain optimal solutions on problems where the number of
CVs and time windows are not very constrained.

The fifth and sixth columns in Table 2 show the aver-
age percent optimality gap at termination over the instances
where solutions are found when solving model (2) using
Gurobi: (i) without the heuristic solution (MIP) and (ii)
with the heuristic solution (MIP+H) as an initial solution
using the MIPStart feature. In both approaches, the time
limit is set to 10 minutes. The optimality gap is computed as
(UB∗ − LB∗)/LB∗ × 100 where UB∗ is the best feasible
solution andLB∗ is the best lower bound obtained by the ap-
proach (MIP or MIP+H). In all cases, the gaps are computed
after subtracting the constant MT travel times from each sta-
tion of origin to T0. In the cases that not all runs found fea-
sible solutions, next to each average there is the number of
cases where at least one feasible solution is found. The last
two columns in Table 2 show the number of instances that
were solved to optimality. From the results in Table 2, it is
clear that MIP+H outperforms MIP in terms of the number
of problems solved to optimality and average optimality gap
closed.

We also investigate the effect on the solution quality due
to the imposition of single destination per CV in Assump-
tion 2. An upper bound to the optimal gap with respect to
the general case is computed as (UB(MIP+H)−LB)

LB , where
UB(MIP + H) is the best solution obtained from our al-
gorithm and LB is the lower bound in (4). Note that the



Table 2: Summary of results averaging 10 instances per con-
figuration of time window length K and flee size |C|
K |C| UBred tH Avg. Gap (%) # solved

(%) MIP MIP+H MIP MIP+H

5 30 2.9 0.99 0.0 (1) 0.1 1 4
5 40 14.3 3.73 0.0 (7) 0.0 7 10
5 50 31.4 6.38 0.0 (8) 0.0 8 10
5 60 60.2 15.25 0.0 0.0 10 10

10 30 6.5 3.65 – (0) 2.0 0 0
10 40 34.0 12.31 0.3 (6) 0.2 2 4
10 50 76.1 25.97 0.0 0.0 10 10
10 60 96.0 32.23 0.0 0.0 10 10
20 30 62.4 7.99 0.0 0.0 10 10
20 40 100.0 8.7 0.0 0.0 10 10
20 50 100.0 7.62 0.0 0.0 10 10
20 60 100.0 7.54 0.0 0.0 10 10

computation of LB in (4) is independent of the number of
stops per CV. Table 3 summarizes the gaps for the solution
obtained using MIP+H. These results indicate that Assump-
tion 2 is not very restrictive on the instances tested.

Table 3: Upper bound on the optimal gap of the solutions ob-
tained under Assumption 2 with respect to the general case.

K |C| Avg. Gap % Min. Gap % Max. Gap %

5 30 6.2 5.6 6.7
5 40 2.7 2.3 3.2
5 50 1.3 1.0 1.6
5 60 0.5 0.4 0.8

10 30 12.3 10.7 14.32
10 40 2.9 2.5 3.5
10 50 0.7 0.4 0.9
10 60 0.1 0.0 0.2
20 30 0.0 0.0 0.0
20 40 0.0 0.0 0.0
20 50 0.0 0.0 0.0
20 60 0.0 0.0 0.0

Figure 3 depicts (left) a scatter plot with a point per in-
stance and (right) a cumulative distribution plot of perfor-
mance, comparing the solution times for MIP and MIP+H.
The scatter plot contains a point per instance where the co-
ordinates of the point correspond to the time taken to solve
the instance with and without the heuristic. The plots are
sized according to |C| and colored according to K. The cu-
mulative distribution plot of performance provides another
depiction of the data, showing the number of instances that
are solved at each point of time in the solution horizon for
both algorithmic configurations.

Conclusions & Future Work
This paper addresses the ILMTP, focusing on a special case
of this problem where each CV makes a stop at just one
building per trip. Based on this setting, we prove a struc-
tured result regarding the form of optimal solutions that re-
sults in insights used to efficiently solve the problem. Our
experiments indicate that the optimal solutions to this case
are not far from a lower bound for the general problem, sug-

Figure 3: Comparison of model 2 with and without the
heuristic. (left) A scatter plot with a point were run. (right)
A cumulative distribution plot of performance indicating the
number of instances solved by second.

gesting that (a) starting from this solution for a future study
is promising, and (b) real-world systems implementing this
solution may already achieve near optimal schedules.

We generalize and make improvements to a recent
MIP formulation for the general problem suggested by
Wang (2017), and use a constructive heuristic and local
search procedure for identifying an initial high-quality so-
lution that, when used as the starting solution for a com-
mercial MIP solver, often closing the entire optimality gap.
The results obtained with and without the heuristic also indi-
cate a significant statistical improvement in solution times.
Applying the (paired) Wilcoxon Signed-Rank Test (a non-
parametric statistical hypothesis test which assesses whether
population mean ranks differ in matched samples) to test
whether the run times of the algorithms are different results
in a p-value of 1.267 · 10−10, indicating a strong statistical
difference in the run times. The instances appear to increase
in difficulty as K and |C| decrease, which can be attributed
to the problem becoming more constrained.

As the design of automated transportation systems be-
comes a reality, it is critical that models and algorithms such
as the ones developed in this paper are developed to ensure
the system used are run efficiently. One critical extension
will be to the case when CVs can stop at more than one
building. The local search algorithm developed can be mod-
ified to accept solutions of this form, which may reduce the
total waiting times of customers. Additionally, we plan to
design problem-specific solution algorithms that can exploit
results like the one proven in Theorem 1.

Another avenue for extending this work would be to ex-
ploit its complementarity with the study by Mahéo, Kilby,
and Hentenryck (2018), where more consideration is given
to designing the MT service. We hope that a unified frame-
work can be developed in future work.
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