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Abstract—Two-stage processing machines for manufacturing
are equipped with two sets of actuators for motion control with
different operating ranges and bandwidths. The processing time,
product quality and flexibility of the manufacturing process can
be optimized by coordinating these actuators and exploiting the
entire actuator operating range. We propose a motion control
strategy for two-stage processing machines based on model
predictive control (MPC). By exploiting timescale separation,
we formulate the problem as a single-stage motion control with
reference-dependent constraints. Feasibility of the MPC problem
is guaranteed by using a reference governor that adjusts the
feed rate. The proposed method guarantees correct processing
while satisfying the actuators’ range and dynamics constraints,
finite time processing of a given spatial pattern and real-time
execution even with limited computational resources. Simulation
and experimental results on a real processing pattern are shown
for a scaled laboratory demonstration machine.

Index Terms—Precision Manufacturing, Motion Control,
Model predictive control, Constrained Control

I. INTRODUCTION

Precision manufacturing is a relevant application area of

control systems [1], [2], due to the need for high quality

processing of the machined parts and for high throughput

to reduce manufacturing costs. High throughput requires high

speed processing, while high quality requires high precision,

and a trade-off must be achieved between these conflicting

requirements by hardware and software design.

Manufacturing machines are composed of a worktool capa-

ble of performing operations such as milling, cutting, welding

or drilling on a piece of raw material, and of a motion control

system that moves the worktool. The worktool may have a

considerably large mass, also due to the size of the support

structure, and it may need to move over large ranges due to

processing large parts or multiple parts in a single block of

raw material. Moving a large mass over a long range with

high accelerations and high precision results in conflicting

objectives. The motion control system aims at achieving a

desirable trade-off between such objectives.

Controlling a processing machine usually involves actuating

the worktool to follow a geometric path that represents the

machining pattern of the part being produced. The common

performance requirements are the time to process the path,

the precision of the obtained machined path, which is also

affected by the vibrations induced by the machine moving

parts, and the energy consumed during processing. Due to

The authors are with Mitsubishi Electric Research Laboratories, Cambridge,
MA, email: dicairano,goldsmith,kalabic,bortoff@merl.com

the high rates of operation and relatively low computational

power of the microprocessors used in factory automation,

the control methods used in manufacturing have been mostly

limited to PID and loop shaping filters in the servomotors. In

fact, for common designs, the axes are dynamically decoupled

and each axis of the single-stage processing machines can

be considered single-input single-output system. thus, the

worktool path is computed off-line, based on the geometry of

the parts to be machined [3], [4], and the worktool velocity,

i.e., the path feed rate, is scheduled based on the desired

precision. The obtained trajectories are then used in “open-

loop”, i.e., without modifications during execution, relying on

the feedback loops of the servomotors to reject disturbances

and to compensate for uncertainty. For repeated operation,

supervisory strategies such as iterative learning control have

been suggested in [2]. A real-time trajectory generation may

be advantageous, for instance by allowing modifications to the

processed part between different runs, or even within a run,

without the need to stop the processing.

In order to increase the speed of processing and the preci-

sion over a large workspace, the motion control system of high

performance manufacturing machines may exploit multiple

actuation stages per processing axis, where actuators with

different bandwidths and operating ranges are combined to

process large workpieces at high rate. Two-stage actuation

has been applied in different fields ( [5]–[7]). In particular,

in a two-stage machine each axis is equipped with: a “slow”

stage with large operating range but small bandwidth and

acceleration limits, and a “fast” stage with large bandwidth and

acceleration limits but small operating range (see Figure 1).

For each axis, the overall position of the worktool is the sum

of the positions of the two stages. With this architecture the

machine can rapidly process small features of the workpiece

by actuating the fast stage, and still be able to process large

features by superimposing the motion of the slow stage.

Trajectory generation and control for two-stage machines is

more complicated than for single stage ones. Each axis of a

two-stage machine is effectively modeled as a multiple input–

single output system [8] subject to constraints on velocity,

acceleration, and operating range. Classical methods based on

frequency separation [5], [9], [10] may be significantly subop-

timal and may require convoluted ad-hoc logic and iterations

to handle the constraints, thus limiting the applicability for

online trajectory generation. Instead, model predictive control

(MPC) [11] has proven effective for controlling multivariable

systems subject to constraints, and its application domain

has been extended in the last few years from process and
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chemical control to systems with faster dynamics and reduced

computational resources, such as in automotive, aerospace, and

mechatronics [12], [13]. Recently some MPC applications in

precision manufacturing have been developed. In particular,

[14]–[16] (see also references therein) propose path following

MPC algorithms, and their applications to contouring control,

that operate in the spatial domain, and hence require (explic-

itly or implicitly) the linearization of the spatial nonlinear

dynamics. These approaches have been developed for single-

stage machines where the algorithms operate on a linearized

(i.e., approximate) model along a path known in advance, and

the machining error is a performance measure, and hence not

subjects to hard bounds.

However, application of path following MPC to two stage

processing machines is not straightforward. The reasons in-

clude the timescale separation of the stages (up to 100x),

the high control rates of the fast stage, (up to 200kHz),

the accuracy being not a performance metric, but rather a

constraint to be enforced on all points of the path, on the

order of hundreds of thousands, and the lack of an a-priori

defined path for linearization, as the system trajectory is not

uniquely defined due to the overactuation. In addition, for real-

time control, a simple algorithm implementation is needed to

facilitate deployment in low computational power processors.

In this paper1 we propose a strategy for controlling two-

stage processing machines equipped with a small-range fast

actuator (fast stage) and a large-range slow actuator (slow

stage) per axis. An example of such machine is described and

modeled in Section II. Rather than controlling both actuators

in the same loop, in Section II we exploit the timescale

separation between the stages to re-formulate the machine

control problem into controlling the slow stage by a tracking

MPC with constraints that depend on the reference trajectory,

which is generated for an“ideal” single stage, that has the

range of the slow stage and the bandwidth of the fast stage.

Due to the dependency of the constraints on the reference,

the reference trajectory may need to be modified for ensuring

feasibility of MPC, which is a recently studied problem, see,

e.g., [18], [19]. Unfortunately, such methods cannot be directly

applied to the problem considered here because the modifica-

tion to the setpoint will in general cause a modification to the

spatial path, which results in an incorrectly machined part.

As described in Section III, we modify online the upcoming

segment of the ideal trajectory to be feasible and to ensure

future constraint satisfaction, in a way that maintains the spa-

tial shape of the pattern to be processed by using a particular

reference governor [20]. The modified trajectory is provided to

an appropriately designed MPC, which is recursively feasible

and achieves finite-time processing of the machining path.

As discussed in Section IV, a benefit of the proposed

approach is that it only requires the evaluation of linear

inequalities for the reference governor, and the solution of a

convex quadratic program for MPC, which can be achieved by

low complexity solvers. Furthermore, the control architecture

allows for real-time operation where a recursively feasible

solution is found within a pre-assigned computing time.

1Preliminary studies related to this research appeared in [17].

slow stage
fast stage
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Fig. 1. Schematic of the front view of a two-stage machine.

In Section V we evaluate the algorithm on a laboratory

experiment built with standard off-the-shelf components with

scaled slow stage with respect to existing processing machines.

We draw our conclusions in Section VI hinting at the effec-

tiveness of MPC in manufacturing applications.

Notation: R, R0+, R+ and Z, Z0+, Z+ are the sets of

real, nonnegative real, positive real, and integer, nonnegative

integer, positive integer numbers, and we use notations like

Z[a,b) = {z ∈ Z : a ≤ z < b} to denote intervals. By [a]i
we denote the i-th component of a, for a ∈ R

n, b ∈ R
m,

(a, b) = [a′ b′]′ ∈ R
n+m is the stacked vector, and I , 1,

and 0 are the identity, the all-1, and the zero matrices of

appropriate size, respectively. Relational operators between

vectors are intended componentwise, while for matrices denote

(semi)definiteness. Given a set A and (a, b) ∈ A we denote

by A(b) the section of A in the coordinates of b at the values

of b. We denote the Minkowski set sum by ⊕. B(ρ) denotes

the norm-ball of radius ρ ∈ R+ centered at the origin. For

a discrete-time signal x ∈ R
n with sampling period T , xt

is the value at sampling instant t, i.e., at time T t, and xk|t

denotes the predicted value of x at sample t + k, i.e., xt+k,

based on data at sample t, where x0|t = xt. We denote the

convolution operator by ∗, and, with a little abuse of notation,

y(t) = G(t) ∗ u(t) =
∫ t

0 G(t− τ)u(τ)dτ .

II. ARCHITECTURE, MODEL AND CONTROL PROBLEM

We consider a two-stage dual-axis (i.e., 2D) processing

machine as in the schematics in Figure 1. The objective of the

machine is to process blocks of raw materials at a high rate and

with high precision to manufacture parts that have small and

large features. The two-stage machine aims at resolving some

of the conflicting requirements in precision manufacturing.

Due to small features, e.g., less than a millimeter, and the

requirement to process at high rate, the worktool may need to

sustain large accelerations, on the order of several g. However,

due to large features, e.g., more than a meter, and possibly

multiple parts being produced from a single block of raw

material, the worktool must have a large operating range and as

a consequence a large mass, up to several hundred kilograms.

Large accelerations and large operating range (i.e., large mass)

are obviously in conflict. Thus, two-stage machines combine

slow stages and fast stages, see Figure 1, that are imple-

mented by different actuators, such as motors, piezoelectric

actuators, electromagnetic actuators, in closed-loop with their

servocontrollers. The fast stages have smaller operating range,

and as a consequence are smaller and less massive, and thus
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Fig. 2. Control architecture of a two-stage dual-axis processing machine.

can achieve larger accelerations. On the other hand the slow

stages have larger operating ranges, and as a consequence,

are more massive, and can achieve smaller accelerations. The

rationale for such an architecture is that the small features

of the machined part can be processed by high-acceleration

movements of the fast stage, while large features can still be

processed by superimposing the large range movements of the

slow stage to the fast stage movements.

The objective of trajectory generation and control for a two-

stage machine is to coordinate the motion of the slow and

fast stages for each processing axis, to achieve the desired

processing pattern as fast as possible within the given precision

specifications. Additional secondary objectives are to reduce

the acceleration for the massive slow stage, thus reducing

power consumption and the vibrations induced by the forces

to accelerate the large mass.

A. Motion models of two-stage axes

A schematic of the control architecture of the machine

considered here is shown in Figure 2, where the control

algorithm generates commands for the slow stage and the fast

stage of two processing axes (x,y). The commands are then

provided to the corresponding stage actuators, which follow

them using conventional feedback loops. The combined effects

of the slow stage result in the worktool achieving the desired

processing pattern.

The motion model of the stage in closed-loop with the

servocontroller is

yij(t) = Gi
j(t) ∗ u

i
j(t), j ∈ {s, f}, i ∈ {x,y}, (1)

where y is the position, u is the position command, G is the

transfer function with unitary dc-gain, j ∈ {s, f} is the index

of the stage (slow/fast) and i ∈ {x,y} is the index of the

processing axis (x/y).

For the considered architecture, the position of the worktool

is the sum of the positions of the two stages in each axis,

yi(t) = yif(t) + yis(t)

= Gi
f (t) ∗ u

i
f (t) +Gi

s(t) ∗ u
i
s(t), i ∈ {x,y}. (2)
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Fig. 3. Bode plot of the frequency responses of the slow stage (black) and
fast stage (red), for both x and y axes, showing a 50x bandwidth difference.

The stages are subject to constraints due to physical limita-

tions and operating requirements. The stage operating ranges

are constrained due to the actuator mechanical limitations,

−yij ≤ yij ≤ yij , (3)

where yij , j ∈ {s, f}, i ∈ {x,y} determine (symmetric)

upper and lower bounds. Velocities and accelerations are also

constrained

−ẏ
i

j ≤ ẏij ≤ ẏ
i

j (4)

−ÿ
i

j ≤ ÿij ≤ ÿ
i

j , (5)

where ẏ
i

j , ÿ
i

j , j ∈ {s, f}, i ∈ {x,y}.

The differences between the slow and fast stages reside in

the bandwidth of the transfer functions (1), and in the con-

straints (3), (5). The fast stages have much larger bandwidths,

due to the reduced actuation range,

BW3(G
i
f ) ≫ BW3(G

i
s), i ∈ {x,y},

where BW3(·) denotes the 3-db bandwidth. The slow and fast

stage frequency responses for the machine considered here are

showed in Figure 3, where BW3(G
i
f ) = 50BW3(G

i
s), i ∈

{x,y}. The fast stage range is much smaller than that of the

slow stage, but it allows for much larger accelerations,

yif ≪ yis, ÿ
i

f ≫ ÿ
i

s, i ∈ {x,y},

Due to the different bandwidths, the sampling periods for

the discrete-time servocontrollers of the fast and slow stage,

and hence for the models in (1), are different, i.e., Tf ≪ Ts.

Specifically here, Ts = M · Tf , where M ∈ Z+ and M ≫ 1.

B. Tracking control problem definition

The objective for the control system in Figure 2 is to make

the worktool follow a geometric path representing the pattern

to be processed within a desired spatial accuracy ε ∈ R+, e.g.,

on the order of microns, while satisfying all the constraints,

and can be formulated as follows.

Problem 1: Given (2) subject to (3), (4), (5), and the regular

geometric curve p(σ) = [px(σ) py(σ)]′, where σ ∈ R[0,1]

is the (normalized) path parameter [15] and ε ∈ R+ is the
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accuracy tolerance, control the commands ui
j , i ∈ {x,y}, j ∈

{s, f} such that

‖(yx(σ), yy(σ)) − (px(σ), py(σ))‖∞ ≤ ε, ∀σ ∈ R[0,1]. (6)

A holistic approach for solving Problem 1 is to formulate a

path following MPC, (see, e.g., [14], [16], [21] and references

therein). However, in the spatial domain the dynamics and the

constraints are nonlinear, and hence the controller has to solve

a non-convex optimization problem at every iteration. Thus,

the command calculation in the path following approaches

in [?], [16], [21], [22] is based on the repeated linearization

or approximation of the nonlinear problem along the path,

which is reasonable when the tracking error is a performance

variable, i.e., there is no bound that the error must satisfy.

On the other hand, due to the linearization and the usage in

the cost function, a bound on the tracking error is difficult to

guaranteed. In fact, [14], [16], [21] do not impose tracking

error constraints which is however the case here due to (6).

Besides this, there are others complicating factors in two-

stage machines. The timescale separation of the stages imposes

a prediction horizon related to slow stage bandwidth, and

a sampling period based on the fast stage bandwidth, thus

resulting in a large optimization problem with poor numerical

conditioning. Furthermore, since the machine has multiple

stages, the stage trajectory is not uniquely determined by the

processing pattern, and hence it is not possible to determine a

“good” nominal trajectory for linearization. Thus, a significant

linearization error may occur, causing the violation of (6). For

instance the path following MPC in [14] assumes the predic-

tion model to be square and accordingly reduces the degrees of

freedom in the application, while multi-stage machines have

more inputs than outputs.

Instead, we formulate a modified problem whose solution

also solves Problem 1 as described next. First, we consider the

“ideal” single stage machine that has accuracy ε, the range of

the slow stage and the dynamics, velocity, and acceleration

limits of the fast stage. Being this a single stage machine, we

determine a path feed rate by standard methods resulting in

the trajectory as the sequence of points

{q(hTf)}h = {(qx(hTf ), q
y(hTf ))}h, h ∈ Z[0,h̄], (7)

where h is the point index and h̄ ∈ R+ is the total number of

points. The trajectory in (7) is such that ỹi(t) = Gi
f (t)∗ q

i(t),
i ∈ {x,y} is feasible for the ideal machine that has all the

strengths of the two stages and none of the weaknesses, i.e.,

{q(hTf)}h satisfies (5) for j = f , (3) for j = s, and (6).

In addition to those already enforced by (7), the machine

needs only to satisfy the actual constraint (3) for j = f by a

motion of the slow stage that satisfies (3), (4), (5), for j = s.

To this end we control (1), (3), (4), (5), for j = s such that

−yif ≤ yis(t)− qi(t) ≤ yif , i ∈ {x,y}. (8)

In an MPC context, this amounts to solving in receding

horizon with sampling period Ts

min
Ui

st

F (xi
N |t, q

i
N |t) +

N−1
∑

k=0

L(xi
sk|t, q

i
k|t, u

i
sk|t) (9a)

s.t. xi
sk+1|t = f i

s(x
i
sk|t, u

i
sk|t) (9b)

(3), (4), (5), j = s (9c)

−yif ≤ yisk|t − qik|t ≤ yif (9d)

H(xk|t, qk|t, uk|t) ≤ 0 (9e)

for i ∈ {x,y}, where xi
s, is the state that includes at least

stage position, velocity and acceleration, fs is the state update

equation representing (1) for j = s, N ∈ Z0+ is the prediction

horizon, U i
st = [ui

s0|t . . . u
i
sN−1|t], F , L are the terminal and

stage cost, respectively, H models additional constraints, and

perfect preview of the reference q for N steps is available.

A complicating feature of (9) is that constraint (9e) depends

on the reference trajectory. Thus, feasibility of (9) depends

on an exogenous variable and cannot be guaranteed for an

unmodifiable reference. Even if (9) is feasible at time t, there

is no guarantee of recursive feasibility, i.e., that (9) is feasible

for τ > t. However, since the timing along the path is not

fixed, there is some freedom in modifying the reference as long

as such modifications do not change the spatial pattern. For

instance, changing the feed rate, the rate at which the points

of the path are processed, does not change the spatial path.

Thus, we formulate the following alternative to Problem 1.

Problem 2: Given {q(hTf )}h, h ∈ Z[0,h̄], that satis-

fies (4), (5) for j = f , (3) for j = s, and such that

ỹi(t) = Gi
f (t) ∗ qi(t) satisfies (6), design F , L, H in (9)

and construct {r(tTs)}t = {(rx(tTf ), r
y(tTs))}t such that

yi(t) = Gi
f (t) ∗ ri(t) satisfies (6), and (9) is strictly convex

and recursively feasible when q is substituted by r. Also, when

{q(hTf)}
h̄
h=0 is finite, the processing time is finite.

Problem 2 involves the simultaneous modification of the

reference and generation of the command to track such a

modified reference, and has attracted interest in recent years,

see, e.g., [18], [19]. Unfortunately, the previously proposed

methods modify the reference within the MPC problem in

ways that do not guarantee that the geometry of the path

is maintained, and hence (6) may be violated. Instead, we

solve Problem 1 by cascading a tracking MPC to a “spatial”

reference governor (SPRG), which does not change the spatial

shape of the reference and hence does not affect the satisfac-

tion of (6). In practice, the effect of the SPRG is to change

the feed rate to ensure that the constraints can be satisfied. It

is worth noting that the path tracking error of (1) is inversely

proportional to the feed rate. Hence, if {q(hTf)}h satisfies (6)

and the feed rate is only reduced to generate {r(tTs)}t, then

also the latter satisfies (6).

III. SPRG-MPC FOR TWO-STAGE PROCESSING MACHINES

We propose a control system design for solving Problem 2,

and consequently Problem 1, with the block diagram shown

in Figure 4. Using conventional methods, we generate offline

a reference trajectory for an ideal single stage machine with

dynamics, velocity and acceleration constraints of the fast

stage, and the range of the slow stage, thus obtaining an
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Fig. 4. Trajectory generation and control block diagram for the two-stage
processing machine.

idealized, usually infeasible, trajectory. The spatial SPRG

developed in Section III-A modifies the reference to obtain a

feasible reference that does not change the spatial processing

pattern. The feasible reference is provided to a MPC algorithm

developed in Section III-B that optimizes the trajectory with

guaranteed recursive feasibility. The MPC feeds the command

to the slow stage actuator while the fast stage actuator com-

mands are obtained as the difference between the slow stage

trajectory and the feasible reference, with the implementation

discussed in Section IV-C. The predicted terminal state is

provided to the SPRG for continuing operation.

A. Spatial Reference Governor

In order to obtain a reference trajectory that guarantees the

feasibility of the MPC problem (9) and ensures satisfaction

of (6) we develop a reference governor that operates on the

spatial points {q(h)}h, represented by the SPRG block in

Figure 4. First, we recall few useful notions.

Definition 1: Given x(t + 1) = f(x(t)), x ∈ R
n, with

z = h(x(t)), z ∈ R
nz , such that z ∈ Z ⊂ R

nz , a constraint

admissible set S∞ ⊂ R
n is a set such that

x(t) ∈ S∞ ⇒ h(x(τ)) ∈ Z, ∀τ ≥ t. (10)

Given any constraint admissible set S∞, x ∈ S∞ implies that

f(x) ∈ S∞, i.e., S∞ is positive invariant (PI) for x(t+ 1) =
f(x(t)). The maximal constraint admissible set O∞ is the

union of all constraint admissible sets. �

Let the discrete-time state-space formulation of the slow

stage motion, i.e., (1) for j = s, sampled with period Ts be

xi(t+ 1) = Aixi(t) +Biui
s(t), i ∈ {x,y} (11)

where yis, ẏis, ÿis are components of the state vector x , and

define zi = Ci
xx

i+Crr
i = [yis ẏ

i
s ÿ

i
s y

i
s−ri]′. Thus, (11) with

ui
s(t) = ri(t) and constant reference dynamics, and subject to

(3), (4), (5), for j = s, and (8), results in

xi(t+ 1) = Aixi(t) +Biri(t) (12a)

ri(t+ 1) = ri(t) (12b)

zi(t) = Ci
xx

i(t) + Ci
rr

i(t) (12c)

Hi
zz

i(t) ≤ Ki. (12d)

Given ri, let xi
e(r

i) denote the corresponding steady state

equilibrium. We use the following result (see, e.g., [20]).

Result 1: For i ∈ {x,y}, consider (12) where Ci
z =

[Ci
x Ci

r], A
i
z =

[

Ai 0
0 1

]

, (Ci
z, A

i
z) is observable and Zi = {z :

Hi
zz

i ≤ Ki} is a polytope, i.e., closed and bounded. Let Ri

be the set of commands that are steady state admissible, that

is, for all ri ∈ Ri the corresponding equilibria xi
e(r

i) satisfy

Cxx
i
e(r

i)+Crr
i ∈ int(Zi). Then, with arbitrary precision, the

maximum constraint admissible set for r ∈ Ri is the polytope

Oi
∞ = {(xi, ri) : Hx

i
∞xi +Hr

i
∞ri ≤ Ki

∞}. (13)

defined by a finite number of constraints .

Oi
∞ can be computed by solving offline a sequence of linear

programs [20]. We denote the section of Oi
∞ at reference

value ri by Oi
∞(ri), which is the set of states that are in

the maximum constraint admissible set when the reference is

ri, i.e., xi ∈ O∞(ri) iff (xi, ri) ∈ Oi
∞.

Given xi, i ∈ {x,y}, the SPRG uses Result 1 to choose ri

in the sequence of points to be processed, {q(hTf)}h. Let

κ(x, µ, {q(h)}h) =

max
η∈Z[0,M]

η (14a)

s.t. (xi, qi(µ+ η)) ∈ Oi
∞ (14b)

min
[0,η]

qi(µ+ η) ≥ [Ci
xx

i]1 − yif (14c)

max
[0,η]

qi(µ+ η) ≤ [Ci
xx

i]1 + yif (14d)

i ∈ {x,y},

and let µ(t) ∈ Z0+ be the index of the last processed point

within the tth sampling interval, i.e., r(t) = q(µ(t)), then

µ(t) = κ(x(t), µ(t − 1), {q(h)}h) (15a)

ri(t) = qi(µ(t)), i ∈ {x,y}. (15b)

The SPRG (15) constructs the reference by solving (14),

searching how many points can be processed until the next

sampling period without violating the constraints, and ensuring

that the selected reference can be maintained as a target in

the future without violating the constraints. Since constraint

satisfaction is ensured only at the sampling instants, (14c),

(14d) are included to enforce that all the points {q(µ+ j)}ηj=0

to be processed by the fast stage during the sampling interval

are within the fast stage range. Instead of enforcing ‖yis −
q(µ+ j)‖ ≤ yf for all j ∈ Z[0,η], (14c), (14d) are enforced on

the worst case values to reduce the computations. Let qi(t) =
minµ∈[µ(t−1),µ(t))] q

i(µ), qi(t) = maxµ∈[µ(t−1),µ(t))] q
i(µ) be

the worst case intersampling bounds that are fixed once the

reference has been selected, since they depend only on the

points that are processed in the current sampling interval.

While (14) seems a difficult problem, it is solved by checking

the inequalities while scanning the points in {q(h)}h, and, in

doing that, the computation of qi and qi is straightforward.

By using (15), the feasible reference is such that r(t) ∈
{q(h)}h for all t ∈ Z0+, and hence the spatial pattern is not

deformed, but its traversal is slowed down due by reducing the

feed rate. The maximum of M points in (14) is imposed due

to the maximum number of points that can be processed by the
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fast stage in a single sampling period of the slow stage. This

is needed for satisfying (6), since starting from a trajectory

{q(h)}h that enforces (6), the trajectory {r(t)}t should not be

faster than {q(hTf)}h to prevent the fast stage tracking error

from increasing. Hence, a maximum of M points of {q(h)}h
can be processed during a each slow stage sampling period,

which is the ratio between Ts and Tf .

Theorem 1: Let {q(hTf)}
h̄
h=0 be a finite-time trajectory

such that for all h ∈ Z[0,h̄], (x
i
e(q

i(h)), qi(h+1)) ∈ int(Oi
∞),

and let x(0) be such that (xi(0), qi(0)) ∈ Oi
∞, i ∈ {x,y}.

For (12) in closed-loop with (15), (14) is recursively fea-

sible, (12d) is satisfied and there exists t̄ ∈ Z+ such that

r(t̄Ts) = q(h̄Tf ). �

For this paper, all the proofs are in the Appendix.

Remark 1: The reference governor (14), (15), preserves the

geometry, i.e., (6) by: (i) selecting only points on the trajectory

{q(h)}h rather than selecting points close to {q(h)}h but

not necessarily on it, and (ii) computing the reference for

both axis at the same time, even if the dynamics of the axes

are decoupled, allowing the geometry of the path to couple

them. The operation of the reference governor amounts to

a (nonlinear) transformation on the curve parameter, i.e., in

case of {q(h)}h, the time, which does not change the curve.

Thus, the reference governor “stretches” the time, to reduce

the processing speed when needed to guarantee constraint

satisfaction.

B. Tracking MPC for two-stage machines

Next, we construct the MPC block in Figure 4 by appropri-

ately specifying the optimization problem (9) to operate with

the SPRG. For the ease of notation, in what follows we omit

the superscript i ∈ {x,y}, when clear from context, and the

subscript s, since all the variables refer to the slow stage.

Given the reference trajectory Rt = [r0|t . . . rN |t], and

the corresponding intersampling worst case bounds Wmin
t =

[q
0|t

. . . q
N |t

], Wmax
t = [q0|t . . . qN |t], the MPC finite horizon

optimal control problem is

V(x(t)) = (16a)

min
Ut

F (xN |t, rN |t) +

N−1
∑

k=0

L(xk|t, rk|t, uk|t) (16b)

s.t. xk+1|t = Axk|t +Buk|t (16c)

HCxxk|t +HCqrk|t ≤ K (16d)

[Cxxk|t]1 ≥ qk|t − yf (16e)

[Cxxk|t]1 ≤ q
k|t

+ yf (16f)

xN |t ∈ O∞(rN |t) (16g)

x̄0|t = x̄(t). (16h)

where F (x, r) ≥ 0 for all x, r, and F (x, r) = 0 iff

x = (xe(r), r), i.e., at the equilibrium for r where y = r,

L(x, r, u) ≥ 0 for all x, r, u, and L(x, r, u) = 0 iff x̄ = xe(r)
and u = r, since the dc-gain is 1, Ut = [uk|t . . . uN−1|t] is the

command sequence to be optimized at time t and we denote

the optimal command sequence at time t by U∗
t .

Next we prove some properties for the control strategy

shown in Figure 4 where: (i) the SPRG implemented by (15)

computes a new reference step, together with its worst case

intersampling bounds, from the previous prediction of the

MPC terminal state, (ii) the MPC shifts the previous reference

by one time step and appends the new reference step provided

by SPRG, (iii) solves (16), and (iv) provides the new terminal

state to the SPRG.

Theorem 2: Consider the MPC that at any time t ∈ Z0+

solves (16), where rk|t = rk+1|t−1, k ∈ Z[0,N−1], rN |t =
q(µN |t), and µN |t = κ(xN |t−1, µN |t−1, {q(h)}h). Let (16) be

feasible at time t ∈ Z0+, then (16) is feasible for all τ ≥ t. �
Theorem 3: Let {q(hTf)}

h̄
h=0 be a finite-time trajectory

such that for all h the equilibrium xe(q(h)) for q(h) satisfies

(xe(q(h)), q(h + 1)) ∈ int(O∞), and let (x(0), q(0)) ∈ O∞.

Consider the MPC that at every iteration solves (16) where

rk|t = rk+1|t−1, k ∈ Z[0,N−1], rN |t = q(µN |t),

µN |t = κ(xN |t−1, µN |t−1, {q(h)}h). Assume that

∀(x, r) ∈ O∞, ∃u ∈ R :

F (Ax +Bu, r) + L(x, r, u)− F (x, r) ≤ 0. (17)

Then, there exists a finite t ∈ Z0+ when rN |t = q(h̄) and

(xN |t, rN |t) ∈ O∞. �

The assumption in (17) is related to the existence of a

control Lyapunov function [11] for the tracking problem. Since

the SPRG keeps the reference constant until it can move to the

next point and the prediction model is asymptotically stable,

for linear-quadratic MPC a simple choice for F is based on

solving the Lyapunov equation with respect to the origin as

steady state equilibrium, and use such solution to construct F
as function of x and r by translation of steady state state and

input. Feasibility of this choice is ensured by using O∞ as

terminal set in (16).

IV. CONTROL SYSTEM IMPLEMENTATION

In this section we describe the implementation of the numer-

ical algorithms for the control system designed in Section III,

in particular the computation of the SPRG and the numerical

solver for the MPC optimal control problem (16). Due to

the real-time nature of the control system, the numerical

algorithms must terminate in a given fixed time, which re-

quires additional considerations. Finally, we briefly discuss the

command generation for the fast stage .

A. Implementation of SPRG and MPC

The computation of the feasible reference by SPRG requires

solving (14). Since ri is a scalar the easiest way to solve (14)

is by direct evaluation. Thus, solving (14) amounts to the

following steps: (i) substitute xi in the constraints, eliminate

redundant constraints and set η = M ; (ii) compute q, q
from µ and η; (iii) if q(µ+ η) satisfies the constraints, both

the maximum constraint admissible set and the worst case

intersampling bounds, then r = q(µ + η), and terminate;

otherwise η = η − 1 and go to (ii).
It can be noted that xi is given, and hence constraint (14b)

can be transformed into Hr
i
∞ri ≤ Ki

∞ − Hx
i
∞xi, which,

after minor manipulations, results in all but two constraints to
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be redundant, since ri is scalar. Thus, a total of 4 constraints

have to be verified: two for the maximum constraint admissible

set and two for the worst case intersampling bounds. Finally,

instead of the decremental search, different updates for η
can be applied, such as bi-section. Decremental search is

particularly favorable for the situations when it is expected

η to be very close to its maximum value, i.e., the feed rate is

only minimally reduced.

As for the MPC implementation, they key element is the

solver for (16). When F , L are convex quadratic functions,

L(x, r, v) =
[

x′ r′
]

Q

[

x
r

]

+
[

u′ r′
]

R

[

u
r

]

=̺p(y − r)2 + ̺vẏ
2 + ̺aÿ

2 + ̺u(u− r)2

F (x, r) =
[

x′ r′
]

P

[

x
r

]

, (18)

where ̺p, ̺v ̺a, ̺u are positive weights on slow stage

position, velocity, acceleration and command, and P ≥ 0 is

designed to satisfy the assumptions in Theorem 3, (16) results

in a convex parametric quadratic program

min
ζ

1

2
ζ′Qpζ + θ′C′

pζ +
1

2
θ′Ωpθ (19a)

s.t. Gpζ ≤ Spθ +Wp . (19b)

where at time t, ζ = Ut and θ ∈ R
nθ is the parameter vector,

θ = [x′ Rt
′ Wmax

t
′ Wmin

t

′
]′.

For solving (19) one can iterate [23]

[ξ(ℓ+1)]i =
[(Q−

d + φ)ξ(ℓ) + F−
d ]i

[(Q+
d + φ)ξ(ℓ) + F+

d ]i
[ξ(ℓ)]i (20)

where Fd = Sdθ + Wd, and Qd = GpQ
−1
P G′

p, Sd =
(GpQ

−1
p Cp + Sp), Wd = Wp, Ωd = C′

pQ
−1
p Cp − Ωp are

the matrices of the dual problem of (19), and A+ and A− are

the positive and negative parts of matrix A = A+ −A−. The

solution of (19) is constructed from the fixed point ξ∗ of (20)

ζ(ξ∗) = Ψd2p(θ, ξ
∗) = Γdθ + Ξdξ

∗, (21)

where Ξd = −Q−1
p G′

p, Γd = −Q−1
p Cp.

B. Real-time Implementation

Both SPRG and MPC can be implemented and verified

even in embedded platforms with minimal capabilities, be-

cause SPRG only requires verifying satisfaction of linear

inequalities, and MPC only requires computing the simple

iteration (20).

For real-time operation, it is necessary that the number of

worst case operations computed by the control algorithm is

deterministic, and fits in the available computing time. The

number of operations of the SPRG is simple to bound since

given that η ≤ M , at most M iterations will be performed, and

in each iteration a known number of inequalities is evaluated.

For MPC, computing the number of operations in each

control cycle is in general difficult. Some notable exceptions

are explicit MPC, see, e.g., [12], and some recently developed

low complexity solvers that allows for complexity certification,

see, e.g., [24], [25]. These methods estimate an upper bound

to the number of iterations (and operations) to compute

the MPC solution. Then, a processor must be selected to

fit the computational requirements. This often results in an

over-dimensioned processor, even by one or more orders of

magnitude, due to the estimate being an upper bound of the

worst case. Here, we use a different approach that aims at

not imposing constraints on the processor, but rather uses all

the available computing time, and if that is not sufficient, it

exploits a readily available backup solution. Such an approach

is beneficial as it avoids over-dimensioning the processor for

an unlikely worst case, and hence avoids unnecessary costs.

Due to the simplicity of the solver in Section III, we can

compute the number of operations per iteration, so that, given

any processor, the maximum number ℓ̄ ∈ Z+ of iterations (20)

per computing cycle can be determined. Due to hard real-time

requirements, ℓ̄ ∈ Z+ may not be enough to always solve

to optimality. However, in case the solver does not return a

solution within ℓ̄ iterations, the SPRG solution can be used to

construct a feasible solution. Let ξ(ℓ̄) be the candidate solution

from (20), z̃ be the corresponding solution of (19) from (21),

and Ũt be the corresponding optimal control sequence. If Ũt

is feasible (possibly optimal), it will be used, because the

constraints are satisfied and the terminal constraint guarantees

recursive feasibility for any feasible solution. If Ũt is not

feasible, we exploit the previous feasible solution and the

current reference.

Corollary 1: Let Ut−1 be a feasible solution for t ∈ Z+.

The solution Ūt where ūk|t = uk+1|t−1 and uN |t = rN |t is

feasible for (16). �

According to Corollary 1, (15) provides a backup strategy

for when a feasible solution is not found within the available

iterations. By Corollary 1, one can dimension the processor

for a certain probability to terminate within ℓ̄ iterations, and

then use (15) as backup strategy.

C. Fast Stage Command Generation

The fast stage receives as targets the points that have

to be processed during a slow stage interval, i.e., for t ∈

[(k − 1)Ts, kTs], these are {qh}
µ(k)
h=µ(k−1). The curve visiting

those points is sampled to obtain a time reference rif (τ),
i ∈ {x,y} with sampling frequency Tf . The fast stage

command is generated while accounting for the motion of the

slow stage as

ui
f (τ) = rif (τ) − Ḡi

s ∗ û
i
s(τ), (22)

where Ḡi
s is a discrete-time representation of Gi

s with sam-

pling period Tf , which is realized in the upsampling block

shown in Figure 4, and ûi
s(τ) is an up-sampling to period Tf

of ui
s(t), so that ûi

s(τ) = ui
s(t) for all τ ∈ Z[Mt,(M+1)t−1].

In (22) the fast-stage dynamics are infinitely fast or at least

significantly faster than the slow stage ones. Alternatively, the

motion of the slow stage can be compensated for by including

in the upsampling block in Figure 4 an appropriate matching

filter

ui
f (τ) = rif (τ) −W i

f (τ) ∗ u
i
s(τ), W i

f (τ) =
Ḡi

s(τ)

Ḡi
f (τ)

. (23)
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Then, the overall worktool motion results in

yi(τ) = Ḡi
f (τ)∗r

i
f (τ)+Ḡi

f (τ)W
i
f (τ)∗u

i
s(τ)−Ḡi

f (τ)∗u
i
s(τ),

and hence yi(τ) = Ḡi
f (τ) ∗ rif (τ) which shows that the

motion of the worktool is exactly the same as the one of the

ideal machine having the dynamics of the fast stage. While

in general matching filters such as (23) are not recommended,

due to the fact that models are imprecise, in precision man-

ufacturing the models of the stage motion are of very high

precision. Also, while the matching filter does not account for

the plant constraints, here the velocity, acceleration, and range

constraints are enforced by the ideal reference generation

and the SPRG-MPC of Section III. While discussed here for

completeness, if the stages are well separated in frequency,

the impact of the matching filter (23) is negligible.

V. SIMULATION AND EXPERIMENTAL RESULTS

For evaluating the proposed control design, we have built a

laboratory prototype two-stage dual-axis machine using Mit-

subishi Electric components for manufacturing applications.

The workspace is approximately one quarter of that of a

real precision manufacturing machine, and in the prototype

we have retained the ratios of relevant quantities such as

motor power, stage inertia, workspace area, etc. The slow

stage actuation is implemented by 3 servomotors, with 2kW

power each, driven by servomotor amplifiers. In the frequency

range of interest, the closed-loop slow stage response model

from position command to position is the 3rd order function

whose Bode plot is shown in Figure 3. The range of the slow

stage is yis = 0.4m, i ∈ {x,y}. The maximal velocity and

the maximal acceleration for the slow stage are ẏ
i

s = 0.7m/s

and ÿ
i

s = 1.5g, i ∈ {x,y}, respectively. The fast stage is

implemented by a low inertia high speed servomotor that in

the frequency range of interest has the 3rd order closed-loop

response model shown in Figure 3. The range of the fast stage

is yif = 35mm, i ∈ {x,y}. A high-end laser diode is used to

mark the position of the worktool actuated by the two-stage

machine. The microcontroller is based on the TMS320C6678

digital signal processor, for which we reserved only 20% of

the computing time for each control loop.

For testing, we have designed using a CAD program

(SolidWorks) a set of parts that needs to be machined on a

single batch of material. The parts are composed of common

shapes machined in manufacturing applications, and include

both small and large features. Thus, processing the parts

requires both, short range high acceleration movements, and

long range smooth movements. The resulting worktool path

is shown in Figure 6. The CAD design is then processed by

a CAM program realizing its conversion into instructions for

a standard numerical motion controller, that is appropriately

configured and upsampled to Tf , to generate trajectories for

the ideal machine with range of the slow stage and dynamics

of the fast stage. This results in the ideal reference trajectory

{q(h)}h̄h=1, with h̄ = 232100 being the total number of

processing points, and an ideal processing time of 46.42s. The

accuracy bound for all the tests reported next is ε = 50µm,

i.e., |yif (t) + yis(t) − ri(t)| ≤ 50µm for all t ∈ R0+. The

Fig. 5. Experimental two-stage machine used for experimental validation
with key components highlighted. Slow stage servomotors, orange. Slow
stage range, red. Slow stage moving base, blue. Fast stage base, actuator
and worktool, green.
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Fig. 6. Worktool path resulting from CAD design of the parts to be machined.

reference generation enforces such a precision using classical

approaches for the ideal single stage machine, and the method

proposed here only reduces the feed rate, which is inverse

proportional to the tracking error, hence further increasing the

precision. It shall be noted that for this application the accuracy

is a hard bound, as opposed to being the performance objective

as in path following MPC [14], [16], and all tests reported next

satisfy such bound.

The controller is designed with the quadratic cost func-

tion (18) in (16), M = 150, Ts = 30ms, and a prediction

horizon N = 20 for the base design. Based on the target

processor and on the computational load of iteration (20),

we have imposed a limit of ℓ̄ = 500 iterations (20) per

control cycle per axis, which can easily fit in the available

computing time during the control cycle. In practice, such a

limit is very conservative for the considered processor, but

it has been chosen to demonstrate how Corollary 1 ensures

real-time feasibility in the presence of limited computation.
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A. Simulations

First we have performed an extensive simulation study,

testing several controller calibrations in closed-loop with a

high fidelity model of the two-stage machine, composed of

the mechanical models and the servo models that result in the

closed-loop axis stage frequency response shown in Figure 3.

The results for our best calibration, i.e., the calibration that

achieves a desirable trade off between fast processing of the

machined part, and low acceleration of the slow stage, and

hence limited vibrations, are reported in Figures 7–11.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0
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0.35
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y
[m

]

Fig. 7. Processed path (red) covering the desired path, slow stage motion
(black), and points where the reference governor reduces the feed rate (green).
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Fig. 8. Position of the slow stage x, y axes (blue) and constraints (black)
due to the reference and fast stage range.

Figure 7 shows the processed path, the slow stage motion,

and the points where the reference governor reduces the

number of points processed per sample. Most reductions occur

on long straight segments when the reference governor needs

to guarantee the capability of braking should the reference

trajectory change direction suddenly, e.g., due to a corner.

The slow stage position is shown in Figure 8 for x and

y coordinates together with the constraints related to the

maximal allowed distance from the reference. Notice how the

controller exploits the fast stage range to reduce the motion of

the slow stage. This reduces the power consumption and the

machine vibrations, thus reducing unmodelled disturbances on

the worktool, hence increasing machining precision.
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Fig. 9. Velocity and acceleration of the slow stage x axis (blue), y axis
(black) and constraints (red).
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Fig. 10. Position of the fast stage for x and y axes and range limits (red).

The smoothness of the slow stage motion stage can be fur-

ther noted in Figures 9, reporting the velocity and acceleration

profiles. For this particular calibration the controller keeps the

motion of the slow stage far from the velocity and acceleration

constraints. Instead, the fast stage range constraints, i.e., the

slow stage tracking error constraints, are often active, as seen

in Figure 8, and more easily in Figure 10. Finally, Figure 11

shows for each step the ratio of processed points with respect

to the maximum M = 150, and the number of iterations

executed by the QP solver, where a value above 500 is shown
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Method Time Maximum Mean Mean Mean fast Slow stage work

[s] accel. [m/s2] accel. [m/s2] vel. [cm/s] stage motion [mm] per mass [W/kg]

LFS 55.98 (6.18, 5.113) (0.66, 0.54) ( 7.71, 7.49) (11.22, 10.74) (3.02, 2.55)

MPC-20-B 50.38 ( 6.18, 10.73) (0.08, 0.11) ( 3.23, 4.13) (15.35, 16.50) (0.34, 0.82)
MPC-20-H 48.25 ( 7.10, 12.73) (0.84, 0.70) ( 8.59, 8.35) ( 5.15, 4.24) (4.35, 4.00)
MPC-20-L 54.81 ( 5.87, 10.11) (0.07, 0.08) ( 2.83, 3.66) (17.28, 19.98) (0.26, 0.43)
MPC-03-B 51.35 (14.66, 15.13) (0.49, 0.59) ( 3.02, 3.90) (20.92, 24.89) (5.32, 5.77)
MPC-03-H 48.58 (13.08, 12.94) (1.21, 1.18) ( 7.86, 7.70) ( 9.88, 9.55) (9.80, 9.55)
MPC-03-L 55.71 (12.59, 12.57) (0.45, 0.54) ( 2.68, 3.50) (22.21, 25.53) (4.93, 5.26)

SPRG 50.75 (15.69, 15.69) (1.99, 1.66) (12.53, 11.02) ( 3.51, 3.07) (16.57, 14.26)
TABLE I

SUMMARY OF THE SIMULATION RESULTS: LINEAR FREQUENCY SEPARATION (LFS), SPATIAL REFERENCE GOVERNOR (SPRG), MPC WITH DIFFERENT

HORIZONS AND CALIBRATIONS (MPC-N-C, N ∈ {3, 20}, C ∈ {B,H, L}). RESULTS PER EACH AXIS REPORTED AS (x,y).

to indicate that the algorithm did not find a feasible solution

within the allowed 500 iterations and the feasible solution was

generated by Corollary 1. In these cases, the constraints are

satisfied but the trajectory tends to be less smooth, see for

instance immediately after t = 30s where the iteration limit is

exceeded multiple times first on the y and then on the x axis,

which results in larger accelerations and velocities.
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Fig. 11. Top: Feed rate ratio with respect to maximum (η/M ). Bottom: MPC
iterations (x axis blue, y axis black), where 600 indicates that a feasible
solution is not found within ℓ̄ = 500 iterations and Corollary 1 is used.

In addition to the results in Figures 7–11, representing

the most desirable trade off, we have evaluated the proposed

algorithm for different controller calibrations to analyze how

the performance is affected by changes in the calibration of

the cost function weights (, specifically, Q in (18)) and the

prediction horizon (N in (16)), and to ensure that the controller

operates appropriately under such conditions, that may cause

different set of constraints to be active. Table I reports the

summary of the results, when using 3 calibrations for the MPC

cost function: Best (B, whose results are shown in Figures 7-

11) representing a trade off between aggressive tracking and

smooth motion, and High (H) and Low (L) aggressiveness,

favoring aggressive reference tracking by increasing the track-

ing weight, and low acceleration by increasing the acceleration
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Fig. 12. Results for MPC-20-H. Top: Position of the slow stage x, y axes
(blue) and constraints (black) due to the reference and fast stage range.
Bottom: Position of the fast stage for x and y axes, and range limits (red).

weight, respectively, also with a shorter horizon N = 3. For

completeness we have also included the results obtained by

running the SPRG alone, i.e., ui
s(t) = ri(t), i ∈ {x,y}, which

is feasible by Theorem 1, and the results obtained by applying
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a linear frequency separation (LFS) method, along the lines

of conventional methods used in production machines. In the

LFS approach, the command for the slow stage is obtained by

low pass filtering the reference trajectory(see, e.g., [9]), and

the command of the fast stage is obtained as the difference

between the slow stage position and the reference trajectory.

The filter is tuned offline to avoid violation of the acceleration

and velocity constraints and the amount of processed points at

each step is selected as the largest value, not larger than M ,

that can be reached by the fast stage range.
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Fig. 13. Velocity and acceleration of the slow stage x axis (blue), y axis
(black) and constraints (red).Top: MPC-20-H. Bottom: MPC-3-H.

The results in Table I compare the algorithms in terms of

machining completion time, mean fast stage motion during

the slow stage period, and acceleration, velocity, mechanical

work per unit mass, i.e., the integral of the product of velocity

and acceleration, of the slow stage. The base MPC shown

in Figures 7–11 improves the processing time by more than

10% with respect to the frequency separation method, and

still results in lower mean acceleration, velocity, and energy

of the slow stage. When compared to using the SPRG alone,

the base MPC provides a slightly better processing time,

but above all a much smoother motion of the slow stage.
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Fig. 14. Processed path (red) covering the desired path, slow stage motion
(black), and points where the reference governor reduces the feed rate (green).
Top: MPC-3-L. Bottom: MPC-3-H.

When the cost function is calibrated for a more aggressive

tracking (H), the MPC processing time decreases but the mean

acceleration, velocity and energy increase, while obviously the

opposite occurs in the case of less aggressive tracking (L).

Figure 12 shows how in the case of aggressive tracking (H) the

slow stage stays away from the tracking error bounds, which

results in shorter motion of the fast stage. On the other hand,

Figure 13 shows that the velocity and acceleration of the slow

stage become larger. Figure 13 also shows that in the case

with short horizon (N = 3), the MPC uses less predictive

information and hence has less capability of smoothing the

slow stage motion, resulting in even larger acceleration and

velocity. Since the work per unit mass is the product of

velocity and acceleration, the previous consideration results

in an increase in energy consumption for the designs with

more aggressive tuning and shorter horizon. The quantitative

values for all these effects are shown in Table I, in terms

of mean and maximal acceleration, mean velocity and mean

motion of the fast stage. In addition, Table I shows that when

the MPC horizon becomes shorter, the processing time is in

general only minimally affected, but the smoothness of the

motion is significantly affected. Still, all the constraints are

satisfied. The path produced by the MPC with short horizon
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in the case of low (L) and high (H) aggressiveness are shown

in Figure 14, where the first tends to make the slow stage

move the least amount, until a sharp motion is required not

to violate constraints, resulting in several sharp turns, while

the second tends to remain close to the pattern shape, due

to the high tracking weight. This also results in much more

frequent feed rate reductions by SPRG in the first case than

in the second. However, in all the cases MPC enforces all the

constraints and hence processes the pattern correctly. This is

also the case for shorter prediction horizon, even though for

N < 3 the difference between MPC and SPRG is small.

B. Experimental validation

We have tested the algorithm in our experimental laboratory

two-stage machine. The results are consistent with those

obtained in simulation due to the high precision of the com-

ponents and to the high fidelity of the simulation model. Note

that in all the experiments we have added an initial 2s stop

period to make the results easier to see, which can be noted for

instance in the initial spikes in velocity and accelerations that

are not easily visible in the simulation plots in Section V-A,

due to being at the left border of the figures. The results

obtained for the best calibration with N = 20 are reported in

Figures 15–18. These results are consistent with those obtained

in simulation in terms of both, completion time and constraints

satisfaction. This is expected due to both, the precision of

the model and inner-loop servo controllers, and the feedback

action of MPC that rejects model errors and disturbances. The

only differences can be noted between Figure 9 and Figure 17,

where the acceleration in Figure 17 shows slightly larger

spikes than reported in Figure 9. This happens because, despite

the velocity and acceleration are available to the control loop,

the acquisition board only allows logging of the position

signal. Hence, velocities and accelerations shown in the figures

are obtained by low pass filtered numerical differentiation,

similar to [14]. This amplifies the noise, which despite being

small because the encoders are high precision, is still present.
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Fig. 15. Experimental results, MPC-20-B. Processed path (red) covering the
desired path and slow stage motion (black).
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Fig. 16. Experimental results, MPC-20-B. Position of the slow stage x, y
axes (blue) and constraints (black) due fast stage range.

0 5 10 15 20 25 30 35 40 45 50

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50

-20

-10

0

10

20

ẏ
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Fig. 17. Experimental results, MPC-20-B. Velocity and acceleration of the
slow stage x axis (blue), y axis (black) and constraints (red).

We have also tested the other MPC calibrations reported in

Table I, and all behaved as expected. In Figures 19–22 we

report the results for the MPC with aggressive (H) tuning and

short (N = 3) horizon, which is probably the most critical

to run due to the high accelerations, and short horizon that

allows fewer degrees of freedom to compensate for errors.

Figures 19–22 show that the MPC works well also in this

case and the results are consistent with the simulations, both

in terms of processing time and constraint satisfaction.

Overall, the advantage of SPRG-MPC over LFS appears

to be due to the capability to exploit the entire range of the

operating constraints of the machine. SPRG-MPC actively en-

forces constraints during processing by slowing down the axis

motion only when constraints would otherwise be violated.

On the other hand LFS is tuned to avoid constraints, which

results in slowed down motion in any condition, due to LFS

being based on linear filtering as opposed to the nonlinearities
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Fig. 18. Experimental results, MPC-20-B. Position of the fast stage for x

and y axes, and range limits (red).
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Fig. 19. Experimental results, MPC-3-H. Processed path (red) covering the
desired path, slow stage motion (black).

induced by constraint enforcement in SPRG-MPC.

VI. CONCLUSIONS

We have proposed a method for trajectory generation and

control for two-stage precision manufacturing machines where

stage actuators with different dynamics and constraints must

be coordinated to achieve fast and precise processing. We

have developed an architecture based on a cascade of a

spatial reference governor, that modulates the reference to

achieve feasibility without deforming the physical shape of

the pattern being processed, and MPC that seeks the optimal

trade-off between processing time and motion smoothness. For

the proposed method, we have proved recursive feasibility

and finite time processing termination, and we have shown

how to achieve real-time processing in any reasonably sized

microprocessor. The approach was evaluated in simulation and

on a laboratory experiment where the slow stage has been
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Fig. 20. Experimental results, MPC-3-H. Position of the slow stage x, y axes
(blue) and constraints (black) due to the reference and fast stage range.
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Fig. 21. Experimental results, MPC-3-H. Velocity and acceleration of the
slow stage x axis (blue), y axis (black) and constraints (red).

built with scaled dimensions with respect to real processing

machines.

Besides developing a solution for a specific relevant ap-

plication, this paper shows that MPC can be effective for

applications in precision manufacturing. For many years such

a domain was not a primary target for MPC due to relatively

simple processing machine architectures, the limited comput-

ing capabilities and the slow optimization algorithms. How-

ever, the constant need for higher performance and quality,

the increases in computing power, and the recent algorithmic

and theoretical developments in MPC have induced transfor-

mations in the field that may position MPC to be very effective

in manufacturing applications.

APPENDIX

Proof of Theorem 1: Constraint satisfaction and recursive

feasibility are obtained by induction based on the fact that at
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Fig. 22. Experimental results, MPC-3-H. Position of the fast stage for x and
y axes, and range limits (red).

every τ ∈ Z0+ (15) selects r based on (14), which exploits

the (maximal) constraint admissible set. Due to Definition 1

if (xi(t), ri(t)) ∈ Oi
∞, i ∈ {x,y}, the constraints in (12) are

satisfied at time t. For t = 0, (xi(0), ri(0)) ∈ Oi
∞ for ri(0) =

qi(0). For some t ∈ Z0+, let (14) have a feasible solution.

By (15), this results in r(t) such that (xi(t), ri(t)) ∈ Oi
∞.

Since Oi
∞ is positive invariant for (12), i.e.,

r(τ) = r(t), ∀τ ≥ t =⇒ (xi(τ), ri(τ)) ∈ Oi
∞, ∀τ ≥ t,

(14) is feasible for all τ ≥ t, at least by setting r(τ) = r(t),
since min qi = max qi = ri and hence that (14c), (14d) are

automatically enforced by enforcing (14b). Thus,

(xi(τ), ri(τ)) ∈ Oi
∞, ∀τ ∈ Z0+.

For finite termination, since (xi
e(q(h)), q

i(h+1)) ∈ int(Oi
∞)

∃ρ̄ > 0 : (xi
e(q(h))⊕ B(ρ̄), qi(h+ 1))) ⊆ int(Oi

∞).

Let (xi(t), ri(t)) ∈ Oi
∞, and ri(t) = qi(h̄), and assume that

for all τ ∈ Z0+, (xi(t+ τ), qi(h̄+1)) /∈ Oi
∞. Thus, for some

ρ > 0,

xi(t+ τ) /∈ xi
e(q(h))⊕ B(ρ), ∀τ ∈ Z0+.

However, since Ai is asymptotically stable, for any ρ ≥ 0
there exists τ ∈ Z0+ such that ‖xi(t + τ) − xi

e‖ ≤ ρ, which

contradicts the previous statement. Then, necessarily

∃τ ∈ Z0+ : xi(t+ τ) ∈ {xi
e(q(h))} ⊕ B(ρ̄),

and hence (xi(t + τ), qi(h̄ + 1)) ∈ Oi
∞ and (14c), (14d) are

satisfied because (xi(t+τ), qi(h̄)) ∈ Oi
∞ and (xi(t+τ), qi(h̄+

1)) ∈ Oi
∞. Thus, τ is a finite time for moving to a new point.

By repeating such reasoning for every point in {q(h)}h̄h=0,

and since h̄ is finite, the time to complete the processing of

all points is finite.

Proof of Theorem 2: Let (16) be feasible at t and U∗
t =

[u∗
0|t . . . u

∗
N−1|t] be the optimal input sequence. Since xN |t ∈

O∞(rN |t), by Theorem 1 (14) is feasible at t+ 1 and

rN |t+1 = q(µN |t+1), µN |t+1 = κ(xN |t, µN |t, {q(h)}h).

Then, Ũt+1 = [ũ0|t+1 . . . ũN−1|t+1] such that

ũk|t+1 = u∗
k+1|t, k ∈ Z[0,N−2], ũN−1|t+1 = rN |t+1

is a feasible input sequence, since the corresponding state

trajectory [x̃0|t+1 . . . x̃N |t+1] is such that

x̃k|t+1 = x∗
k+1|t, k ∈ Z[0,N−1], x∗

N |t ∈ O∞(rN |t+1),

then x̃N |t+1 ∈ O∞(rN |t+1), hence (16g) is satisfied, and

satisfaction of (14c), (14d) implies satisfaction of (16e),(16f).

Thus, Ũt+1 is feasible for (16), and the reasoning can be

repeated at any future time instant.

Proof of Theorem 3: Assume that the statement is not true.

Then for some τ ∈ Z0+, rN |t = rN |τ , for all t > τ . Because

of the assumptions, since r(t) is constant for any t > τ ,

V(x(t+ 1)) ≤ V(x(t))− L(x0|t, r0|t, u0|t),

hence V is non-increasing and since V is bounded, it admits

a limit V̄ . Thus, limt→∞ L(x0|t, r0|t, u0|t) = 0 and hence

limt→∞ ‖x0|t − xe(r0|t)‖ = 0 and limt→∞ u0|t = r0|t. Thus,

∀tρ > 0, ∃kρ ∈ R, tρ > τ : ‖x0|tρ − xe(r0|tρ)‖ < ρ,

and by the reasoning in Theorem 1, x(tρ) ∈ O∞(q(h + 1))
which contradicts rN |τ = rN |t for all t > τ . Considering also

that (14c), (14d) are satisfied because x(tρ) ∈ O∞(q(h̄)) and

x(tρ) ∈ O∞(q(h̄+1)), for every point q(h), after a finite time

the next point q(h + 1) is admissible for processing, and, by

repeating the same reasoning, in finite time q(h̄) is admissible,

thus reaching completion of the processing path.

Proof of Corollary 1: The proof is similar to that of

Theorem 3. Since Ut−1 was feasible at time t − 1 the first

N − 1 steps of Ūt are such that the constraints in (16) are

satisfied. Since rN |t is chosen such that (xN |t−1, rN |t) ∈ O∞,

AxN−1|t +BrN |t ∈ O∞(rN |t),

by the positive invariance of O∞. Thus, Ūt also satisfies (16g).
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