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Block Structured Preconditioning within an Active-Set Method for
Real-Time Optimal Control
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Abstract— Model predictive control (MPC) requires solving
a block-structured optimal control problem at each sampling
instant. We propose an iterative preconditioned solver with
computational cost that scales linearly with the number of
intervals and quadratically with the number of state and control
variables, and can be efficiently implemented on embedded
hardware for real-time optimal control. Block-structured fac-
torizations and low-rank updates are combined with block-
diagonal preconditioning within a primal active-set strat-
egy (PRESAS). Multiple numerical tests using our preliminary
C implementation demonstrate competitiveness with the state-
of-the-art, as illustrated on an ARM Cortex-A53 processor.

I. INTRODUCTION

We are interested in solving the following discrete time
formulation of a convex constrained linear-quadratic optimal
control problem (OCP)

min
X,U
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x>NQNxN + q>NxN (1b)

s.t. x0 = x̂0, (1c)
xk+1 = ak +Akxk +Bkuk, k = 0, . . . , N−1, (1d)

0 ≥ dk +Dx
kxk +Du

kuk, k = 0, . . . , N, (1e)

where we define the state vectors as xk ∈ Rnx , the control
inputs as uk ∈ Rnu and the cost matrices as Qk ∈ Rnx×nx ,
Sk ∈ Rnu×nx and Rk ∈ Rnu×nu . The constraints include
the system dynamics with Ak ∈ Rnx×nx , Bk ∈ Rnx×nu , the
inequality constraints with Dx

k ∈ Rnc,k×nx , Du
k ∈ Rnc,k×nu

and an initial value condition where x̂0 ∈ Rnx denotes the
current state estimate. The quadratic program (QP) in (1)
exhibits the sparsity structure, as it typically arises in a
linear or linear time-varying formulation of model predictive
control (MPC) [1]. A similarly structured QP arises as a sub-
problem within a sequential quadratic programming (SQP)
method for solving nonlinear optimal control problems [2].

The following requirements are important to be taken into
account when designing or choosing an embedded QP solver
for industrial applications of real-time optimal control:

1) scaling of computational complexity and memory re-
quirements with problem dimensions N , nx and nu,

2) warm starting capabilities for receding horizon control,
3) portability of solver code and dependencies,
4) deterministic or early termination of solver in real-time

applications to obtain feasible but suboptimal solution,
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5) numerical performance on embedded control hardware
with limited computational resources,

6) reliability and ease of understanding, implementing
and maintaining by non-experts.

Most embedded optimization algorithms that have success-
fully been applied to real-time optimal control rely on direct
linear algebra routines. However, it is known that iterative
methods can result in a better asymptotic complexity when
solving the saddle point linear systems arising in second
order optimization methods [3]. Iterative solvers, such as
the minimal residual (MINRES) method [4], are suitable
for hardware acceleration of the linear system solution, e.g.,
using an FPGA for fast embedded applications [5], due to
their higher ratio of addition and multiplication operations.
The use of an iterative method also allows us to make a trade-
off between computational time and numerical accuracy of
the solution as in [6]. However, for a general saddle point
linear system, Krylov subspace methods tend to converge
poorly without preconditioning [3].

The prior work in [7], [8] already studied a particular
block-diagonal preconditioner within an inexact interior-
point (IP) framework. However, the linear systems within
an IP method become increasingly ill-conditioned as the
solution is approached [8], [9]. Instead, we propose two
alternative block-diagonal preconditioners within an active-
set strategy. Unlike IP methods, an active-set solver can
considerably benefit from the use of warm- or hot-starting
techniques to reduce the computational effort when solving
a sequence of closely related optimal control problems
as discussed in [2], [10], [11]. In addition, the cost per
iteration is generally of a lower computational complexity
by exploiting low-rank updates of the matrix factorizations
when changing the current guess for the active set [12], [13].
The proposed PRESAS solver allows for an initial setup
computational complexity of O(Nm3) and a per-iteration
complexity of O(Nm2) for the QP in (1), where m denotes
the number of state and control variables in the system.
The setup computational cost is incurred only once per QP
solution and it can be performed offline when using hot-
starting within real-time optimal control.

The paper is organized as follows. Section II presents
the preliminaries on quadratic programming and on active-
set methods. The techniques for preconditioning of iterative
solvers are presented in Section III. The particular block
structure exploitation for real-time optimal control is pre-
sented in Section IV. Section V discusses the implementation
of the PRESAS algorithm and its computational performance
is illustrated in Section VI based on numerical case studies.



II. PRELIMINARIES

We assume that the convex QP in (1) has a unique global
solution that is non-degenerate. A solution is degenerate
when either the strict complementarity condition or the
linear independence constraint qualification (LICQ) does not
hold [14]. In order to have a unique solution to the QP in (1),
the Hessian needs to be positive definite on the null-space
of the strictly active constraints in the solution.

A. Embedded Optimal Control Algorithms

Generally, there is a trade-off between solvers that make
use of second-order information and require only few but
computationally complex iterations, e.g., qpOASES [12],
versus first-order methods that are of low complexity but may
require many more iterations, such as PQP [15], ADMM [16]
and other gradient or splitting-based methods [2]. In addition,
there is an important distinction between optimal control
algorithms that target the dense versus the sparse problem
formulation. The numerical elimination of the state variables
in a condensing routine [17] is generally of a computational
complexity O(N2m3), but it can be mostly avoided in linear
MPC applications. However, even with an offline preparation
of the dense QP formulation, solvers applied to this dense QP
will have a runtime complexity of O(N2m2) [13]. Instead,
we focus on directly solving the OCP formulation with the
block sparsity structure in (1), similar to the software tools
in FORCES [18] and HPMPC [19].

It is important to note that many tailored QP algorithms for
real-time optimal control rely on strict convexity of the cost
function. This enables the usage of a dual Newton strategy
such as in qpDUNES [20], sparsity exploiting linear algebra
routines such as the block-tridiagonal Cholesky factorization
of the Schur complement in [21], [22] or a particular Riccati
recursion for linear-quadratic control problems in [11], [23].
In the case of a positive semidefinite cost matrix, regulariza-
tion needs to be applied, followed by an iterative refinement
procedure to obtain a solution to the original problem. This
combination of regularization and iterative refinement can
also be needed in the presence of badly conditioned QP
matrices. Instead, we do not require strict convexity and
employ an iterative method to solve each linear KKT system.

B. Primal Feasible Active-Set Method

The basic idea behind active-set methods is to find the
optimal active set by iteratively updating a current guess.
When fixing the active constraints at the current solution
guess, a corresponding structured equality constrained QP
needs to be solved to compute a new search direction

min
∆X,∆U

N−1∑
k=0

1

2
∆w>k Hk ∆wk +

[
q̃>k r̃>k

]
∆wk (2a)

+
1

2
∆x>NQN∆xN + q̃>N∆xN (2b)

s.t. ∆x0 = 0, (2c)
∆xk+1 = Ak∆xk +Bk∆uk, k = 0, . . . , N−1, (2d)

0 = Dx
k,i∆xk +Du

k,i∆uk, (k, i) ∈ W, (2e)

where W denotes the current guess for the active set, i.e.,
the working set. The variables ∆wk := (∆xk,∆uk) =
(xk − x̄k, uk − ūk) are defined for k = 0, . . . , N − 1 and
∆wN := ∆xN = xN − x̄N , where w̄k := (x̄k, ūk) denotes
the current guess for the optimal solution of the QP in (1).
Note that the equality constrained QP in (2) results in the
search direction w̄k + α∆wk for which all constraints in
the set W remain satisfied, regardless of the value for α.
A distinction should be made between primal, dual and
primal-dual active-set methods [14]. In addition, parametric
methods have been proposed [12] in order to exploit the
parametric aspect within a homotopy framework. In this
work, we consider a primal feasible active-set method.

III. BLOCK-DIAGONAL PRECONDITIONING

At each iteration of the active-set method, one needs to
efficiently solve the saddle point linear system[

H A>
A 0

] [
∆y
∆λ

]
= −

[
h
a

]
or K z = b, (3)

which corresponds to the first order necessary conditions of
optimality for the equality constrained QP (2). In (3), the
matrix A has full rank and H is symmetric and positive
semidefinite. Unlike the prior work on embedded optimiza-
tion algorithms for optimal control based on direct linear
algebra routines in [11], [13], [22], [23], we propose the
use of iterative solvers as discussed for general saddle point
linear systems in [3], [24]. Preconditioning is necessary for
the good performance of iterative solvers [6]. It produces
a modified linear system P−1K z = P−1b where P is the
preconditioner, which is such that

1) computations with the operator P−1 are cheaper than
solving the original saddle point linear system in (3),

2) and the preconditioned matrix P−1K approximates the
identity or its eigenvalues are tightly clustered [4].

An overview on algebraic and application-specific precon-
ditioners can be found in [3]. Here, we focus on two block-
diagonal preconditioning techniques.

A. Block-Diagonal Preconditioners

To obtain a good performance for the iterative solver, we
can use one of the standard block-diagonal preconditioners

Pa =

[
H+A>ΓA 0

0 Γ−1

]
or Ps =

[
H̃ 0
0 AH̃−1A>

]
,

(4)
where Γ is a symmetric positive definite weighting matrix
and H̃ ≈ H such that H̃ � 0. A popular choice for the
weighting matrix, which follows an augmented Lagrangian
type technique [24], is Γ = γ 1 where γ > 0 and 1
denotes the identity matrix. Note that the inverse of the
preconditioning matrices P−1

a or P−1
s is indeed easier to

apply than solving the original linear system, because of
the block-diagonal structure. In addition, the block matrices
in (4) are designed to be positive definite, which enables
the use of a Cholesky factorization. For the specific case
of solving optimal control problems, the block-tridiagonal



structure of AH̃−1A> or H + γA>A should be exploited.
This will be the topic of discussion in Section IV.

For the specific case of Pa, as discussed in detail by [25],
the eigenvalues of the preconditioned matrix become more
tightly clustered around ±1 as the value of γ > 0 increases.
For a sufficiently large value of γ, MINRES can therefore
converge within two iterations in the ideal setting. However,
choosing γ too large may result in ill-conditioning of the
matrix Pa. On the other hand, when using the Schur-
complement based preconditioner Ps and H̃ = H is invert-
ible, the preconditioned matrix has three distinct eigenvalues
1, 1

2 (1 +
√

5) and 1
2 (1−

√
5), and therefore MINRES con-

verges within three iterations [26]. The eigenvalues become
(tightly) clustered when, e.g., regularization is needed to
make H̃ ≈ H positive definite [3], [26].

B. Preconditioned MINRES Algorithm

Both the Schur-complement based Ps and the augmented
Lagrangian preconditioner Pa are symmetric positive defi-
nite, given a sufficiently large choice for Γ = γ 1. Therefore,
symmetric preconditioning L−1KL−> can be performed
instead of left preconditioning P−1K, where P = LL>. This
results in the preconditioned minimal residual (PMINRES)
algorithm as described in [4]. PMINRES is based on the
three-term recurrence in the Lanczos iteration for symmetric
matrices and specifically requires a positive definite precon-
ditioner [3]. On the other hand, the generalized minimal
residual (GMRES) algorithm is based on the Arnoldi it-
eration, for which the computational cost generally grows
with each iteration, but it does not need a positive definite
preconditioner. For simplicity, we further focus on using
PMINRES to solve the symmetric linear system.

IV. OPTIMAL CONTROL STRUCTURED
PRECONDITIONERS

The saddle point linear system in (3) describes the first
order necessary conditions of optimality for the equality
constrained QP in (2). It has a particular sparsity structure
because H corresponds to the block-diagonal Hessian matrix
and the constraint matrix A reads as

A =


−1 0
Ex

0 Eu
0

A0 B0 −1 0
. . .

 =


[−1 0]
E0

C0 [−1 0]
. . .

 ,
(5)

where Ex
k and Eu

k denote the active inequality constraints for
each interval k, corresponding to the working set in W . For
notational convenience, the block matrices Ck :=

[
Ak Bk

]
and Ek :=

[
Ex

k Eu
k

]
have been defined.

Any iterative method for solving the linear system in (3)
requires the efficient computation of matrix-vector multi-
plications for the block-structured matrix K. It is straight-
forward to directly exploit such sparsity structure for each
matrix-vector multiplication, resulting in an asymptotic com-
putational complexity of O(Nm2). Another computational
effort is applying the preconditioning operators P−1

a or P−1
s .

A. Preconditioner I: Augmented Lagrangian

The application of the augmented Lagrangian type pre-
conditioner Pa in (4) requires the factorization of the block-
tridiagonal matrix H+ γA>A which reads as

H+ γA>A =Ĥ0 + γ G>0 G0 −γ C>0
−γ C0 Ĥ1 + γ G>1 G1 −γ C>1

−γ C1
. . .

 , (6)

where Gk =

[
Ek

Ck

]
and Ĥk =

[
Qk + γ 1 S>k

Sk Rk

]
. This

matrix is positive definite for any value γ > 0 such that a
block-tridiagonal Cholesky factorization [21] can be applied.
This procedure is based on a sequence of standard dense
factorizations for block matrices of dimension m = nx +nu,
denoted as L = chol(P ) such that LL> = P . The
computational complexity for this factorization is therefore
O(Nm3). However, such computational cost is incurred
only once per QP solution for the initial guess of active
constraints. In addition, as discussed in Section V, it can
be completely avoided in the online computations by using
a hot-starting procedure for linear MPC.

Rank-one Factorization Updates: It is well known that
a Cholesky factorization for a matrix LL> = P ∈ Rn×n

can be recovered in O(n2) computations after a rank-one
modification P̃ = P + αvv>. This is referred to as an
update if α > 0 and as a downdate if α < 0. In case of
the proposed active-set strategy, a rank-one modification is
needed for the matrix H + γA>A whenever a constraint is
either added or removed from the current working set, i.e., a
row is added or removed from the Jacobian matrix A in (5).
By preserving the block-tridiagonal sparsity structure, this
update procedure can be carried out with a computational
complexity of O(Nm2). One could alternatively employ a
backward or reverse variant of the Cholesky factorization,
which has particular advantages in the context of MPC
applications as discussed in [20].

B. Preconditioner II: Schur Complement

The Schur complement type preconditioner Ps in (4)
results also in a block-tridiagonal structure

AH̃−1A> =
Q̃−1

0 −Q̃−1
0 Ex>

0 −Q̃−1
0 A>0

−Ex
0 Q̃
−1
0 E0H̃

−1
0 E>0 E0H̃

−1
0 C>0

−A0Q̃
−1
0 C0H̃

−1
0 E>0 C0H̃

−1
0 C>0 + Q̃−1

1 −Q̃−1
1 Ex>

1

−Ex
1 Q̃
−1
1

. . .

,
(7)

where, for simplicity, we have assumed that each of the

Hessian block matrices reads as Hk :=

[
Qk 0
0 Rk

]
, i.e.,

Sk = 0 for k = 0, . . . , N − 1. In the case of (7), note
that each of the blocks is of different dimensions, corre-
sponding to the number of active constraints in each block.
As mentioned earlier, if the Hessian block matrix Hk is



positive semidefinite, then a positive definite approximation

H̃k =

[
Q̃k 0
0 R̃k

]
� 0 needs to be computed.

We further restrict to a standard regularization procedure
of the form H̃k = Hk + ε1. The value for ε > 0 needs to
be chosen sufficiently small such that H̃k ≈ Hk but it also
needs to be large enough such that H̃k � 0. In practice, it
is common for Qk, Rk to be diagonal such that the value
for ε can be easily chosen for each of the diagonal elements
individually. In addition, such a diagonal structure results in
a computationally efficient way to compute each of the block
matrices in (7). However, the Hessian matrices do not need to
be diagonal and one can even include off-diagonal matrices
Sk within Hk for k = 0, . . . , N − 1, without changing the
block-tridiagonal sparsity structure in (7). For this general
setting, one can rely on a Cholesky decomposition for each
of the Hessian blocks in order to efficiently compute the
products with H̃−1

k in (7). Whenever a particular Hessian
block is not strictly positive definite, one can apply an on-
the-fly regularization in the form of a modified Cholesky
factorization, e.g., as in [14], [20]. Alternatively, we can ap-
ply the structure-exploiting regularization technique tailored
to optimal control from [27].

Rank-one Factorization Updates: One practical advantage
of the augmented Lagrangian preconditioner, that can imme-
diately be observed, is that the symmetric positive definite
matrix H + γA>A in (6) is of a fixed dimension with
N(nx + nu) + nx rows and columns. On the other hand,
the alternative Schur complement based preconditioning re-
sults in the block-tridiagonal matrix AH̃−1A> with variable
dimensions, because the amount of rows and columns cor-
responds directly to the number of active constraints. The
advantage of this is that the matrix AH̃−1A> will always
have less than N(nx +nu) +nx rows and columns, because
the total number of active constraints needs to be (strictly)
less than the amount of variables. Removing a constraint
results in a standard rank-one update (α > 0) of the block-
tridiagonal Cholesky factorization for the resulting smaller
matrix. This procedure becomes slightly more involved when
adding a constraint to the current working set, resulting in a
particular variant of a rank-one downdate (α < 0) instead.
But in both cases, these updates can be performed with a
computational complexity of O(Nm2).

V. PRESAS IMPLEMENTATION FOR EMBEDDED
PREDICTIVE CONTROL

The proposed PRESAS solver relies on the MINRES
method in combination with the optimal control structured
preconditioners within the primal feasible active-set strategy.
A few implementation aspects deserve some more detailed
discussion to apply this solver in a real-time embedded
context for predictive control or estimation.

A. Finding a Primal Feasible Initial Point

A primal active-set method requires the availability of
an initial point, which is already primal feasible. In the
general case of a constrained quadratic program, this is a

nontrivial task that corresponds to a Phase I procedure as
described, for example, in [14], [28]. However, when solving
the parametric OCP in (1) within receding horizon based
control or estimation, it becomes relatively easy to satisfy the
initial value condition and the continuity constraints based on
a forward simulation using a shifted version of the previous
control trajectory. Given an MPC design that offers recursive
feasibility, the resulting solution guess can be made primal
feasible under nominal conditions. In practice, one should
introduce slack variables in order to always be able to satisfy
all state-dependent inequality constraints in (1e). The latter
approach is quite standard in practical MPC implementations
in order to ensure a feasible solution to the QP at each
sampling instant. As discussed also in [14], an L1 penalty can
be used with sufficiently high weights in order to guarantee
that a primal feasible solution is found whenever possible.

B. Warm-starting for Model Predictive Control

In embedded applications, where a sequence of closely
related optimization problems needs to be solved, warm-
starting of the algorithm can considerably reduce the cor-
responding computational effort. This procedure is relatively
straightforward in active-set methods, where an initial solu-
tion guess and a corresponding working set are needed. This
is an advantage of active-set algorithms over interior-point
methods, for which warm-starting typically plays a much less
important role [2], [10]. Particularly for PRESAS, only one
matrix factorization of the block-structured preconditioner
is needed for each QP solution. In a linear time-invariant
MPC implementation, one can perform the block-tridiagonal
Cholesky factorization offline and limit the online compu-
tations to rank-one updates instead. Note that this requires
a possibly multi-rank update of the Cholesky factors from
the solution of one QP to the solver initialization for the
subsequent QP. This is typically referred to as hot-starting,
as implemented also in qpOASES [12].

C. Algorithmic Advantages and Disadvantages

The active-set identification suffers from a combinatorial
complexity and is therefore NP hard in the worst case [10].
However, active-set methods have been successfully used
in many real-time control applications [2]. Specifically for
PRESAS, a primal feasible but suboptimal solution is always
obtained when terminating the algorithm before convergence
is reached. In addition, the proposed solver adheres to all
other embedded optimal control requirements (1-6) that were
mentioned in the introduction. Namely, PRESAS enjoys
the preferred computational complexity of O(Nm2) per
iteration based on its block sparsity structure exploitation
and the use of iterative linear algebra routines. For being an
active-set method with tailored optimal control type structure
exploitation, the proposed approach is considerably easier to
implement than prior work such as [13]. The next section
illustrates the numerical performance of PRESAS based on
a self-contained solver implementation in C code, running on
an ARM Cortex-A53 that is relatively close to an embedded
microprocessor with limited computational resources.
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Fig. 1. Average computation times for MPC on the chain of masses with
L1 slack reformulation: varying number of intervals N and masses nm.

VI. NUMERICAL CASE STUDIES

We consider two fundamentally different case studies. The
first case study, featuring a chain of spring-connected masses
as in [22], includes constraints on all states and controls
of which only relatively few constraints become active in a
closed-loop simulation. The second example, on the other
hand, involves a linearized model of the inverted pendulum
case study in [29] with only a few constraints, resulting in a
relatively large number of active-set changes. The presented
simulation results show that the proposed PRESAS solver,
based on a primal active-set method, can generally compete
with state of the art optimal control algorithms for both case
studies. Note that this is illustrated based on a plain C code
implementation, which is standalone and therefore does not
rely on any advanced linear algebra packages in order to be
easily embedded. All computation times have been obtained
using an ARM Cortex-A53 processor in the Raspberry Pi 3.1

A. Case Study 1: Chain of Oscillating Masses

The linear time-invariant system dynamics and corre-
sponding OCP formulation for the chain of oscillating
masses, of the form in (1), are described in [22]. The full
state of the system consists of the displacement and velocity
of the nm masses, i.e., x(t) ∈ R2nm such that the state
dimension can be varied by changing the amount of masses.
A number of actuators nu < nm apply tensions between
certain masses while respecting the actuator limitations as
well as constraints on the position and velocity of each of
the masses. In order to guarantee the QP to remain feasible at
each sampling instant, a slack variable is introduced for the
state constraints on each shooting interval. Based on an L1
type penalization of this additional variable in the objective,
a feasible solution can be found whenever possible.

Figure 1 shows the average computation times per QP so-
lution during the closed-loop MPC simulations for different
numbers of masses nm and for a varying control horizon
length N . The considered variant of ADMM in [16] solves
the small but dense QP after numerically eliminating the
state variables in a condensing routine. Figure 1 shows the

1The Raspberry Pi 3 uses a Broadcom BCM2837 SoC with a 1.2 GHz
64-bit quad-core ARM Cortex-A53 processor, with 512 KB shared L2 cache.
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Fig. 2. Closed-loop trajectories for linear MPC to stabilize an inverted
pendulum, starting from different initial conditions for the angle θ.

computation time for ADMM, either including or not including
the time needed for condensing. HPMPC is an interior-point
method that directly solves the optimal control structured
QP in (1), similar to the proposed PRESAS algorithm.
For completeness, we included the computational results
both using the hardware tailored and the general-purpose
implementation of HPMPC [19]. It can be observed from
Figure 1 that PRESAS-AL and PRESAS-SC, respectively
using the block preconditioner from Section IV-A and IV-B,
can outperform the other solvers on this particular case study.
This performance seems to scale well with the number of
shooting intervals and the number of state variables. Figure 1
also shows how hot-starting can lead to an additional speedup
by eliminating the need for the block-tridiagonal Cholesky
factorization of the preconditioner.

B. Case Study 2: Control of an Inverted Pendulum

This second numerical case study involves stabilizing the
nonlinear inverted pendulum in the upward unstable position,
based on a linearization of the nonlinear system dynamics
in that steady state [29]. The closed-loop trajectories are
illustrated in Figure 2 for different initial conditions for the
angle of the pendulum θ0 = 0.12, 0.16 or 0.20. Note that
both the actuated force and the cart position are constrained
to remain within their respective bounds. As illustrated in
Figure 2, the position constraint is violated in case of the
initial value θ0 = 0.20, which is again treated based on
a slack reformulation of the state constraints. This results
in a relatively high number of online active-set changes
with respect to the amount of state nx = 4 and control
variables nu = 2. Table I shows the corresponding average
computation times for linear MPC of the inverted pendulum,
including the solvers ADMM, HPMPC and PRESAS, but also
based on PQP, qpOASES and qpDUNES.

Table I shows the detailed computation times and numbers
of solver iterations for the closed-loop MPC simulations
on an ARM Cortex-A53 with double-precision arithmetics.
Note that warm-starting of the solvers is used, except for
the interior point method in HPMPC. For most of the QP
solvers, the computational effort grows significantly when
increasing the initial value for the angle of the pendulum.



TABLE I
MPC COMPUTATION TIMES (MS) FOR INVERTED PENDULUM WITH VARYING INITIAL CONDITION (Ts = 50 MS AND N = 50).

θ0 = 0.12 θ0 = 0.16 θ0 = 0.20

time [ms] # iter time [ms] # iter time [ms] # iter
(mean/max) (mean/max) (mean/max) (mean/max) (mean/max) (mean/max)

PQP 12.1/207.8 2/51 156.7/2345.1 50/761 857.9/3071.3 282/1000
ADMM 1.12/20.98 1.9/12 3.94/40.87 12.8/83 8.09/35.55 33.5/154
qpOASES 3.93/10.54 0.1/2 6.94/33.63 1.4/12 22.27/80.05 9.7/41
qpDUNES 2.06/9.45 2.1/4 3.14/16.98 2.5/7 4.94/28.79 3.0/10
HPMPC 4.43/9.34 4.8/7 5.39/11.63 5.8/10 5.93/12.03 7.0/10
PRESAS-SC 1.06/2.95 1.1/4 1.39/18.56 1.4/25 3.63/44.05 4.3/58
PRESAS-AL 0.96/2.55 1.1/4 1.28/17.32 1.4/25 3.18/42.97 4.3/58
PRESAS-SC (15) 1.06/2.95 1.1/4 1.34/12.36 1.4/15 3.06/13.58 3.5/15
PRESAS-AL (15) 0.96/2.55 1.1/4 1.29/9.80 1.4/15 2.60/10.65 3.5/15

However, by using the primal active-set method in PRESAS,
a feasible but suboptimal solution can always be obtained
by limiting the maximum number of active-set changes. In
this particular case study, PRESAS with a maximum of 15
active-set changes shows the same trajectories as in Figure 2
because of the feedback action of MPC. In addition, by
setting such a maximum number of online active-set changes,
the algorithm remains competitive in terms of its worst-case
computational performance as illustrated in Table I.

VII. CONCLUSIONS

This paper proposed two different block-structured pre-
conditioning techniques within a primal active-set method for
fast real-time optimal control applications. More specifically,
an augmented Lagrangian type and a Schur complement
based block preconditioner are used in the minimal resid-
ual (MINRES) method. In addition, factorization update
techniques are proposed to effectively embed the block-
structured preconditioned residual method within a primal
active-set strategy (PRESAS). Based on two numerical case
studies of linear MPC, its computational performance is
illustrated for a proof of concept implementation in C code
on an ARM Cortex-A53 processor.
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