
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A regularized Newton solver for linear model predictive
control

Malyshev, A.; Quirynen, R.; Knyazev, A.; Di Cairano, S.

TR2018-080 July 12, 2018

Abstract
We investigate direct numerical solvers in linear model predictive control, where the prediction
model is given by linear systems subject to linear inequality constraints on the state and the
input, and the performance index is convex and quadratic. The inequality constraints are
treated by the primal-dual interior-point method. We propose a novel direct solver based
on the augmented Lagrangian regularization of a reduced Hessian. The new solver has the
same arithmetic complexity as the factorized Riccati recursion. The direct solver can be
implemented in terms of BLAS3 matrix operations.

European Control Conference (ECC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2018
201 Broadway, Cambridge, Massachusetts 02139





A regularized Newton solver for linear model predictive control

Alexander Malyshev1, Rien Quirynen2, Andrew Knyazev2 and Stefano Di Cairano2

Abstract— We investigate direct numerical solvers in linear
model predictive control, where the prediction model is given
by linear systems subject to linear inequality constraints on
the state and the input, and the performance index is convex
and quadratic. The inequality constraints are treated by the
primal-dual interior-point method. We propose a novel direct
solver based on the augmented Lagrangian regularization of
a reduced Hessian. The new solver has the same arithmetic
complexity as the factorized Riccati recursion. The direct solver
can be implemented in terms of BLAS3 matrix operations.

I. INTRODUCTION

This work is concerned with fast numerical methods for
solving optimal control problems applicable in the model
predictive control (MPC) approach, which is described, for
example, in [1]. We consider the so-called Newton-type
methods. A rather comprehensive list of numerical tech-
niques used in Newton-type methods for MPC is given, e.g.,
in [2]. The work in [2], however, focuses more on nonlinear
MPC and moving horizon estimation.

The core computational problem in MPC is the quadratic
program (QP), where the cost function is determined by the
convex quadratic MPC performance index, the linear equality
constraints are determined by the linear model dynamics,
and the inequality constraints by the linear constraints on
the model states and inputs. The inequality constraints in
the QP are usually treated by the active-set (AS) [3], [4]
or by the interior-point (IP) methods [5]–[12]. The main
computationally intensive effort in both approaches is the
execution of Newton’s method in the control prediction
problem over a finite horizon, which consists in solving a
series of structured systems of linear equations. The matrices
of such systems are very sparse and can be banded under
suitable orderings of their rows and columns.

In this paper, we restrict ourselves to direct methods for
solving the structured systems of linear equations arising in
IP methods. The IP convergence is claimed in [13]–[15] to
be almost independent of the problem size and conditioning.
If we denote by nx, nu, nc, and N the dimensions of the
state vector and the control input vector, the number of the
inequality constraints, and the horizon length, respectively,
then arithmetic complexity of structured direct methods
usually amounts to O(N(n3x + n3u + n3c)) flops.
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Active-set solvers may have lower arithmetic cost per
iteration by exploiting the low-rank updates of matrix fac-
torizations when changing the current guess for the active
set [16]–[18]. Such updates can be implemented in terms
of only BLAS2 operations. Direct methods, in contrast, can
be implemented in terms of BLAS3 operations, which are
highly efficient on contemporary computer architectures [14],
[15]. A modern implementation of the BLAS kernels [19] for
embedded optimization can be found in [20].

We consider four direct solvers, which are used in the IP
method for solving optimal control problems. Historically,
the first one is the classical Riccati recursion (Section IV),
which has been tailored to the MPC method in [7]. Another
popular direct solver is proposed and thoroughly tuned to the
warm-started MPC implementation in [10] (Section V). The
latter method is referred to as the Schur complement based
solution in [21], while the resulting block-tridiagonal system
is originally known as the normal equations in [6].

The authors of [21] have recently revised the classical
Riccati recursion and the Schur complement based solver
from [10]. As a result, they have discovered a more efficient
version of the Riccati recursion called the factorized Riccati
recursion. The arithmetic cost of the new version is about 1.7
times lower than the cost of the classical Riccati recursion.
An additional contribution of [21] consists in the accurate
presentation of the considered direct methods in terms of the
BLAS operations and precise evaluation of all corresponding
arithmetic costs.

Our contribution is a novel structured direct solver for the
IP iterations applied to the implementation of MPC. The idea
of this solver is inspired by our interest in preconditioned
iterative methods for solving saddle-point linear systems
as in [22]. One of the preconditioners used in [22], [23]
is related to the augmented Lagrangian method [4], which
is quite popular in numerical optimization of constrained
problems. As we have been writing the present paper, a vari-
ant of the augmented Lagrangian regularization is proposed
in [24]. Section VI describes the new direct solver in detail
and provides its arithmetic complexity. It turns out that the
arithmetic costs of the factorized Riccati recursion and of the
solver based on the augmented Lagrangian regularization are
exactly equal. The other two methods, the classical Riccati
recursion and the Schur complement based solution, have a
higher arithmetic complexity.

Section VII reports on several numerical experiments
with the novel direct solver. In particular, we illustrate the
behavior of the residuals and number of iterations under
various choices of the regularization parameter and indicate
the interval for the parameter, where the method works.



II. INTERIOR POINT METHOD FOR LINEAR MPC

We consider the MPC problem over the finite horizon t =
τ0 < τ1 < · · · < τN = t+T of length N with the dynamics
described by the following discrete-time linear system

xi+1 = Aixi +Biui + ai, i = 0, 1, . . . , N − 1, (1)

where Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , xi ∈ Rnx is the state
vector, ui ∈ Rnu is the control input vector. A measurement
or estimate of the state at the current time instant is taken
as the initial state x0 and denoted by x̂0 = x0 ∈ Rnx .
The objective of the prediction is to find the sequence of
optimal control inputs u0, . . . , uN−1 subject to the equality
constraints (1) and the inequality constraints

Gxi xi +Gui ui ≤ gi, i = 0, . . . , N − 1, (2)
GxNxN ≤ gN , (3)

that minimizes the quadratic performance index

N−1∑
i=0

1

2

(
xTi Qixi + uTi Riui + 2uTi Sixi

)
+ qTi xi + rTi ui

+
1

2
xTNQNxN + qTNxN , (4)

where Gxi ∈ Rnci
×nx , Gui ∈ Rnci

×nu , Qi ∈ Rnx×nx , Ri ∈
Rnu×nu , and Si ∈ Rnu×nx .

By packing the decision variables into the vector

d =
[
xT0 uT0 xT1 uT1 · · · uTN−1 xTN

]T
, (5)

the optimal control problem is recast in the form of the
quadratic program

min
d

1

2
dTHd+ hT d subject to Fd = f, Gd ≤ g, (6)

where d, h ∈ Rnh , H ∈ Rnh×nh , F ∈ Rnf×nh , G ∈
Rng×nh , nh = (nx + nu)N + nx, nf = nx(N + 1), and
ng =

∑N
i=0 nci . The sparse matrices H , F , and G and the

vectors h, f , and g are as follows:

H =



Q0 ST0 · · · 0 0 0
S0 R0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · QN−1 STN−1 0
0 0 · · · SN−1 RN−1 0
0 0 · · · 0 0 QN


,

F =


−I 0 0 0 · · · 0 0 0
A0 B0 −I 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · AN−1 BN−1 −I

 ,

G =


Gx0 Gu0 · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · GxN−1 GuN−1 0
0 0 · · · 0 0 GxN

 ,

h =


q0
r0
...

rN−1
qN

 , f = −


x̂0
a0
...

aN−1

 , g =


g0
g1
...
gN

 .
We derive algebraic optimality conditions by means of the
Lagrangian function with a logarithmic barrier

L =
1

2
dTHd+ hT d+ yT (Fd− f)

+ zT (Gd− g + s)− µ1T log s,

where 1 = [1 . . . 1]T ∈ Rng , y ∈ Rnf and z ∈ Rng are
the Lagrange multipliers. The positive slack variables s ∈
Rng and the small parameter µ > 0 are required by the
infeasible-start interior-point method [6], [25]. The first order
optimality (KKT) conditions are as follows

Hd+ FT y +GT z + h = 0, (7)
Fd− f = 0, Gd− g + s = 0, (8)

Z1− µS−11 = 0, (9)

where the matrices Z = diag (z) and S = diag (s) are di-
agonal. Equation (9) is nonlinear and commonly substituted
with the equation ZS1− µ1 = 0, which is better scaled for
the residuals in Newton’s method.

A search direction at iteration k of Newton’s method is
determined by the system of linear equations

H FT GT 0
F 0 0 0
G 0 0 I
0 0 Sk Zk


︸ ︷︷ ︸

Ak
0


∆dk

∆yk

∆zk

∆sk

 = −


rkH
rkF
rkG
rkS


︸ ︷︷ ︸

bk0

(10)

with the residuals

rkH = Hdk + FT yk +GT zk + h, (11)

rkF = Fdk − f, (12)

rkG = Gdk − g + sk, (13)

rkS = ZkSk − σµk1, (14)

where the scalar σ ∈ (0, 1) is called a centering parameter
and the current value for µk = (zk)T sk/ng is related to
the duality gap [6], [11]. Several algorithms use Mehrotra’s
variant [5], [7] of the interior point iteration, whose practical
efficiency on linear and quadratic programming problems
is well documented. When some inequality constraints are
active, the matrix Ak0 becomes increasingly ill-conditioned.
Nevertheless, the interior point method successfully com-
putes the solution, when (10) is solved by direct methods.
Such an effect is discussed and justified in [26].

III. REDUCTION BY BLOCK GAUSSIAN ELIMINATION

The system (10) can be solved by modern algorithms for
solving systems of linear equations with sparse matrices,
which take advantage of the Gauss elimination method with
special pivoting, i.e., with permutations of unknown variables



and equations. Note that these permutations are the same at
all iterations of the IP method and can be computed only
once before starting the IP iterations, for example, as in [9],
[13], [27]. Alternatively, it may be efficient to eliminate the
zero blocks and the diagonal blocks I , Zk and Sk in Ak0
explicitly by block Gaussian eliminations and then to solve
the resulting systems by specialized methods. We choose the
latter alternative and present several special direct methods
for the reduced linear systems below.

The first reduction is the elimination of ∆sk from (10),
which yields the following linear system of smaller sizeH FT GT

F 0 0
G 0 −W k


︸ ︷︷ ︸

Ak
1

∆dk

∆yk

∆zk

 = −

rkHrkF
rkW


︸ ︷︷ ︸

bk1

, (15)

∆sk = −(Zk)−1
(
rkS + Sk∆zk

)
, (16)

with the diagonal matrix W k = (Zk)−1Sk and the residual
rkW = rkG − (Zk)−1rkS .

The second reduction is the elimination of ∆zk from
system (15), which results in the 2×2 block system of linear
equations[

H +GT (W k)−1G FT

F 0

]
︸ ︷︷ ︸

Ak
2

[
∆dk

∆yk

]
= −

[
rkE
rkF

]
︸ ︷︷ ︸

bk2

, (17)

∆zk = (W k)−1
(
G∆dk + rkW

)
, (18)

where rkE = rkH +GT (W k)−1rkW .
It is important to observe here that system (17) can be

obtained as KKT conditions for a QP without inequality
constraints but with the modified cost matrices

Q̃i = Qki = Qi + (Gxi )T (W k)−1Gxi , (19)

R̃i = Rki = Ri + (Gui )T (W k)−1Gui , (20)

S̃i = Ski = Si + (Gui )T (W k)−1Gxi . (21)

Thus, at any iteration k, the system of linear equations (17)
can be rewritten in the form[

H̃ FT

F 0

]
︸ ︷︷ ︸

Ak
3

[
∆dk

∆yk

]
= −

[
rkE
rkF

]
︸ ︷︷ ︸

bk3

, (22)

where H̃ possesses the block structure of H with the blocks
Qi, Ri, and Si substituted by Q̃i, R̃i, and S̃i from (19)–(21).

Arithmetic complexity of (19)–(21) depends on the spar-
sity of the matrices Gxi and Gui . For example, the box
constraints dj ≤ dj ≤ d̄j on the decision variables result in
the diagonal matrices (Gxi )T (W k)−1Gxi , (Gui )T (W k)−1Gui ,
and (Gui )T (W k)−1Gxi .

IV. SOLUTION BY THE RICCATI RECURSION

Let Π be the permutation matrix such that

∆vk = ΠT
[
(∆dk)T (∆yk)T

]T
=

∆[yT0 , x
T
0 , u

T
0 , y

T
1 , . . . , y

T
N−1, x

T
N−1, u

T
N−1, y

T
N , x

T
N ]T .

Linear system (22) is equivalent to the system of linear
equations (ΠAk3Π)∆vk = Πbk3 , where the symmetric matrix
B = ΠAk3Π is banded and has the block structure

B =

0 −I

−I Q̃0 S̃T
0 AT

0

S̃0 R̃0 BT
0

A0 B0 0 −I
. . .
−I Q̃N−1 S̃T

N−1 AT
N−1

S̃N−1 R̃N−1 BT
N−1

AN−1 BN−1 0 −I

−I Q̃N


.

The Riccati recursion is a special upward Gaussian elim-
ination method without pivoting applied to the system of
linear equations B∆vk = Πbk3 . The Gaussian elimination
in the Riccati recursion is aimed at obtaining equations of
the form −yi + Pixi = βi, i = N, . . . , 0, and implemented
by the aid of the Schur complement at the block Q̃i for the
block matrices 

Q̃i S̃Ti ATi 0

S̃i R̃i BTi 0
Ai Bi 0 −I
0 0 −I Pi+1

 .
The Schur complement matrices Pi are symmetric owing to
the symmetry of B and PN = Q̃N . The Riccati recursion
does not fail if all R̃i +BTi Pi+1Bi are nonsingular. Since

Zi =

R̃i BTi 0
Bi 0 −I
0 −I Pi+1

−1 =

0 0 0
0 −Pi+1 −I
0 −I 0


+

 I
Pi+1Bi
Bi

 (R̃i +BTi Pi+1Bi)
−1 [I BTi Pi+1 BTi

]
,

the matrices Pi, i = N−1, . . . , 0, satisfy the matrix equations

Pi = Q̃i −
[
S̃Ti ATi 0

]
Zi

S̃iAi
0


= Q̃i +ATi Pi+1Ai −MT

i (R̃i +BTi Pi+1Bi)
−1Mi, (23)

where
Mi = S̃i +BTi Pi+1Ai. (24)

Thus, the matrix Pi is recursively computed as the right-
hand side of (23), which is called the classical Riccati
recursion in [21]. We denote by chol(A) the upper triangular
Cholesky factor of a symmetric positive semidefinite matrix
A. Let us compute Pi by the sequence of matrix operations
tA = Pi+1Ai, tB = Pi+1Bi, Mi = S̃i + BTi tA, tR =
chol(R̃i +BTi tB), tM = t−1R Mi, Pi = Q̃i +ATi tA − tTM tM .
These are BLAS3 operations except for chol(). Their arith-
metic complexity respectively equal 2n3x, 2n2xnu, 2n2xnu,
2nxn

2
u + n3u/3, nxn2u, 2n3x + 2n2xnu, cf. [21]. Therefore,



the total arithmetic cost of computing Pi for i = N, . . . , 0
in the classical Riccati recursion is

N
(
4n3x + 6n2xnu + 3nxn

2
u + n3u/3

)
. (25)

The authors of [21] propose to compute Pi via its
Cholesky factor Ui = chol(Pi) and call it the factorized Ric-
cati recursion. Namely, the upper triangular Ui is computed
by the BLAS3 matrix operations and chol() as tA = Ui+1Ai,
tB = Ui+1Bi, Mi = S̃i + tTBtA, tR = chol(R̃i + tTBtB),
tM = t−1R Mi, Ui = chol(Q̃i+tTAtA−tTM tM ). The arithmetic
costs are, respectively, n3x, n2xnu, 2n2xnu, nxn2u + n3u/3,
nxn

2
u, n3x + n2xnu + n3x/3. The total arithmetic cost of the

factorized Riccati recursion equals

N

(
7

3
n3x + 4n2xnu + 2nxn

2
u +

1

3
n3u

)
, (26)

where the terms, quadratic or linear in nx and nu, as well
as those independent of N are dropped from the cost.
Formulas (25) and (26) have been derived, e.g., in [21],
where the arithmetic cost of obtaining the solution vector
∆vk is also derived for both versions of the Riccati recursion.
The computation of ∆vk consists of BLAS2 operations
but has a lower order arithmetic complexity than that of
computing the matrices Pi, and hence it is negligible in the
total arithmetic cost.

V. SCHUR COMPLEMENT BASED SOLUTION

This section is devoted to the system of linear equa-
tions (22). We recall that the block H̃ is block diagonal and
has N blocks of order nx+nu and one block of order nx on
the main diagonal. If H̃ is positive definite, then system (22)
reduces to the system of linear equations with respect to ∆yk(

FH̃−1FT
)

∆yk = rkF − FH̃−1rkE , (27)

∆dk = −H̃−1
(
FT∆yk + rkE

)
.

System (27) is sometimes called the normal equations, e.g.,
in [6]. The positive definite matrix FH̃−1FT is block
tridiagonal and, therefore, (27) can be solved by means of
the Cholesky factorization. This approach was proposed for
MPC and implemented in [10]. The authors of [21] refer to
this approach as the Schur complement based solution. The
arithmetic complexity of the method is

N

(
19

3
n3x + 4n2xnu + 2nxn

2
u +

1

3
n3u

)
. (28)

Formula (28) takes into account both the computation of
the matrix FH̃−1FT and its Cholesky factorization. The
computational cost in (28) can be further reduced in the
common case, where H̃ is a diagonal matrix, as discussed
in [14], to N

(
10
3 n

3
x + n2xnu

)
.

If the matrix H̃ is singular, then the normal equations (27)
can not be formed. The following simple regularization,
where the matrix H̃ + τI with a small positive parameter
τ substitutes for H̃ in (27) repairs the method. Next, we
propose a somewhat similar regularization for system (22).

VI. SOLUTION BASED ON THE AUGMENTED
LAGRANGIAN REGULARIZATION

We are interested in numerically solving the system of
linear equations (22). The solution is then used for Newton’s
step in the interior point iteration. It is well known, see,
e.g., [4], that the KKT matrix of Newton’s method can be
approximated. This observation gives rise to the so-called
inexact Newton methods [4].

We follow this idea of approximating the KKT matrix
in (22) and solve the system of linear equations[

H̃ FT

F −τI

]
︸ ︷︷ ︸

Ak
4

[
∆dk

∆yk

]
= −

[
rkE
rkF

]
︸ ︷︷ ︸

bk4

, (29)

resulting in an inexact Newton iteration, instead of the exact
Newton step in (22). The positive regularization parameter
τ must be sufficiently small. The regularized matrices of the
form Ak4 are often used in iterative methods for numerical
solution of saddle-point problems, especially for purposes of
preconditioning [22], [23]. This regularization is tightly con-
nected with the augmented Lagrangian method in numerical
optimization, see, for example, [4].

The linear system in (29) is equivalently transformed into
the block triangular system[

H̃ + 1
τ F

TF 0
F −τI

] [
∆dk

∆yk

]
= −

[
rkE + 1

τ F
T rkF

rkF

]
. (30)

The solution to (30) is given by the formulas

∆dk = −(H̃ +
1

τ
FTF )−1(rkE +

1

τ
FT rkF ), (31)

∆yk =
1

τ
(rkF + F∆dk).

The main computational burden is solving the system with
the symmetric positive definite matrix H̃ + 1

τ F
TF in (31).

We recall that this matrix depends on k and equals

H +
1

τ
FTF +GT (W k)−1G. (32)

Note that the constant part H + 1
τ F

TF of the matrix (32)
can be computed only once before the IP iterations. The
most time consuming part of the product FTF consists of N
matrix products

[
Ai Bi

]T [
Ai Bi

]
, i = 0, . . . , N−1. The

total arithmetic cost of all the products is N(nx + nu)2nx.
Let us introduce the matrices

˜̃Qi = Qki +
1

τ
(ATi Ai + I),

˜̃Ri = Rki +
1

τ
BTi Bi,

˜̃Si = Ski +
1

τ
BTi Ai,

where the matrices Qki , Rki , and Ski are defined in (19)–(21).



The matrix (32) has the following block-tridiagonal structure

˜̃Q0
˜̃ST0 − 1

τA
T
0

˜̃S0
˜̃R0 − 1

τB
T
0

− 1
τA0 − 1

τB0
˜̃Q1

˜̃ST1 − 1
τA

T
1

˜̃S1
˜̃R1 − 1

τB
T
1

− 1
τA1 − 1

τB1
˜̃Q2

. . .
˜̃QN


.

The Cholesky factorization of this matrix is computed by
means of the Cholesky factorization for the submatrices

˜̃Qi
˜̃STi − 1

τA
T
i

˜̃Si
˜̃Ri − 1

τB
T
i

− 1
τAi −

1
τBi

˜̃Qi+1

 .
The factorization of the last corner block serves as the
factorization of the first corner block in the next submatrix.

It is easy to calculate that the total arithmetic complexity
of the Cholesky factorization for (32) equals

N

(
7

3
n3x + 4n2xnu + 2nxn

2
u +

1

3
n3u

)
. (33)

This cost coincides with that in (26), which means that the
factorized Riccati recursion and the augmented Lagrangian
regularization (ALR) methods are best of the considered
four methods in terms of the arithmetic cost. The factorized
Riccati recursion is a parameter-free method while the ALR
method depends on a regularization parameter τ > 0.

VII. CASE STUDY: CHAIN OF OSCILLATING MASSES

The test problem consists of the chain of n/2 equal masses
of value 1 connected by springs and to walls at the ends. The
stiffness of all springs equals 1, and there is no damping.
The continuous-time equations of the spring-mass system are
given by the differential equations

q̈1 = −2q1 + q2 + f1,

q̈2 = q1 − 2q2 + q3 + f2,

...
q̈m = qm−1 − 2qm + qm+1 + fm,

q̈m+1 = qm − 2qm+1 + qm+2,

...
q̈n/2 = qn/2−1 − 2qn/2,

where qi is the coordinate of the ith mass with respect to
its equilibrium position and fi represents the control force
acting on the ith mass. There are m actuators connected to
the first m masses. The state-space form of the linear system
is determined by the vectors of the state, control, and output,
respectively,

x =
[
qT1 qT2 . . . qTn/2 q̇T1 q̇T2 . . . q̇Tn/2

]T
,

u =
[
fT1 fT2 . . . fTm

]T
, y =

[
qT1 qT2 . . . qTn/2

]T
.

The inputs and outputs are subject to the following inequality
constraints

−0.5 ≤ u(i) ≤ 0.5, i = 0, . . . , N − 1,

−3.5 ≤ y(i) ≤ 3.5, i = 1, . . . , N.

The continuous-time state-space system is discretized us-
ing a sample time of ∆τ = 0.5 while keeping the inputs
constant between sample instants. The discrete-time dynam-
ics are xi+1 = Aixi +Biui, where

Ai = exp (∆τAc) , Bi = A−1c (Ai − In)

 0n/2
Im

0n/2−m


and

Ac =

[
0n/2 In/2
Tn/2 0n/2

]
, T =


−2 1
1 −2 1

. . . . . . . . .
1 −2

 .
We use the following regulator tuning matrices Ri =

10−6I , Si = 0, and Qi = CTC =
[
In/2 0

]T [
In/2 0

]
and the initial values

x̄ = 3.5
[
1 1 0 · · · 0

]T
.

Numerical experiments have been carried out in MATLAB
with the test problem, where the dimension of the state is
n = 12, the number of control inputs is m = 3, the horizon
length is N = 30. The number of inequality constraints at
each time instance equals n + 2m = 18. Our MATLAB
code implements the interior point method using the direct
solver for the system of linear equations (29) described in
Section VI. Other constants used in the IP iterations and in
the stopping criteria, see [25], include σ = 0.1, γ = 10−3,
β = 2, ε = 10−6. We report only the results of solving MPC
at the initial time from a cold start, determined by the initial
values of x, u, y, z, s equal to 1.

For comparison, we have run the IP iterations, where
the linear system (22) is solved exactly by the backslash
operator in MATLAB, which implements the Gauss method
with partial pivoting. Our program using the backslash
operator for solving (22) returns a solution of QP after
17 IP iterations and with the 2-norm of the IP residual
‖[rTH , rTF , rTG, rTS ]T ‖2 = 1.76 · 10−5.

The solver for (29) needs the small regularization param-
eter τ > 0. Smaller values of τ give better approximation
to the KKT matrix but a too small value of τ may lead to
extremely large condition numbers of the matrices (32), for
which the algorithm breaks down.

We have experimented with 100 values of τ uniformly
distributed between 3 · 10−3 and 3 · 10−14 in the logarithmic
scale. Note that our code does not work outside these bounds.
The stopping criterion for the IP method is taken from [25].
Figure 1 displays the number of interior-point iterations
with respect to τ , and Figure 2 displays the 2-norm of
the interior-point residual with respect to τ . The numerical
results for τ between 10−11 and 10−4 coincide with those



Fig. 1. The number of interior-point iterations with respect to τ .

Fig. 2. The 2-norm of the interior-point residual with respect to τ .

for the backslash operator, i.e., the number of interior-point
iterations equals 17 and the 2-norm of the interior-point
residual approximately equals 1.76 · 10−5.

The experiment with the 100 values of the regularization
parameter τ has been repeated for the dimension n = 240 of
the state, other parameters of the test problem were the same
as above. The number of interior-point iterations again equals
17 for all τ at the interval [10−12, 10−4]. The corresponding
2-norm of the interior-point residuals for τ ∈ [10−12, 10−4]
is about 3.2 · 10−5.

VIII. CONCLUSION

We have analyzed four direct solvers for computation of
the Newton step in the interior-point method applied to the
linear MPC problem. The solvers include the classical and
factorized Riccati recursions, the Schur complement based
solution of the normal equations, and a novel solver based
on the technique of the augmented Lagrangian regularization.

The complexity analysis reveals that the factorized
Riccati recursion and the augmented Lagrangian
regularization solver have the same arithmetic cost
N
(
7
3n

3
x + 4n2xnu + 2nxn

2
u + 1

3n
3
u

)
and are more efficient

than the other two solvers. The most computationally
expensive parts of all considered direct solvers have cubic
complexity with respect to nx and nu, however, they can be
implemented in terms of highly efficient BLAS3 operations
and compete with methods having quadratic complexity.

Our future work concerns developing efficient precondi-
tioning with quadratic complexity for the proposed regular-
ized Newton’s method, which would allow outperforming the
solvers based on the factorized Riccati recursion.
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