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design is able to satisfactorily enforce constraints in such an application.

European Control Conference (ECC)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2018
201 Broadway, Cambridge, Massachusetts 02139





Inner-Loop Reference Governor Design with an Application to

Human-in-the-Loop Control

Uroš Kalabić Stefano Di Cairano

Abstract— This paper presents a novel reference-governor-
based approach to enforcing constraints in open-loop systems,
where the constraint enforcement scheme modifies a control
signal from a feedback controller. The reference governor
is not typically applicable to these systems, since reference
governors modify reference signals, which are inputs to a
feedback controller.

The design is based on duplicating the feedback controller of
the closed-loop system and implementing a reference governor
to modify the reference input to the duplicate controller.
Effectively, this bypasses the nominal controller, whose internal
dynamics may not be asymptotically stable. We present a
method to ensure stability of the closed-loop system by ceding
some control authority to the nominal controller.

A numerical example is considered in which the nominal
controller is a human operator of a steer-by-wire system.
The operator is modeled as a PID controller with unknown
parameters. Results show that the inner-loop governor design is
able to satisfactorily enforce constraints in such an application.

I. INTRODUCTION

The conventional reference governor [1] is an add-on

constraint-enforcement scheme, used in enforcing constraints

of closed-loop systems. It is designed on top of closed-loop

systems, whose controllers have been designed for good

performance and other characteristics but without taking

constraints into account. The reference governor modifies the

reference input to the controller by taking into account the

current state of the closed-loop system to form a prediction

of future system behavior and to modify the reference in

order to enforce constraints.

When first proposed, the reference governor was consid-

ered as an inside-the-loop element which would modify the

control input to an open-loop system [2], i.e., the output

signal of a stabilizing controller, and not the reference input.

The vast majority of theoretical work on reference governors

(see [1] and references therein) has been on the now-

conventional placement of reference governors outside of the

control loop. However, it is not always possible to design a

system for conventional placement of the reference governor.

An obvious example is a human-in-the-loop system, in

which it is not possible to modify the input to the human

operator. Experimental results, such as in [3], suggest that

it is possible to operate a vehicle safely with a reference

governor inside the control loop. Theoretical work on inside-

the-loop reference governor placement includes [4] and [5];

in both, a passivity approach was exploited to guarantee the

stability of the interconnection of the reference governor and
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the constrained, open-loop system. The applicability of these

approaches is limited since passivity is a stringent condition.

In this work, we introduce a constraint-enforcement

scheme that is placed inside the loop but has the constraint-

enforcement characteristics of the conventional reference

governor. Our design consists of a conventional governor,

whose input is the desired reference, and a duplicate con-

troller, whose closed-loop behavior is the same in steady-

state as the nominal controller. The design effectively by-

passes the nominal controller and allows for a conventional

reference governor design. The benefit of this approach over

other methods that have been developed is that it only

requires asymptotic stability of the internal dynamics of the

nominal controller. Furthermore, if the internal dynamics

are not asymptotically stable, we provide an approach to

ensure stability of the entire closed-loop system by ceding

some control authority from the duplicate controller to the

nominal controller. Although giving control authority to the

nominal controller implies that constraints will not always be

enforceable, this is necessary since stability must be ensured.

Our approach provides a method to ensure system stability,

while enforcing constraints to the full extent of the control

authority available to the duplicate controller.

The design of the inner-loop design is presented in steps.

First we consider an inner-loop reference governor applied

to a open-loop controller and extend the design to a feedback

system in which the internal dynamics of the feedback

controller are asymptotically stable. We then make necessary

modifications to the design in the case where the internal

dynamics are not asymptotically stable and the case where

the controller dynamics are uncertain. In all cases, we show

that in the absence of constraints, the modified closed-loop

system exhibits the same behavior as the nominal closed-loop

system.

To investigate the properties of our inner-loop governor

design, we consider a numerical example in which a human,

modeled as a PID controller whose parameters are uncertain,

operates a steer-by-wire system by tracking a desired angle of

the car’s wheels. Since the desired angle cannot be modified,

we use our approach to introduce another PID controller,

whose input can be modified, and a reference governor to

modify the reference input to the duplicate controller.

The paper is organized as follows. Section II presents

the conventional reference governor. Section III presents

the inner-loop governor schemes. Section IV presents an

inner-loop governor for uncertain-parameter systems. Section

V presents a numerical simulation of a human-in-the-loop

steering application. Section VI is the conclusion.



Fig. 1. Schematic of reference governor applied to closed-loop system

II. REFERENCE GOVERNORS

The reference governor [1] is applied to discrete-time

closed-loop systems whose dynamics are given by,

x(t+ 1) = Adx(t) +Bdv(t), (1a)

y(t) = Edx(t) + Fdv(t) ∈ Y, (1b)

where x(t) ∈ R
n is the system state, v(t) ∈ R

q is a

constraint-admissible reference input, y(t) is the constrained

output, and Y ⊂ R
p is the constraint set.

A schematic of the system set-up is provided in Fig. 1. In

the figure, the reference governor receives a desired reference

input r(t) ∈ R
q and modifies it to the constraint-admissible

reference v(t) based on knowledge of a state measurement

or estimate x̂(t). The modification is made so that v(t)
is as close as possible to r(t), while ensuring constraint

enforcement for all present and future time.

Enforcement of the constraint (1b) is achieved by enforc-

ing a set-membership constraint,

(x̂(t), v(t)) ∈ P, (2)

where P is a set of initial-state/constant-reference pairs that

ensure constraint enforcement for all present and future time.

Typically, the set P is an approximation of the maximal

output admissible set O∞, which is the set of all initial-

state/constant-reference such that constraints are enforced for

all present and future time,

O∞ := {(x, v) : x(0) = x, v(t) = v,

y(t) ∈ Y, ∀t ∈ Z+}. (3)

To ensure robustness and stability of the reference governor

and closed-loop system interconnection, it becomes neces-

sary to slightly modify the set O∞ to a new set,

Õ∞ = O∞ ∩ (Rn × Ω̃), (4)

where Ω̃ is a Minkowski-subset1 of the interior of the set Ω,

which is defined as the set of all constant reference inputs

whose corresponding output satisfies constraints in steady

state,

Ω = {v : v(t) ≡ v, lim
t→∞

y(t) ∈ Y }. (5)

For more details on the computation of Õ∞, refer to [6], [7].

In the formulation of the reference governor, the set P

is commonly set to P = Õ∞ and the constraint-admissible

reference v(t) is computed according to,

v(t) = κ(t)(r(t) − v(t− 1)) + v(t− 1), (6)

1The set is convex, compact, and contains 0 in its interior.

Fig. 2. Schematic of reference governor applied to a dynamic reference

where,

κ(t) = max
κ∈[0,1]

{κ : (x̂(t), κ(r(t)−v(t−1))+v(t−1)) ∈ P},

(7)

so that the reference v(t) is varied along the line segment

connecting v(t− 1) and r(t).
The reference governor satisfies three properties: (i)

pointwise-in-time constraint enforcement, i.e., y(t) ∈ Y for

all t ∈ Z+; (ii) recursive feasibility, i.e., for all t ∈ Z+,

(x(t), v(t)) ∈ P implies that there exists v− such that

(x(t + 1), v−) ∈ P ; and (iii) finite-time convergence to a

constant reference, i.e., if r(t) = r for all t ∈ Z+, then there

exist v ∈ R
q and ts ∈ Z+ such that v(t) = v for all t ≥ ts;

furthermore, if r ∈ Ω̃, then v = r.

III. INNER-LOOP GOVERNORS

In this work, we focus our attention to the case where the

constrained system P (s), introduced in Fig. 1, is open-loop

and not necessarily stable, and the input to P (s) is a control

input, not a reference input as in the conventional case. The

system is output-constrained, with dynamics given by,

ẋ = A11x+Ba, (8a)

y = Ex+ Fa ∈ Y, (8b)

where x(t) ∈ R
n is the system state, a(t) ∈ R

m is the

constraint-admissible control input, and y(t) is the output.

As in the case of the closed-loop system formulation, the

output of P (s) is subject to constraints and must remain in

the constraint set Y ⊂ R
p. The input a(t) is a modification

of the control input u(t) ∈ R
m, which is generated by the

controller K(s). A schematic of such a system structure,

in which the controller is open-loop, i.e., not feedback, is

presented in Fig. 2. We assume that typically K(s) generates

control inputs without regard to potential constraint violation

of the output signal and therefore we must design a scheme

for constraint enforcement. Due to design considerations

or simply because of the structure of the control system,

direct modification of the reference input to the controller

K(s) is not possible, and hence the controller output is

modified instead. The constraint-enforcement scheme we use

to achieve this is related to the reference governor and we

will discuss different formulations of it in the remainder of

this section.

A. Open-loop controller

Consider the controller K(s) with dynamics,

ẋu = A22xu +B2r, (9a)

u = C2xu +D2r, (9b)



where xu(t) ∈ R
nu is the internal state of the controller and

r(t) ∈ R
q is a reference input.

According to the the schematic of Fig. 2, the inner-loop

governor is placed so that it modifies the desired control input

u(t) to a constraint-admissible control input a(t). When

the reference governor is turned off, i.e., a(t) = u(t), the

constrained system dynamics become,
[

ẋ

ẋu

]

=

[

A11 B1C2

0 A22

] [

x

xu

]

+

[

B1D2

B2

]

r, (10a)

y =
[

E FC2

]

[

x

xu

]

+ FD2r. (10b)

Suppose that A22 is asymptotically stable. As we will soon

show, the constraint-admissible control input a(t) can be de-

termined as the output of a controller with the same dynamics

as K(s), whose input is a modified reference computed

according to the ordinary reference governor algorithm. We

define the dynamics of this new controller as,

ẋa = A22xa +B2v, (11a)

a = C2xa +D2v. (11b)

Coupling this system to (10), the dynamics become,




ẋ

ẋa

ẋu



 =





A11 A12 0
0 A22 0
0 0 A22









x

xa

xu



+





B1 0
B2 0
0 B2





[

v

r

]

,

y =
[

E E2 0
]





x

xa

xu



+
[

F1 0
]

[

v

r

]

∈ Y, (12)

where A12 = B1C2, B1 = BD2, E1 = FC2, and

F1 = FD2. It is clear from (12) that the xu(t) dynamics

are both uncontrollable with respect to the input v(t) and

unobservable with respect to the output y(t). With the design

of the controller (11), we have effectively bypassed the

original controller K(s), whose input is the unmodifiable

reference r(t), with an identical controller, whose input is

a reference v(t) which can be modified by a reference

governor.

The difference in outputs of the two controllers vanishes in

the absence of constraint activation, i.e., whenever v = r. To

see this, define the controller state error as e(t) := xu(t) −
xa(t) and the output error as ye(t) := u(t)− a(t). Then the

error dynamics are given by,

ė = A22e+B2(r − v), (13a)

ye = C2e+D2(r − v). (13b)

It is important that the error dynamics be asymptotically sta-

ble so that we avoid integral wind-up and other undesirable

behavior during system operation.

We have presented an inner-loop governor design for

constraint enforcement of systems with open-loop control.

Our design transforms the system into a closed-loop form

so that we can apply a conventional reference governor for

constraint enforcement. Yet the physical design stays the

same. That is, unlike in the conventional reference governor,

we have not replaced the signal r(t) with v(t); we have

Fig. 3. Schematic of inner-loop governor applied to feedback system

instead bypassed the nominal controller K(s) with another

controller, whose behavior is the same as the original. We

can do this as long as the internal controller dynamics

are asymptotically stable, since otherwise we could cause

integral wind-up in the internal state of the nominal controller

K(s).

B. Feedback controller with stable internal dynamics

In this subsection, we consider the case where there exists

a feedback interconnection between P (s) and K(s) and

where the internal controller dynamics are asymptotically

stable, i.e., the matrix A22 is asymptotically stable, as in the

open-loop case, where K(s) receives a feedback signal from

P (s). A schematic of the system is provided in Fig. 3. The

controller dynamics are given by (9) with an additional state-

feedback element. Treating the governor as a pass-through

element, i.e., setting a(t) = u(t), the closed-loop dynamics

become,
[

ẋ

ẋu

]

=

[

A11 A12

A21 A22

] [

x

xu

]

+

[

0
B2

]

r, (14)

We introduce a replacement controller with the same dynam-

ics as K(s),

ẋa = A21x+A22xa + B2v, (15a)

a = C1x+ C2xa +D2v, (15b)

so that the coupled dynamics become,




ẋ

ẋa

ẋu



 =





A11 A12 0
A21 A22 0
A21 0 A22









x

xa

xu



+





B1 0
B2 0
0 B2





[

v

r

]

,

y =
[

E1 E2 0
]





x

xa

xu



+
[

F1 0
]

[

v

r

]

∈ Y, (16)

where E1 = E + FC1. As in the case with the open-loop

controller, the xu(t) dynamics are both uncontrollable with

respect to the input v(t) and unobservable with respect to

the output y(t). The error dynamics are the same as in (13).

C. Feedback controller with unstable internal dynamics

In this subsection, we consider the case where the internal

dynamics of K(s) are not asymptotically stable. Here we

cannot use the previous approach because the error dynamics

(13) are not asymptotically stable.

A guiding principle in the development of the reference

governor is the goal of minimal invasiveness. Absent con-

straints, the reference governor is designed so that the system

operates as designed, without any modification from the

constraint-enforcement scheme. In practice, this amounts to



setting the constraint-admissible reference to the desired

value whenever constraint violation is not predicted. In

the case of the inner-loop governor, minimal invasiveness

corresponds to a desire that the control output of the nominal

controller K(s) and the duplicate controller K ′(s) become

equivalent in the absence of constraints. This can be achieved

asymptotically by ensuring that the error dynamics e(t) be

asymptotically stable. We begin by modifying the dynamics

of the duplicate controller K ′(s) to include an input term

ua(t) = (ua,1(t), ua,2(t)) where ua,1(t) ∈ R
m and ua,2(t) ∈

R
nu . The internal dynamics become,

ẋa = A21x+A22xa + ua,2 +B2v, (17a)

a = C1x+ C2xa + ua,1 +D2v. (17b)

With this new controller design, the error dynamics (13) are,

ė = A22e− ua,2 +B2(r − v), (18a)

ye = C2e− ua,1 +D2(r − v). (18b)

Our goal is to ensure that whenever e(t) ≈ 0, the system

dynamics behave almost as if the reference governor were

not present. To achieve this, we choose the input ua(t) so

that the error dynamics become asymptotically stable and the

output error ye(t) approaches zero whenever r(t) = v(t) for

a prolonged period of time.

Specifically, we choose a feedback term ua,2(t) = Λe(t),
such that A22 − Λ is asymptotically stable. Since the stabi-

lizing feedback gain Λ can be chosen arbitrarily, in principle

it is possible to set the error dynamics as desired. The term

ua,1(t) is set to equal ua,1(t) = Γe(t), where there is no

restriction on Γ. In summary, the input is given by,

ua(t) =

[

Γ
Λ

]

e(t). (19)

After applying the new controller design (17), (19), the

coupled dynamics become,




ẋ

ẋa

ẋu



 =





A11 Â12 A13

A21 Â22 A23

A21 0 A22









x

xa

xu



+





B12 0
B2 0
0 B2





[

v

r

]

,

y =
[

E1 Ê2 E3

]





x

xa

xu



+
[

F1 0
]

[

v

r

]

∈ Y. (20)

where A13 = B1Γ, A23 = Λ, Â12 = A12 − B1Γ, Â22 =
A22 − Λ, Ê2 = E2 − FΓ, and E3 = Γ.

Performing a change of variables, we obtain the dynamics,




ẋ

ẋa

ė



 =





A11 A12 A13

A21 A22 A23

0 0 Â22









x

xa

e



+





B1 0
B2 0
−B2 B2





[

v

r

]

,

y =
[

E1 E2 E3

]





x

xa

xu



+
[

F1 0
]

[

v

r

]

∈ Y. (21)

It is clear from this representation of the dynamics that

whenever e = 0 and v = r, the overall system dynamics

are equivalent to the nominal, constraint-free dynamics (14),

satisfying our aim.

Fig. 4. Schematic showing architecture of inner-loop governor

1) Discussion on the choice of feedback gains Λ and Γ:

The feedback gains introduced in (19) can be chosen with

very few restrictions. Aggressive choices of the gain Λ leads

to giving the nominal controller more authority over the

system, which will impact the governor’s ability to enforce

constraints. Whenever authority is ceded to the nominal

controller, it must be accepted that constraint violation may

occur since the reference governor will not be able to enforce

constraint enforcement for abrupt changes in the reference

r(t). For this reason, it appears best to choose a less-

aggressive gain Λ.

Similar logic, when applied to choosing Γ, suggests that

Γ should be close to nil. Referring to (21), we can see that

when Γ = 0, A13 and E3 are both 0. Diminishing the gain

Γ diminishes the impact of the unmodifiable reference r(t)
on the constraints.

IV. INNER-LOOP GOVERNORS FOR

UNCERTAIN-PARAMETER SYSTEMS

We now consider the case where the controller K(s)
is uncertain. This can arise when the controller is only

partially known, such as when the controller is a physical

actuator or operator that does not communicate with the

constraint-enforcement software. We consider the case where

the matrices A21 = Ā21 + Â21 and A22 = Ā22 + Â22 and,
[

Â12 Â22

]

∈ A, (22)

for some polytope A ⊂ R
nu×(n+nu). The matrices Ā12 and

Ā22 represent estimated values for A12 and A22 and are used

in the design of the inner-loop governor, i.e., the controller

K ′(s) is designed under the assumption that A12 = Ā12 and

Ā22 = A22. Disregarding constraints, the coupled system

dynamics, in transformed coordinates, become,




ẋ

ẋa

ė



 =





A11 A12 B1Γ
Ā21 Ā22 Λ

Â21 Â22 A22 − Λ









x

xa

e



+





B1 0
B2 0
−B2 B2





[

v

r

]

.

Conventional robust-control approaches, such as that of

[8], can be used to ensure that the system above is asymptot-

ically stable for any Â21 and Â22 satisfying (22). Constraints

can be enforced robustly using the parameter governor of [9]

or, if the internal state of the controller K(s) is unknown,

we may construct the prediction model using the duplicate

controller dynamics and use an estimate of the error e(t) for

forming a prediction.

As in the results of the previous section, to minimize

the impact of the governor on the system dynamics, it is

again preferable to choose the gains Λ and Γ so that the



impact of the nominal controller on constraint enforcement

is minimized. For example, if it is true that the system is

asymptotically stable for any possible value of Â21 and Â22,

we set Λ = 0 and Γ = 0.

V. CASE STUDY: APPLICATION TO A

HUMAN-IN-THE-LOOP STEER-BY-WIRE SYSTEM

We consider the application of the inner-loop governor to

a steer-by-wire system, in which the controller is a human

operator modeled as an uncertain-parameter PID controller,

[10]. The steering system is second-order and given by,

[

θ̇p
θ̈p

]

=

[

0 1
−α0 −α1

] [

θp
θ̇p

]

+

[

0
β0

]

u, (23)

where θp(t) and θ̇p(t) are the wheel angle and its derivative,

respectively, and u(t) is the torque provided by the power-

steering motor. The nominal, human controller is PID, i.e.,

ẋu = ki(r − θp), (24a)

u = xu + kp(r − θp)− kdθ̇p, (24b)

where kp = 5, ki = 130, kd = 0.2 are the PID gains and the

reference r(t) is the desired wheel angle. The gains are fixed

but uncertain, and are assumed to range between minimum

and maximum values.

Note that the error dynamics are not asymptotically stable

and therefore, in our design, we introduce a controller to

mimic the behavior of (24) with a stabilizing term for the

error dynamics,

ẋa = k̄i(v − θp) + λe, (25a)

a = xa + k̄p(v − θp)− k̄dθ̇p, (25b)

where k̄p = 7.3, k̄i = 121, k̄d = 0.11 are PID gains which

satisfy constraints and λ > 0 is the stabilizing gain.

The dynamics of the system implementing the duplicate

controller are given by,









θ̇p
θ̈p
ẋa

ė









=









0 1 0 0
−α0 − k̄pβ0 −α1 − k̄dβ0 β0 0

−k̄i 0 0 λ

−ki + k̄i 0 0 −λ

















θp
θ̇p
xa

e









+









0 0
0 0
k̄i 0
−k̄i ki









[

v

r

]

, (26)

where the gain λ is chosen to ensure asymptotic stability of

the above dynamics for any ki ∈ [k−i , k
+
i ] = [100, 200].

Since the internal driver state xu(t) is not known, we

cannot assume full knowledge of the error variable e(t). For

this reason, we design an estimator for the error, with the

dynamics,

˙̂e = −ko(ê− e)− ko(kp − k̄p)θp − ko(kd − k̄d)θ̇p

− k̄iv + (k̄i + ko(kp − k̄p))r, (27)

where ko > 0 is the observer gain. Note that, with the

introduction of an estimate of the operator’s internal state,

the dynamic equation (25a) for xa(t) must be modified to

use ê(t) for feedback instead of e(t).
The system is state-constrained according to,

|θp(t)| ≤
1

2
, |θ̇p(t)| ≤

π

4
rad/s, |θ̈p| ≤ 6rad/s2. (28)

To enforce constraints, a conventional reference governor

is applied to modify the desired reference angle r(t) to

a constraint-admissible reference angle v(t). To design the

constraint-admissible set, the dynamics (26) are discretized

using a sampling time of 1ms. Note that the input to the

reference governor are the measured states θp(t), θ̇p(t),
xa(t), the esimated state ê(t), the desired reference r(t),
and the previously constraint-admissible reference v(t− 1).

In order to fully explore the characteristics of the inner-

loop governor, we begin by considering the case where the

operator’s internal integral state is fully known.

We begin by considering different choices of λ > 0 and

their effect on system response. All choices of λ are stable

for any value of k̄i ∈ [100, 200]. We first note that, in steady

state, the wheel angle θp(t) approaches the desired angle r(t)
regardless of v(t), i.e.,

lim
t→∞

θp(t) = r. (29)

whenever r(t) ≡ r is held constant. It becomes clear then

that the operator ultimately has full authority over steering.

In fact, we can vary the amount of authority ceded to the

operator by varying λ, since λ affects the speed at which

our controller internal state xa(t) approaches the operator’s

internal state xu(t). To show this, we perform numerical

simulations for different values of λ, in which the operator

provides a step input in r(t) from 0 to 0.45 and v(t) is held

constant at 0.

The results of the simulations are presented in Fig. 5.

It is shown that the response of θp(t) becomes quicker as

λ increases, which implies that overly increasing λ results

in the overall system effectively ignoring the output of the

reference governor. It is also shown that, as expected, the

effort expended by the driver decreases as λ increases. This

suggests that, in the system design, the choice of λ may be

informed by the maximum effort that the operator may be

expected to exert.

Furthermore, we perform a simulation corresponding to

a step-change in the reference r(t) from 0 to 0.45 with a

choice λ = 1. In the simulation, the driver’s internal state

xu(t) is estimated according to (27) with observer gain ko =
10. The reference governor determines v(t) according to the

algorithm (6)-(7).

The results are presented in Figs. 6-7. In Fig. 6, we see

that the settling time is increased to about 4s. As was shown

previously, a higher value of λ would result in a smaller

settling time. We also see that the operator torque achieves a

maximum value about double that of the nominal. The reason

for the higher torque is the integral wind-up that occurs

when the operator does not quickly achieve the desired value
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Fig. 6. Nominal (dotted) and constraint-enforced (solid) responses of θp(t)
(top) and u(t) (bottom) with constraint (dashed)

of θp(t). In Figs. 6-7, we see small constraint violations

which are the result of the use of an estimator for the error

e(t) with an inexact model of the nominal controller. This

is typical of constrained systems which use an estimated

variable in constraint enforcement; addressing this can be

done by improving the observer or tightening constraints,

which has been done in [3].

VI. CONCLUSION

In this paper, we have considered the design of an inner-

loop constraint enforcement scheme based on the reference

governor. Previous theoretical treatments of this problem

have focused on exploiting stringent passivity properties to

ensure stability of the interconnection between the reference

governor and the constrained system.

Our scheme consists of duplicating the feedback controller

of the closed-loop system with a controller whose input is

a reference that is modified by a reference governor. We

have designed our scheme to ensure closed-loop stability of

the entire closed-loop system, consisting of both nominal
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Fig. 7. Nominal (dotted) and constraint-enforced (solid) responses of θ̇p(t)
(top) and θ̈ (bottom) with constraints (dashed)

and duplicate feedback controllers. The main result is that

passivity is not required and that stability can be ensured by

ceding some control authority to the nominal controller.

Numerical simulations were performed for a case study of

a human-in-the-loop steer-by-wire system, where the human

operator was modeled as a PID controller with uncertain

parameters. The first set of simulations showed the trade-off

between enforcing system stability and achieving constraint

satisfaction. The second set of simulations showed that the

inner-loop governor is able to effectively enforce system

constraints.
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