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On-Off Quantization of an MPC Policy for Coupled Station Keeping,
Attitude Control, and Momentum Management of GEO Satellites

Ryan J. Caverly1, Stefano Di Cairano2, and Avishai Weiss2

Abstract— This paper introduces a novel on-off quantization
scheme used with a control architecture based on model predic-
tive control (MPC) to simultaneously perform station keeping,
attitude control, and momentum management of a nadir-
pointing geostationary satellite equipped with three reaction
wheels and four on-off electric thrusters. The MPC policy
includes an inner-loop SO(3)-based attitude control law to
maintain a nadir-pointing attitude, and an outer loop for station
keeping and momentum management. The continuous thrust
command generated by the MPC policy is quantized as a
single on-off pulse every feedback period in such a way that
the predicted error in the states induced by quantization is
minimized. This quantization scheme introduces very limited
change in behavior and performance compared to results with
the non-quantized MPC policy, and uses significantly less on-off
pulses compared to other approaches in the literature, such as
pulse-width modulation. The tuning parameters of the proposed
quantization scheme are discussed in detail and their effects on
closed-loop performance are analyzed numerically.

I. INTRODUCTION

Advancement of low-thrust electric propulsion technology
has led to its deployment in a range of satellite appli-
cations, including station keeping of geostationary Earth
orbit (GEO) satellites [1]. Station keeping maneuvers with
chemical propulsion are typically commanded manually from
a ground station roughly once every two weeks, in order to
counteract orbital perturbations and keep the satellite within
a station keeping window. The thrust magnitude of electric
propulsion is significantly less than chemical propulsion,
which prevents the use of traditional station keeping tech-
niques, as maneuvers must be performed more frequently
with limited thrust magnitude. Autonomous control strategies
have been developed for satellite orbital maintenance with
electric propulsion [2–10]. Model predictive control (MPC)
policies for simultaneous station keeping, attitude control,
and momentum management are presented in [7–9].

Many electric propulsion systems are not capable of throt-
tling thrust and only operate with on-off pulses, which must
be considered in spacecraft control policies. One approach is
to incorporate quantized control directly within the control
policy, as done in [3]. However, this leads to a mixed-integer
linear program, which is computationally expensive and dif-
ficult to implement in real time, especially onboard a satellite
computing platform. A more popular approach is to have a
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control policy compute continuous thrust commands and a
quantization scheme transform these commands into on-off
thrust pulses [4–7]. A well-designed quantization scheme has
very little impact on the performance of the system compared
to the nominal non-quantized performance. Although the
pulse-width modulation (PWM) quantized control policies
in [4–7] are capable of yielding very similar ∆v to non-
quantized versions of their respective control policies, they
require a large number of on-off thruster pulses. For example,
the MPC policy with PWM quantization in [7] uses an
average of 30 pulses per thruster per orbit, which is an order
of magnitude more than the number of on-off cycles that
current electric thrusters are capable of for a typical 15 year
lifespan of a satellite in GEO [11].

This paper presents a novel quantization scheme for a
control policy that simultaneously performs station keeping,
attitude control, and momentum management of a GEO
satellite. A single-pulse quantization scheme is implemented
every feedback period, which may be larger than a single
controller time step. A single on-off thrust pulse is made
possible by minimizing the predicted error in the states in-
duced by quantization when solving for the on and off thrust
times, which also serves to minimize deviation in closed-
loop system behavior caused by quantization. A preliminary
version of the work presented in this paper is found in [9],
which is expanded with details regarding the quantization
scheme and analysis of the effect on performance of the
quantization scheme parameters, including the thrust cutoff
value, the number of discretization time steps between feed-
back, and the weighting matrix used in the minimization of
the predicted state error. The paper begins in Section II with
the problem statement and satellite model. Section III de-
scribes the MPC policy and the proposed single-pulse thruster
quantization scheme. Simulation results studying the effect
of varying quantization scheme parameters are presented in
Section V and closing remarks are fin Section VI.

A. Preliminaries and Notation

The following notation is used throughout the paper. A
reference frame Fa is defined by a set of three orthonormal
dextral basis vectors, { a−→

1, a−→
2, a−→

3}. An arbitrary physical
vector, denoted as v−→, is resolved in Fa as va, where vTa =[
va1 va2 va3

]
and v−→ = va1 a−→

1 + va2 a−→
2 + va3 a−→

3. The
mapping between a physical vector resolved in different
reference frames is given by the direction cosine matrix
(DCM) Cba ∈ SO(3), where SO(3) = {C ∈ R3×3 |CTC =
1, det(C) = +1} and 1 is the identity matrix. For example,
vb = Cbava, where vb is v−→ resolved in Fb and Cba represents
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Fig. 1. Schematic adopted from [7] of the (a) spacecraft including three
axisymmetric reaction wheels and four electric thrusters, and (b) North-
facing boom-thruster assembly. The first, second, and third axes of each
reference frame are respectively denoted by red, green, and blue vectors.

the attitude of Fb relative to Fa. Principle rotations about
the a−→

i axis by an angle α are denoted as Cba = Ci(α).
The anti-symmetric projection operator Pa(·) : R3×3 →
so(3), is given by Pa(U) = 1

2

(
U− UT

)
, for all U ∈

R3×3, where so(3) = {S ∈ R3×3 |S + ST = 0}. The
cross operator, (·)× : R3 → so(3), is defined as a× =

−a×
T

=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

, where aT =
[
a1 a2 a3

]
.

The uncross operator, (·)v : so(3) → R3, is defined as
Av =

[
a1 a2 a3

]T
, where A = a×. The physical vector

describing the position of p relative to q is r−→
pq . Similarly,

the angular velocity of Fb relative to Fa is ω−→
ba.

II. OBJECTIVES AND SPACECRAFT MODEL

Consider the satellite shown in Fig. 1, which consists of a
rigid bus equipped with three axisymmetric reaction wheels
and four electric thrusters mounted on gimbaled booms,
which is nominally in a circular GEO orbit. The control
objectives are to 1) minimize the effect of quantization
on ∆v and 2) limit the number of on-off thruster pulses,
while ensuring that the satellite is maintained within the
prescribed station-keeping window, a nadir-pointing attitude
is maintained, angular momentum stored in the reaction
wheels is unloaded, and the limitations of the thrusters (e.g.,
thrust magnitude, boom gimbal angle limits) are enforced.
Previous work [7], [8] attempted to minimize fuel consump-
tion using MPC policies. An MPC policy is also adopted in
this paper, with a novel quantization scheme that is designed
to specifically minimize the effect of quantization on ∆v and
reduce the number of on-off thruster pulses compared to [7].

The Earth-centered inertial (ECI) frame is defined as Fg .
The reference frame Fp is aligned with the spacecraft bus,
where nominally p−→

1 points towards the Earth and p−→
2 points

North. The angular velocity of Fp relative to Fg is ω−→
pg

and the DCM describing the attitude of the spacecraft (i.e.,
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Fig. 2. Illustration of the station keeping window described by
−r̄ tan(λlong) ≤ δrh2 ≤ r̄ tan(λlong) and −r̄ tan(λlat) ≤ δrh3 ≤
r̄ tan(λlat), with the view looking in the − h−→

1 direction towards Earth.
The point c denotes the spacecraft’s center of mass.

Fp) relative to Fg is Cpg . The spacecraft center of mass is
denoted by point c in Fig. 1(a). The position of c relative to
a point w at the center of the Earth is given by r−→

cw. The
equations of motion of the satellite are [7]

r̈cwg = −µ
rcwg∥∥rcwg
∥∥3 + apg +

1

mB
CT
pgfthrust

p , (1a)

JBcp ω̇pg
p = −ωpg×

p

(
JBcp ωpg

p + Jsγ̇
)
− Jsη + τp

p + τ thrust
p , (1b)

Ċpg = −ωpg×
p Cpg, (1c)

γ̈ = η, (1d)

where mB is the mass of the spacecraft, JBcp is the moment
of inertia of the spacecraft relative to point c and resolved in
Fp, γT =

[
γ1 γ2 γ3

]
are the reaction wheel angles, η is

the acceleration of the reaction wheels, Js is the moment
of inertia of the reaction wheel array, fthrust

p is the force
produced by the thrusters, τ thrust

p is the torque produced by
the thrusters, apg includes acceleration perturbations, and τ pp
includes torque perturbations. The thruster configuration is
illustrated in Fig. 1, where four electric thrusters are mounted
on two boom-thruster assemblies, which nominally point
North and South, respectively. A detailed view of the North-
facing boom-thruster assembly is in Fig. 1(b). Each assembly
has two fixed gimbal angles, ᾱa and β̄a, a ∈ {n, s}, as well
as an actuated gimbal angle γa, a ∈ {n, s}. The subscripts
n and s refer to the North- and South-facing assemblies,
respectively. The position of the actuated gimbal of thruster i
relative to the spacecraft center of mass is r−→

qic. The thrusters
are canted by fixed angles δi, i = 1, 2, 3, 4, such that for
γ̄a, a ∈ {n, s}, each thruster fires through the spacecraft
center of mass. The force vector produced by thruster i
is f−→

i, and is resolved in Fp as fip = −f iCT
ipC2(γa)13,

where f i =
∣∣∣ f−→i

∣∣∣ is the thrust magnitude, 13 =
[
0 0 1

]T
,

Cip = CiaCap, Cia = C1(δi)C2(β̄i)C3(ᾱa), Cnp = C3(π),
and Csp = C1(π)C3(π). The torque generated by the thruster
on the spacecraft is τ ip = rqic

×

p fip. The net force and torque
of the four thrusters is fthrust

p =
∑4
i=1 Bfi ui and τ thrust

p =∑4
i=1 Bτi ui, with uT

i =
[
sin(γa)f i cos(γa)f i

]
and constant

input matrices Bfi = CT
ip

−1 0
0 0
0 −1

, Bτi = rqic
×

p Bfi .

For the purposes of station keeping and linearizing the
spacecraft’s equations of motion, it is useful to express the
spacecraft’s position relative to the desired nominal circular
GEO orbit. To this end, Hill’s frame, Fh, is defined by



basis vectors h−→
1 aligned with the orbital radius and h−→

3

orthogonal to the orbital plane. Resolving r−→
cw in Fh gives

rcwh . The spacecraft’s nominal position in a circular orbit
resolved in Fg is r̄g , yielding the position error of the
spacecraft δrh =

[
δrh1 δrh2 δrh3

]
= rcwh − Chg r̄g .

The station keeping window, shown in Fig. 2, is defined
as −r̄ tan(λlong) ≤ δrh2 ≤ r̄ tan(λlong) and −r̄ tan(λlat) ≤
δrh3 ≤ r̄ tan(λlat) [12], where r̄ = ‖r̄g‖, and λlong, λlat are
maximum deviations in longitude and latitude, respectively.

III. MPC FORMULATION

The MPC policy presented in this section is largely based
on the MPC policy in [9], with the exception of the positive
integer control parameter Nfb, which determines the number
of time steps between control updates.

A. Inner-Loop Attitude Controller

The reaction wheels are actuated by an attitude controller,
which is an inner-loop controller to the MPC policy. The
disturbance torque is assumed to be described by the LTI
system ẋdist = Adistxdist, τ pp = Cdistxdist. An observer esti-
mates the disturbance as ˙̂xdist = Adistx̂dist+Bdistudist and τ̂ pp =
Cdistx̂dist, where τ̂ pp is the estimate of τ pp , udist = ωpdp + K1S,
K1 = KT

1 > 0, and S = −Pa (Cpd)
v. The matrix Bdist =

P−1
distC

T
dist is chosen such that (Adist,Bdist,Cdist) is positive real,

where Pdist = PT
dist ≥ 0 satisfies the Lyapunov equation

AT
distPdist + PdistAdist = −Qdist with Qdist = QT

dist ≥ 0 [13,
p. 218]. The attitude controller adapted from [14] is ν1 =

ω×p
(
JBcp ωp + Jsγ̇

)
− JBcp

(
K1Ṡ + ωpd×p ωp

)
, ν2 = −τ̂ pp ,

ν3 = −Kν

(
ωpdp + K1S

)
−KpS, where Kν = KT

ν > 0, Kp =
KT
p > 0, and the control input is η = −J−1

s (ν1 + ν2 + ν3).

B. Closed-Loop Linearized Model

The MPC prediction model is obtained by lineariz-
ing the spacecraft dynamics in closed-loop with the at-
titude controller about a nominal circular orbit with
mean motion n, a nadir-pointing attitude, zero reaction
wheel speeds, and zero observer states, and is given
by δr̈h = −2ω̄×p δṙh − Ωδrh + aph + 1

mB
CT
dhfthrust

p ,

δω̇ =
(

K1ω̄
×
p −

(
ω̄×p
)2

+ JBc
−1

p

(
Kνω̄

×
p −K

))
δθ +

τ thrust
p +

(
−K1 + ω̄×p − JBcp Kν

)
δω− JBc

−1

p Cdistx̃dist, γ̈ = η,
˙̃x = Adistx̃dist + Bdistδω + Bdist

(
K1 − ω̄×p

)
δθ [7], where

ω̄T
p =

[
0 0 n

]
, Cpd = CpgCT

dg is the attitude error
between Cpg and the desired nadir-pointing orientation Cdg ,
Cpg is parameterized by a 3-2-1 Euler angle sequence
with angles δθT =

[
δφ δθ δψ

]
, K = KνK1 + Kp,

and Ω = diag{−3n2, 0, n2}. The closed-loop linearized
model in state-space form is ẋ = Ax + Bu + Bww,
where xT =

[
δrT δṙT δθT δωT γ̇T x̃T

dist

]
, uT =[

uT
1 uT

2 uT
3 uT

4

]
, and w = aph. The discrete-time model

with time step ∆t is xk+1 = Adxk + Bduk + Bw,dwk.

C. MPC Input and State Constraints

The magnitude of each thruster must satisfy
∥∥fii
∥∥

2
≤ fmax,

where fmax is the maximum allowable thrust. To simplify the
MPC formulation, this quadratic constraint is approximated

by the linear constraint
∥∥fii
∥∥

1
≤ fmax. It is also imperative

that the thrusters fire away from the spacecraft bus, which is
enforced by the constraint fii ≤ 0. The control constraints are
umin ≤ ui ≤ umax, i = 1, 2, 3, 4, where uT

max = fmax
[
1 1

]
and umin = 0. There is an additional physical constraint that
the gimbal angle γn must be identical for the pair of inputs
u1 and u2 at any time instant, since they share this angle.
The same is true for γs with the pair of inputs u3 and u4.
As in [7], this constraint is ignored in the MPC policy and is
addressed in the quantization scheme. The state constraints
considered in this policy are based on the prescribed station
keeping window and the maximum allowable attitude error.
Since the closed-loop linearized orbital dynamics equation
of motion is given in Hill’s frame, the station keeping
window constraint is δr̄min ≤ δr̄ ≤ δr̄max, where δr̄Tmax =[
∞ r̄ tan(λlong) r̄ tan(λlat)

]
, and δr̄min = −δr̄max. The

constraint on attitude error is δθmin ≤ δθ ≤ δθmax.

D. MPC Policy

Consider the split-horizon MPC policy [9] stated as

min
Ut

xTN1|tP1xN1|t +

N1−1∑
k=0

(
xTk|tQxk|t + uT

k|tRuk|t

)

+xTN2|tP2xN2|t +

N2−1∑
k=N1

(
xTk|tQ2xk|t + uT

k|tRuk|t

)
, (2)

subject to xk+1|t = Adxk|t + Bduk|t + Bw,dwk|t, x0|t = x(t),
wk|t = ŵt(t + k), xmin ≤ xk|t ≤ xmax for 0 ≤ k ≤ N1,
xmin,2 ≤ xk|t ≤ xmax,2 for N1 < k ≤ N2, and umin ≤
uk|t ≤ umax, where N1 is the prediction horizon of the states
δrcwh3 and δṙcwh3 , N2 is the prediction horizon of the remaining
states, Ut = {u0|t, . . . ,uN2−1|t}, Q = QT ≥ 0 and R =
RT > 0 are constant state and control weighting matrices,
and ŵi(j) is the open-loop predicted disturbance column
matrix at time j based on data at time i. The matrix Q2 is the
same as Q, except the rows and columns associated with the
states δrcwh3 and δṙcwh3 are set to zero. The matrices P1 and P2

are constructed from the matrix P = PT > 0, which is the
solution to the Discrete Algebraic Riccati Equation (DARE).
The matrix P1 contains the rows and columns of P associated
with the states δrcwh3 and δṙcwh3 and zeros the others, while P2

does the opposite, so that P1 + P2 = P. This is possible
since P is block-diagonal under a coordinate transformation
that reorders the states such that δrcwh3 and δṙcwh3 are at the
end of the state column matrix. The state constraints xmin and
xmax are based on the station keeping and attitude constraints.
The state constraints xmin,2 and xmax,2 are identical to xmin
and xmax, except δrTmin =

[
−∞ −r̄ tan(λlong) −∞

]
and

δrTmax =
[
∞ r̄ tan(λlong) ∞

]
are used. The control input

sequence is u(t + j) = u∗j|t, j = 0, . . . , Nfb − 1, where U∗t
is the minimizer of (2), and Nfb is the number of time steps
between control updates.

IV. SINGLE-PULSE QUANTIZATION SCHEME

The low-thrust electric thrusters considered for this space-
craft are operated with on-off pulses. The control input
generated by the MPC policy described in Section III-D is
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Fig. 3. Single quantized on-off thrust pulse (uquant) over one feedback
period with three discrete time steps (Nfb = 3) for a given thruster.

a continuous thrust value for each thruster, which cannot
be used directly with on-off thrusters, or in the propulsion
system assembly shown in Fig. 1. As such, the control input
must be quantized to on-off pulses that satisfy the physical
constraints of the thrusters and the propulsion system assem-
bly. A PWM quantization scheme is developed in [7] with
a fixed frequency of five on-off pulses per time step with
varying pulse widths such that the average thrust matched the
constant thrust of the MPC control input over each time step.
This works well, but leads to a large number of on-off pulses,
on the order of 30 pulses per thruster per orbit. To reduce the
number of on-off pulses, a single pulse quantization scheme
over a feedback period is proposed in this section.

As shown in Fig. 3, consider the quantization of a piece-
wise constant control input sequence, umpc, over a time step
beginning at time t0 and ending at time tf = t0 + Nfb∆t,
where only a single pulse of magnitude fmax is applied
at the ith thruster starting at time t1,i and ending at time
t2,i, and t0 ≤ t1,i < t2,i ≤ tf . The thruster on and
off times are solved such that eTWe is minimized, where
e = xmpc(tf ) − xquant(tf ); xmpc(tf ) and xquant(tf ) are the
predicted states at tf using the MPC input sequence umpc

and the quantized inputs, respectively; W = WT ≥ 0 is a
weighting matrix; and the variable Nfb ∈ Z+ is the number
of discretization time steps in a feedback period.

The predicted states of the system at time tf based
on the quantized thrust inputs are given by xquant(tf ) =

eANfb∆tx(t0) +
∑4
i=1 e

A(tf−t2,i)Bd,i(t1,i, t2,i)umax,i, where

umax,i =

{
fmax

ūmpc,t0,i

‖ūmpc,j|t0,i‖ ‖ūmpc,t0,i‖ ≥ Nfbε

0 ‖ūmpc,t0,i‖ < Nfbε
,

ūmpc,t0,i =
∑Nfb−1
j=0 umpc,j|t0,i, uT

mpc,j|t0 =[
uT

mpc,j|t0,1 uT
mpc,j|t0,2 uT

mpc,j|t0,3 uT
mpc,j|t0,4

]
, and ε > 0

is the tolerance below which the MPC input is considered
to be zero. The calculation of umax,i involves averaging the
MPC inputs of the ith thruster over the feedback period,
which gives a single gimbal angle for each thruster within
the feedback period. The predicted states of the system
evolution based on the MPC inputs can be expressed as
xmpc(tf ) = eANfb∆tx(t0) +

∫ tf
t0
eA(tf−τ)Bumpc(τ)dτ =

eANfb∆tx(t0) + CNfb−1umpc,0:Nfb−1|t0 , where CNfb−1 =[
ANfb−1

d Bd · · · AdBd Bd
]

is the controllability matrix,
Ad = eA∆tx(t0) is the discrete-time A matrix calculated with
time step ∆t, Bd =

∫∆t

0
eA(∆t−τ)dτB is the discrete-time B

matrix calculated with time step ∆t, and uT
mpc,0:Nfb−1|t0 =[

uT
mpc,0|t0 · · · uT

mpc,Nfb−2|t0 uT
mpc,Nfb−1|t0

]
. The

error between the two predicted states at tf is given

by e = xmpc(tf ) − xquant(tf ) = CNfb−1umpc,0:Nfb−1|t0 −∑4
i=1 e

A(tf−t2,i)Bd,i(t1,i, t2,i)umax,i. The switching times
for each thruster must satisfy t0 ≤ t1,i < t2,i ≤ tf ,
i = 1, 2, 3, 4. Additionally, not more than one thruster on
either boom-thruster assembly should fire at a given time,
since these thrusters share the gimbal angle γa, a ∈ {n, s},
and hence their directions cannot differ. This constrains the
switching times of the thrusters to not overlap. As the firing
order of the thrusters may have an impact on the predicted
state error, different orders of thruster firings are considered:
1 before 2 and 3 before 4 (Mode 1), as well as 2 before
1 and 4 before 3 (Mode 2). Defining the design variable
tT =

[
t1,1 t2,1 t1,2 t2,2 t1,3 t2,3 t1,4 t2,4

]
, the

thruster switching constraints are At,it ≤ bt,i, i = 1, 2,
where bT

t,i =
[
0 0 0 0 −t0 tf −t0 tf 0 0

]
,

At,i =

[
At

Āt,i

]
, At =

1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

,
and the contents of Āt,i depend on the thruster-firing mode
considered. The matrix At and the first four rows of bt,i
ensure that t1,i ≤ t2,i, while Āt,i and the last six rows of
bt,i determine the thruster firing order. The contents of Āt,i
for Modes 1 and 2, respectively, are

Āt,1 =


−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1 0

,

Āt,2 =


0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
−1 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 1

.

If no thrusters are on during the feedback period, then all
thrust commands are set to zero for the entire period and no
optimization problem is solved. Otherwise, the optimization
problem to be solved is mint1,i, t2,i, i=1,2,3,4 eTWe, subject
to At,1t ≤ bt,1. The optimization problem is solved again
with the constraint At,2t ≤ bt,2. The solution that results in
a smaller cost function value is used as the optimal solution.
In practice, it is observed that a suitable value of W is one
that normalizes the magnitudes of the states, thus providing
equal importance to the error in the different states.

V. NUMERICAL SIMULATION ANALYSIS

The quantization scheme and MPC policy in Sections III
and IV are implemented in a numerical simulation of the
nonlinear spacecraft dynamic model presented in (1), which
has been validated using Systems Tool Kit (STK) in [8].
A spacecraft in GEO is considered using the same physical
parameters as [7]. The spacecraft has a mass of 4000 kg,
and reactions wheels each with a mass of 20 kg, a radius
of 0.75 m, and a thickness of 0.2 m. The nominal gimbal
angles of the boom-thruster assemblies are ᾱn = ᾱs =
β̄n = β̄s = 0◦ and γ̄n = γ̄s = 40.14◦. Further details
of the boom-thruster assembly physical parameters can be
found in [7]. Perturbations due to Earth’s oblateness, solar
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Fig. 4. One year simulation using the quantized MPC policy of Section III. Plots include the (a) station keeping window, (b) spacecraft attitude error,
(c) reaction wheel speeds, and (d) accumulation of ∆v for each thruster.

and lunar gravitational attraction, and solar radiation pressure
are included in the simulation [8]. Solar radiation pressure
is also considered in the calculation of a disturbance torque,
as done in [15, p. 229], with the numerical values found
in [7]. The performance constraints considered in simulation
include a maximum thruster magnitude of 0.1 N, a station
keeping window of ±0.05◦ in both latitude and longitude,
and a maximum allowable attitude error of ±0.02◦ in yaw,
pitch, and roll. Simulations are performed for 425 orbits, but
only the results from the last 365 orbits are presented and
used for analysis, to remove the initial transient behavior.

The MPC policy uses a split prediction horizon of
N1 = 5 hours, N2 = 20 hours, a discretization time
step of ∆t = 1 hour, and weighting matrices of Q =
diag{Qr,Qṙ,Qθ,Qω,Qγ̇ ,Qx̃dist} and R = Rthrust + Rtorque,
where Qr = 10−3 · diag{0, 1, 1} 1/m2, Qṙ = 0 s2/m2,
Qθ = 10−3 · 1 1/rad2, Qω = 10−3 · 1 s2/rad2, Qγ̇ =
10−4 · 1 s2/rad2, Qx̃dist = 0, Rthrust = 104 1/N2, Rtorque =
104 · LTL, where L = diag{Bτ1 ,Bτ2 ,Bτ3 ,Bτ4}. The inner-
loop attitude controller gains are K1 = 0.2 · 1 s−1, Kp =
2 · 1 N·m, Kν = 100 · 1 N·m·s. The observer dynamics
of the inner-loop attitude controller are chosen as Adist =
diag{Ādist, Ādist, Ādist} and Cdist = diag{C̄dist, C̄dist, C̄dist},
where Ādist =

[
−0.001 −ω2

d
1 −0.001

]
, ωd = 2π rad/day, and

C̄dist =
[
1 0

]
. The observer matrix B̄dist is given by

B̄dist = P−1
distC̄

T
dist, where Pdist = PT

dist ≥ 0 satisfies the
Lyapunov equation ĀT

distPdist + PdistĀdist = −Qdist with
Qdist = 10−3 · 1. A simulation is first performed without
quantization, which yields ∆v = 65.925 m/s. The single-
pulse quantization scheme is then implemented with identical
parameters and also a Nfb = 1 time step between feedback,
a thrust cutoff of ε = 0.01 mN, and the weighting matrix
W = diag{Wr,Wṙ,Wθ,Wω,Wγ̇ ,Wx̃dist}, where Wr =

10−4 · diag{1, 1, 103} 1/m2, Wṙ = 1 s2/m2, Wθ = 104 ·
1 1/rad2, Wω = 10−1 · 1 s2/rad2, Wγ̇ = 10 · 1 s2/rad2, and
Wx̃dist = 10 · 1. The results of this simulation are included
in Fig. 4, where a ∆v of 65.933 m/s is achieved with an
average of 2.7 pulses per thruster per orbit. The number of
thruster pulses is reduced by a factor of ten compared to the
PWM scheme in [7] and ∆v is within 0.01 m/s of the non-
quantized result, which highlights the effectiveness of the
single-pulse quantization scheme. Figs. 4(a) and 4(b) show
that state constraints are satisfied throughout the simulation.

A. Analysis of Quantization Scheme

Numerical simulations are performed to analyze the choice
of parameters in the single-pulse quantization scheme. The
parameters considered include the thrust cutoff value (ε),
the number of time steps between feedback (Nfb), and the
weighting matrix in the quantization objective function (W).

1) Thrust Cutoff Value (ε): The thrust cutoff value deter-
mines the smallest thrust magnitude to quantize as an on-off
thruster pulse. A lower bound on ε may be determined by
the specifications of the thruster, as on-off electric thrusters
often have a minimum pulse width. However, using the
lowest possible value of ε may not yield the best ∆v
performance and/or a reasonable number of thruster pulses.
Simulations are performed with cutoff values in the range
0.001 mN ≤ ε ≤ 1 mN to quantify the effect of ε on
performance, with results shown in Fig. 5. Fig. 5 shows that
the relationships between ε and the performance metrics ∆v
and the number of on-off pulses per thruster per orbit is non-
trivial. A small value of ε can yield reasonable ∆v, but results
in many thruster pulses (e.g., ∆v = 69.6 m/s and 14.73
pulses/thruster/orbit for ε = 0.001 mN). A large value of ε
typically results in a lower number of thruster pulses, but a
large ∆v (e.g., ∆v = 83.8 m/s and 5.62 pulses/thruster/orbit
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in quantization scheme.

for ε = 1 mN). The choice of ε ultimately depends on
the problem at hand, and is an important tuning parameter
in obtaining optimal performance. In our simulations, the
optimum is achieved by an intermediate value (ε = 0.01 mN).

2) Number of Time Steps Between Feedback (Nfb): A
feature of the proposed quantization scheme is that a single
pulse can be generated for a feedback period that spans more
than one discrete time step. The number of time steps be-
tween feedback periods is determined by the positive integer
parameter Nfb. It is observed in simulation that there is an
upper bound on Nfb determined by the controller parameters,
beyond which the error induced by quantization becomes too
large to satisfy state constraints. For the controller parameters
used in Section V with a split horizon of N1 = 5 hours and
N2 = 20 hours, only Nfb = 1 is feasible. Therefore, to
illustrate the effect of Nfb on performance, simulations are
performed with a non-split horizon of N1 = N2 = 20 hours
with Nfb = 1, Nfb = 2, and Nfb = 3. The results in
Fig. 6 demonstrate how using Nfb = 2 instead of Nfb = 1
reduces the number of pulses from 7.28 pulses/thruster/orbit
to 3.32 pulses/thruster/orbit, but increases ∆v from 73.6 m/s
to 74.4 m/s. The selection of Nfb = 3 yields an increase
of both ∆v and the number of thruster pulses compared to
Nfb = 2. As demonstrated, tuning Nfb typically allows for
a tradeoff in ∆v and the number of thruster pulses, but this
tuning may be restricted depending on the problem at hand.

3) Weighting Matrix (W): The selection of the weighting
matrix in the objective function of the quantization scheme
has a significant influence on the quantization results, as the
value of W dictates which state errors to minimize during
quantization. Three different choices of W are examined in
this section: W1 = W used in Section V, W2 = W1/2

1 , and
W = 1. Results with W1, W2, and W3 are given in Table I,
where W1 gives the lowest ∆v and number of thruster pulses.
Based on the authors’ experience, it is beneficial to use a
weighting matrix that normalizes the states to roughly the
same order of magnitude, which is how W1 was chosen.

TABLE I
EFFECT OF VARYING W IN QUANTIZATION SCHEME

W ∆v (m/s) Pulses/orbit
W1 (Baseline) 65.9 2.67

W2 75.5 5.27

W3 66.9 3.65

VI. CONCLUSIONS

This paper presented a novel quantization scheme for
the simultaneous station keeping, attitude control, and mo-
mentum management of a GEO satellite that yields very
little change in performance due to quantization with an
order of magnitude less on-off thruster pulses than PWM
quantization. The number of on-off thruster pulses obtained
is implementable over a 15 year lifespan using existing low-
thrust electric propulsion technology. The proposed single-
pulse quantization scheme may be applicable to other control
problems where quantization of continuous control inputs
with a limited number of on-off control inputs is desired.

REFERENCES

[1] M. Martinez-Sanchez and J. E. Pollard, “Spacecraft electric propulsion
– an overview,” J. Propul. Power, vol. 14, no. 5, pp. 688–699, 1998.

[2] A. Sukhanov and A. Prado, “On one approach to the optimization
of low-thrust station keeping manoeuvres,” Adv. Apace Res., vol. 50,
no. 11, pp. 1478 – 1488, 2012.

[3] M. Leomanni, A. Garulli, A. Giannitrapani, and F. Scortecci, “All-
electric spacecraft precision pointing using model predictive control,”
J. Guid. Control Dynam., vol. 38, no. 1, pp. 161–168, 2015.

[4] M. Leomanni, E. Rogers, and S. B. Gabriel, “Explicit model predictive
control approach for low-thrust spacecraft proximity operations,” J.
Guid. Control Dynam., vol. 37, no. 6, pp. 1780–1790, 2014.

[5] R. Vazquez, F. Galivan, and E. F. Camacho, “Pulse-width predictive
control for LTV systems with application for spacecraft rendez-vous,”
Control Eng. Pract., vol. 60, pp. 199–210, 2017.

[6] C. Gazzino, C. Louembet, D. Arzelier, N. Jozefowiez, D. Losa,
C. Pittet, and L. Cerri, “Integer programming for optimal control of
geostationary station keeping of low-thrust satellites,” LAAS Report
16341, July 2017.

[7] D. Zlotnik, S. Di Cairano, and A. Weiss, “MPC for coupled station
keeping, attitude control, and momentum management for GEO satel-
lites using on-off electric propulsion,” in P. IEEE Conf. Contr. Techol.
Appl., 2017, pp. 1835–1840.
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