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Abstract
This study addresses the use of GPR techniques for VRLA battery voltage prediction purposes
in PV offgrid systems. The goal is to know whether the system is able to endure a predictable
power consumption pattern without running out of energy. Two approaches are considered:
sample based prediction and pattern-based forecasting.
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MISSPECIFIED BAYESIAN CRAMÉR-RAO BOUND FOR SPARSE BAYESIAN LEARNING
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ABSTRACT

We consider a misspecified Bayesian Cramér-Rao bound
(MBCRB), justified in a scenario where the assumed data
model is different from the true generative model. As an
example of this scenario, we study a popular sparse Bayesian
learning (SBL) algorithm where the assumed data model,
different from the true model, is constructed so as to facilitate
a computationally feasible inference of a sparse signal within
the Bayesian framework. Formulating the SBL as a Bayesian
inference with a misspecified data model, we derive a lower
bound on the mean square error (MSE) corresponding to
the estimated sparse signal. The simulation study validates
the derived bound and shows that the SBL performance ap-
proaches the MBCRB at very high signal-to-noise ratios.

Index Terms— Bayesian Cramér-Rao bound, misspeci-
fied model, sparse Bayesian learning, mean square error

1. INTRODUCTION

Recovering sparse signals from limited number of noisy
measurements has received considerable attention in the liter-
ature [1]. Along with the greedy [2] and convex optimization-
based [3] recovery algorithms, Bayesian formulation of the
sparse recovery problem has also been considered [4, Ch.
13]. Although the Bayesian sparse recovery framework is
built upon an intuitively appealing generative model for the
sparse signal, its main difficulty is computationally pro-
hibitive inference. Consequently, much of the effort within
the Bayesian sparse recovery framework has been geared to-
wards formulating generative models for sparse signals which
render computationally feasible inference [5]. In that regard,
sparse Bayesian learning (SBL) stands out as a particularly
handy and popular approach [6].

The SBL imposes on the unknown sparse signal a partic-
ular generative model with approximately sparse realizations.
This potentially sacrifices signal recovery performance with
the benefit of alleviating the computational burden of the in-
ference. Essentially, the SBL prior can be seen as a misspec-
ified model for the unknown sparse signal. In general, model
mismatch is quite common in signal processing, and arises
from simplifying or not fully understanding data generation
mechanism, or as a result of data modeling with the aim to
enable feasible or simpler computations. A theoretical treat-

ment of the model mismatch, in particular the development
of Cramér-Rao bound for misspecified data models, has rel-
atively recently started to gain interest in signal processing
community. An accessible background on this topic and an
overview of important applications of the theory on misspeci-
fied bounds to signal processing models is provided in [7] and
references therein.

In this paper, we derive a mean square error (MSE) bound
corresponding to the SBL-based sparse signal recovery. In
doing so, we view the SBL model as a misspecified Bayesian
model for the sparse signal and build upon the only two
existing works (to the best of our knowledge and also as
claimed in [7]) on misspecified Bayesian Cramér-Rao bound
(MBCRB) [8, 9]. In particular, we provide a concise devel-
opment of the MBCRB from those papers, with corrections
of some minor inconsistencies. Then, we apply the derived
MCRB to the SBL model for sparse signal recovery. Fi-
nally, we validate the bound with numerical simulations and
provide insights about the SBL performance.

2. SPARSE BAYESIAN LEARNING

A linear underdetermined measurement model represents
vector of M measurements, y ∈ CM×1, as

y = Ax + v (1)

where A ∈ CM×N is a (known) measurement matrix with
M < N , x ∈ CN×1 is vector representation of an unknown
sparse signal and v ∈ CN×1 is noise, here assumed circularly
symmetric Gaussian distributed, i.e., v ∼ CN (0, σ2

vIN ). De-
noting a prior distribution (i.e., the generative model) of x
with p(x), the posterior distribution of x upon observing y is
given by

p(x|y) ∝ p(y|x) p(x) (2)

where the data likelihood p(y|x) directly follows from the
Gaussian noise statistics. The prior p(x) is specified so that it
reflects the sparse nature of x. For example, each entry xi in
x is, according to the Bernoulli-Gaussian model [4], indepen-
dently generated as the product of realizations from Bernoulli
and Gaussian random variables. As such, the parameter r of
the Bernoulli distribution controls the sparsity of x in a sense
that smaller r yields smaller expected number of non-zero en-
tries in x. Although this model naturally generates a sparse re-



alization of x, the associated Bayesian inference problem (2)
is a combinatorial problem with exponential complexity inN .

The SBL is a hierarchical Bayesian modeling frame-
work developed to overcome computational difficulties aris-
ing from the Bernoulli-Gaussian and alike models p(x). The
SBL is framed around a sparsity-promoting prior q(x), whose
realizations are ”softly” sparse in a sense that most entries
are small in magnitude and close to zero. This is in contrast
with realizations of p(x) which are purely sparse, with the
majority of entries being exactly equal to zero. While the
SBL approximates the generative model of x, it enables a
computationally feasible inference of x.

More specifically, the SBL assumes each entry in x is
distributed according to a zero-mean Gaussian distribution
whose inverse variance is a sample from a Gamma distribu-
tion. Formally,

q(x|α) = CN (x; 0,Σα) (3)

with Σα = diag−1{α}, where α ∈ RN×1 is a precision
vector. The entries in the precision vector αi, i = 1, . . . , N ,
are independent and Gamma distributed

q(αi) = Gamma(αi; a, b) =
ba

Γ(a)
αa−1i e−bαi (4)

where a and b are, respectively, the shape and rate parameter,
usually chosen such that the distribution of the precision vec-
tor is non-informative, i.e., does not favor any particular real-
ization of α. The intuition behind the SBL model is that the
resulting prior distribution for each entry xi, q(xi), is strongly
peaked around 0 and exhibits heavy tails away from 0. In
other words, it is a soft version of the hard constraint that
most of xi’s are zero, as explicitly modeled with p(x). This
can be seen from a closed-form expression for q(xi) when
a = 1, which leads to an exponentially distributed precision
αi with parameter b, such that

q(xi) =

∫ ∞
0

q(xi|αi)q(αi)dαi =
π

b

1

(|xi|2 + b)
2 (5)

We assume a = 1 and utilize (5) in Section 4 for analytical
tractability. This is also justified because with small b, the re-
sulting prior on αi is non-informative, as desired. In general,
the SBL also places a prior on variance σ2

v . However, we as-
sume it is known and, thus, the posterior distribution of x and
α is

q(x,α|y) ∝ q(y|x) q(x|α) q(α) (6)

where the likelihood model q(y|x) = p(y|x) and q(x) =∏N
i=1 q(xi). To estimate x, the expectation-maximization

(EM) algorithm alternates between computing a point esti-
mate of α and inferring q(x|y;α) [6]. Alternatively, the
Variational Bayes (VB) approximates the posteriors on x and
α using the mean field approximation (MFA) approach [6],
attaining a similar recovery performance as the EM algo-
rithm.

While a number of reported simulation studies have
shown that the SBL succeeds to correctly capture the sparse
support of x, to the best of our knowledge, there are no the-
oretical results in this domain. Using some recent results
that characterize bounds for misspecified models, we derive
a MSE bound corresponding to the estimation of x under the
misspecified model q(x). We emphasize that the presented
analysis is derived for a general model p(x).

3. MISSPECIFIED BAYESIAN BOUND

This part summarizes important results on the misspecified
Bayesian Cramér-Rao bound (MBCRM) from [8] and [9].
Aside from providing a concise summary of the MBCRB
derivation, we slightly expand on some derivation steps out-
lined in those references and correct minor inconsistencies.

A common approach in the derivation of bounds is to
assume that data and parameters are real-valued. Since all
quantities in the considered problem are complex-valued, we
present the background on the MBCRB assuming complex
space. The derivation of the Cramér-Rao bound involves tak-
ing derivatives of a real-valued function (logarithm of the data
likelihood) with respect to a complex-valued x. This is done
by treating the real-valued function as a function of x and x∗

(complex conjugate of x) and taking the derivative with re-
spect to x∗, assuming x is an independent variable [10].

We define the parameter vector θ to comprise of the un-
known x and its complex-conjugate x∗, that is

θ =
[

xT xH
]T

(7)

Given that θ does not contain additional information aside
from x, note that replacing x with θ makes no change in
the corresponding probability distribution. For example,
p(y,θ) = p(y,x) and we interchangeably use θ and x in the
expressions for probability distributions.

Denoting with θ̂q(y) an estimate of θ, obtained from the
measurement y under the assumed generative model q(y,x),
the estimation error is defined as

ε(y,θ) = θ̂q(y)− θ, (8)

where θ is true value of the unknown parameter. The estima-
tor’s conditional mean is evaluated by taking the expectation
of θ̂q(y) with respect to p(y|θ),

µ(θ) = Ep(y|θ)
[
θ̂q(y)

]
(9)

The correlation matrix of the estimation error ε can be ex-
pressed as

Ep
[
εεH

]
= Ep

[
ξξH

]
+ Ep(θ)

[
bbH

]
(10)

where, to keep notation uncluttered, p , p(y,θ), and the
error term ξ and bias b are, respectively, defined as

ξ(y,θ) = θ̂q(y)− µ(θ) (11)
b(θ) = µ(θ)− θ (12)



In the following, we lower bound the correlation matrix
of the error term ξ. This is done by using the matrix general-
ization of the Cauchy-Schwarz inequality so that [8, 9]

Ep
[
ξξH

]
� Ep

[
ξηH

]
Ep
[
ηηH

]−1 Ep [ηξH] (13)

where X � Y means X−Y is a positive semi-definite ma-
trix and η = η(y,θ) is the score function which controls the
tightness of the bound [7]. A detailed derivation of (13) is pre-
sented in [11] for the case of deterministic parameter θ when
all expectations in (13) are taken with respect to p(y;θ). A
generalization to the Bayesian setting is done by taking the
expectations with respect to p(y,θ).

As a general suggestion, the score function is selected so
that the lower bound (13) is as tight as possible. However,
there is no definite rule as to how to specify η. The studies on
misspecified bounds commonly choose

η(y,θ) =
∂ log q(y|θ)

∂θ∗
− Ep(y|θ)

[
∂ log q(y|θ)

∂θ∗

]
(14)

The motivation for this choice for η stems from its relation-
ship to the classical CRB [11]. Namely, in the case of a per-
fectly specified generative model (that is, p(y,θ) ≡ q(y,θ))
and assuming the second term of (14) is zero (which is a well-
known regularity condition for deterministic CRB), the deter-
ministic CRB is obtained from (13), where the score function
is the first term of (14). Consequently, the score function η for
the misspecified Bayesian setting is given as the score func-
tion which yields the deterministic CRB, minus its (possibly)
non-zero mean under the true model p(y|θ) [11].

Having specified η, we turn our attention to ξ. In general,
we may constrain the cross-correlation matrix Ep

[
ξηH

]
and

obtain a bound valid for all estimators satisfying such a con-
straint, as indicated in [9]. Instead, we directly approximate
the error term ξ using the approach from [8]. In that regard,
it is assumed that θ̂q(y) is the MAP estimate, obtained from
maximizing the posterior q(θ|y) ∝ q(y,θ). In addition, the
MAP estimate is assumed to be in the vicinity of µ , µ(θ).
The Taylor series expansion of the data log-likelihood func-
tion around µ is given by

log q(y,µ + ∆θ) = log q(y,µ) +
∂ log q(y,θ)

∂θ∗

∣∣∣∣
µ

∆θ +

1

2

∂2 log q(y,θ)

∂θ∗θT

∣∣∣∣
µ

∆θHθ +O(‖∆θ‖2) (15)

Neglecting the higher-order terms in the Taylor series expan-
sion (15), equating to zero the first derivative of the resulting
expression with respect to ∆θ, and solving for ∆θ yields an
approximation for the error term

ξ(y,θ) ≈ −

(
∂2 log q(y,θ)

∂θ∗θT

∣∣∣∣
µ

)−1
∂ log q(y,θ)

∂θ∗

∣∣∣∣
µ

(16)

Note that ξ is still function of θ because the mean µ is, in
general, a function of θ.

Substituting (14) and (16) into (13) yields lower bound
for the correlation matrix of the error term ξ. The sum of
this bound and the term related to the bias b, yields the
lower bound on the correlation matrix of the estimation error,
E
[
εεH

]
. The derived bound applies to all MAP estimators,

of mean µ, obtained from the observed data y under the
assumed model q(y,x). The requirement on the estimator’s
mean limits the applicability of the derived bound. Derivation
of a bound not subject to this limitation is viewed as a next
important development in this area [7].

4. MSE BOUND FOR SBL MODEL

We derive in this part the MBCRB corresponding to the SBL
model q(y,θ). We start with evaluating the score function η.
Taking the first derivative of the data log-likelihood yields the
expression for the first term in (14),

f(y,θ) ,
∂ log q(y|θ)

∂θ∗
= − 1

σ2
v

[
Bx−AHy

(Bx−AHy)∗

]
(17)

where B = AHA. Noting that Ep(y|θ) [f(y,θ)] = 0, the
score function is given by

η(y,θ) = f(y,θ) (18)

The correlation matrix of η, needed for the bound in (13), is
after algebraic computations obtained as

Ep
[
η(y,θ)ηH(y,θ)

]
=

1

σ2
v

[
B 0N×N

0N×N BT

]
, F

(19)
To evaluate the error term ξ using (16), we assume

µ(θ) = θ. That is, the bound derived here holds for all
estimators whose mean with respect to p(y|θ) is equal to the
true value of the unknown parameter θ. Hence, the term with
the first derivative in (16) is given by

∂ log q(y,θ)

∂θ∗
=

∂ log q(y|θ)

∂θ∗
+
∂ log q(θ)

∂θ∗

= f(y,θ) + g(θ), (20)

where f(y,θ) is given by (17) and the k-th entry in g(θ) is
using (5) computed as

[g(θ)]k = −2×

{
xk

|xk|2+b , k = 1, . . . , N
x∗
k−N

|xk−N |2+b , k = N + 1, . . . , 2N
(21)

The term with the second derivative in (16) is given by

∂2 log q(y,θ)

∂θ∗θT
=
∂2 log q(y|θ)

∂θ∗θT
+
∂2 log q(θ)

∂θ∗θT
(22)



The second derivative of the data log-likelihood in (22) is
computed by taking the first derivative of f(y,θ) from (17).
After some algebraic manipulation this evaluates to

∂2 log q(y|θ)

∂θ∗θT
= − 1

σ2
v

[
B 0N×N

0N×N BT

]
= −F (23)

The second derivative of q(θ) is using (21) evaluated as

∂2 log q(θ)

∂θ∗θT
=

[
−Σ(x) 0

0 −Σ(x)

]
, −G(θ) (24)

where Σ(x) is the diagonal matrix with the k-th diagonal en-
try given by

[Σ(x)]k =
2b

(|xk|2 + b)2
, k = 1, . . . , N (25)

The error term ξ is then using (20), (22), (23) and (24) suc-
cinctly expressed as

ξ(y,θ) = −(F + G(θ))−1(f(y,θ) + g(θ)) (26)

The cross-correlation matrix between the error term ξ and
the score function η is using (26) and (18), evaluated as

Ep
[
ξ(y,θ)ηH(y,θ)

]
=

−Ep
[
(F + G(θ))−1(f(y,θ) + g(θ))fH(y,θ)

]
=

−Ep(θ)
{

(F + G(θ))−1Ep(y|θ)
[
f(y,θ)fH(y,θ)

]}
(27)

where we utilize Ep(y|θ) [f(θ)] = 0. The derivation of (19)
reveals that

Ep(y|θ)
[
f(y,θ)fH(y,θ)

]
= F (28)

Thus,

Ep
[
ξ(y,θ)ηH(y,θ)

]
= −Ep(θ)

[
(F + G(θ))−1

]
F (29)

Substituting (29) and (19) into (13) yields

Ep
[
ξξH

]
� Ep(θ)

[
(F + G(θ))−1

]
F Ep(θ)

[
(F + G(θ))−1

]
(30)

Since we limited the bound derivation for the estimators sat-
isfying µ(θ) = θ, the bias term b = 0. Hence, the lower
bound from (30) also lower bounds the correlation matrix of
the estimation error, Ep

[
εεH

]
.

The lower bound on the norm of the estimation error is
obtained by taking the trace of the lower bound matrix in (30).
According to the parameter vector definition (7), the norm of
the error in estimating x is lower bounded by taking the trace
of the upper-left N ×N submatrix of the lower bound matrix
in (30). Using (19) and (24), we finally obtain the MBCRB
for the error in estimating x

Ep
[
‖x− x̂‖22

]
≥ σ2

v tr {HBH} (31)

where tr{ } denotes the trace operator and

H = Ep(x)
[(

B + σ2
vΣ(x)

)−1]
(32)

Above, H is, in general, evaluated using Monte-Carlo simu-
lations for a given true generative model p(x).
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SBL: N=100, M=40, K=5
Bound: N=100, M=40, K=5
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Fig. 1. Simulated MSE of the SBL vs. corresponding bound.

5. NUMERICAL STUDY

To validate the derived bound, we simulate the MSE per-
formance of the SBL algorithm when used to recover N -
dimensional sparse vector with K non-zero entries from M
observations. We set b = 10−5 in the SBL and employ the
EM algorithm for inference, whose MAP estimate is the final
estimate for x. The measurement matrix A is pre-fixed by
sampling its entries from CN (0, 1) and normalizing columns
to the unit norm. Although the bound in (31) is valid for a gen-
eral p(x), the simulation study is done for a fixed sparse signal
x0 so that p(x) = δ(x− x0), which admits a direct (without
simulations) computation of the derived bound. More specifi-
cally, we (randomly) generate x0 and keep it fixed over 1,000
Monte-Carlo runs, randomized over AWGN realizations for
a given SNR, defined as SNR = ‖x0‖2/Mσ2

v . The compar-
ison between the SBL and the corresponding bound for two
different sets of parameters N , M and K in shown in Fig. 1.
As can be seen, the SBL performance is within few dBs with
respect to our bound and approaches it at large SNR values.

6. CONCLUSIONS AND FUTURE WORK

We present a concise derivation of the misspecified Bayesian
Cramér-Rao bound and its application to the sparse Bayesian
learning (SBL) framework. The numerical tests show the
SBL performance is within few dB’s from the bound and ap-
proaches it for large SNR values. As for future work, the de-
rived bound can be generalized to the case of unknown noise
variance. Also, the development of possibly tighter bounds at
moderate SNR values is justified. In addition, alternatives to
approximating the error term in the derivation of the MBCRB,
which restricts its validity to a particular class of estimators,
are needed. Finally, a more thorough bound validation is re-
quired.
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