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Abstract
This paper investigates angular-domain channel estimation for massive multiple-input multiple-
output (MIMO) systems using signed measurements with antenna-varying thresholds. We
derive the Cramer-Rao bounds (CRBs) for estimating angles-of-arrival (AoAs), angles-of-
departure (AoDs) and associated path gains and compare them with their counterparts of
using time-varying and zero thresholds. We then introduce the maximum likelihood (ML)
method to estimate the massive MIMO channel parameters. Since the ML estimator is com-
putationally prohibitive, we also consider a relaxation based cyclic algorithm, referred to as
one-bit RELAX, for massive MIMO channel estimation. Numerical results are provided to
compare the performances of using different thresholding schemes to obtain signed measure-
ments and to verify the effectiveness of the one-bit RELAX algorithm for channel estimation.
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ABSTRACT
This paper investigates angular-domain channel estima-

tion for massive multiple-input multiple-output (MIMO)
systems using signed measurements with antenna-varying
thresholds. We derive the Cramér-Rao bounds (CRBs) for
estimating angles-of-arrival (AoAs), angles-of-departure
(AoDs) and associated path gains and compare them with
their counterparts of using time-varying and zero thresholds.
We then introduce the maximum likelihood (ML) method
to estimate the massive MIMO channel parameters. Since
the ML estimator is computationally prohibitive, we also
consider a relaxation based cyclic algorithm, referred to as
one-bit RELAX, for massive MIMO channel estimation. Nu-
merical results are provided to compare the performances
of using different thresholding schemes to obtain signed
measurements and to verify the effectiveness of the one-bit
RELAX algorithm for channel estimation.

Index Terms— Massive MIMO, channel estimation,
Cramér-Rao bound, signed measurements, antenna-varying
thresholds.

1. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems
have the potential to remarkably improve the communication
performance in terms of link reliability, spectral efficiency,
and transmit energy efficiency [1, 2]. However, such systems
use a large number of antennas at base stations resulting in
prohibitive cost and power consumption when a large number
of high-resolution analog-to-digital converters (ADCs) are
used at the antenna outputs. This problem becomes more
severe in ultra-wideband [3] and millimeter wave (mmWave)
communication systems [4, 5] due to the high sampling rate
required by these systems. Low-resolution ADCs, such as
the extreme case of one-bit ADCs, have been considered to
mitigate this problem [6–12].

Using one-bit ADCs at the receive antenna outputs, the
power consumption and cost of massive MIMO systems can
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be dramatically reduced while still achieving an acceptable
performance [13]. Channel estimation and signal detection
for massive MIMO with one-bit ADCs were studied in [13–
16] and the achievable rate was investigated in [15, 17, 18].
However, in the aforementioned works, only zero threshold
was considered for one-bit ADCs when the noise variance
is assumed known. In the high SNR regime, a large capac-
ity loss occurs [4]. It is also noticed that the performance of
channel estimation degrades significantly [13, 14, 16] or suf-
fers from a high-SNR error floor [15]. More recently, one-
bit ADCs with time-varying thresholds [19–21] are consid-
ered for massive MIMO systems [22], where the Cramér-Rao
bound (CRB) analysis shows that enhanced channel estima-
tion can be obtained, especially at high SNRs. Moreover, [22]
shows that one-bit ADCs with zero threshold lead to an am-
biguity between the path gain and noise variance.

In this paper, we consider a simple and inexpensive
thresholding scheme that uses different but fixed thresholds
for one-bit ADCs for different receive antennas, referred to
as one-bit sampling with antenna-varying thresholds. We
investigate the corresponding channel estimation by deriv-
ing the CRB matrix for angles-of-arrival (AoAs), angles-of-
departure (AoDs) and their associated path gains. We show
that with antenna-varying thresholds for one-bit sampling,
the noise variance can be unknown and estimated. More-
over, the antenna-varying thresholding scheme is simple for
implementation and requires no further hardware controls
over ADCs, while providing almost the same performance
as the time-varying thresholding scheme. We then introduce
the maximum likelihood (ML) estimator for channel estima-
tion. Considering the high computational complexity of the
ML estimator, we also introduce a relaxation based cyclic
algorithm, referred to as one-bit RELAX algorithm [21],
for channel estimation. Finally, numerical results are pro-
vided to compare the performances of different thresholding
schemes for one-bit sampling and to verify the effectiveness
of the one-bit RELAX algorithm for massive MIMO channel
estimation.



2. SYSTEM MODEL

2.1. Massive MIMO System Model

Consider a point-to-point flat block-fading massive MIMO
system with Nt transmit antennas at the mobile station (MS)
and Nr receive antennas at the base station (BS). In the train-
ing phase of each coherent processing interval, a pilot signal
of length K is sent from the MS to the BS. Then the received
signal Y ∈ CNr×K at the BS can be represented as

Y=
√
ρHX+N, (1)

where H ∈ CNr×Nt is the channel matrix and X ∈ CNt×K is
the transmit pilot signal with E

[
xHk xk

]
= 1, 1 ≤ k ≤ K. xk

represents the kth column of X. N ∈ CNr×K is the circularly
symmetric complex-valued white Gaussian noise matrix with
i.i.d. CN

(
0, σ2

)
entries, and ρ is the average transmit power.

Consider the geometric channel model parameterized via
angles and gains associated with different propagation paths.
Assume that there are Ns active scatterers between the MS
and the BS. Denote ξ` as the gain of the `th scattering path, θ`
and ϕ` as the associated AoA and AoD, respectively. Hence,
for a uniform linear array (ULA), the `th steering vectors for
the BS and MS are, respectively,

αBS (θ`) =
[
1, ej2π sin(θ`)

dr
λ , · · · , ej(Nr−1)2π sin(θ`)

dr
λ

]T
,

(2)
and

αMS (ϕ`) =
[
1, ej2π sin(ϕ`)

dt
λ , · · · , ej(Nt−1)2π sin(ϕ`)

dt
λ

]T
,

(3)
where (·)T denotes transpose, λ is the wavelength, and dr and
dt are the antenna spacings of the ULAs at the receiver and
transmitter, respectively. Then the channel matrix H is given
by

H=

Ns∑
`=1

ξ`αBS (θ`)α
H
MS (ϕ`)

,ABSHΛAH
MS,

(4)

where (·)H denotes conjugate transpose. The `-th columns
of ABS ∈ CNr×Ns and AMS ∈ CNt×Ns are αBS (θ`) and
αMS (ϕ`), respectively. Also, HΛ is a diagonal matrix with
diagonal elements ξn, n = 1, · · · , Ns. Thus the received sig-
nal at the BS has the following form:

Y=
√
ρABSHΛAH

MSX+N. (5)

2.2. One-Bit Quantization

Let yv= vec (Y), where vec(Y) denotes the vectorization
operation which stacks the columns of Y on top of each other.

Using vec (ABC) =
(
CT ⊗A

)
vec (B), the received signal

can be vectorized as

yv= vec
(√
ρABSHΛAH

MSX
)

+n

=
[(√

ρXTA∗MS

)
⊗ABS

]
h+n

,Γ (θ,ϕ) h+n,

(6)

where (·)∗ denotes the complex conjugate of a matrix, and
h= vec (HΛ) =

[
ξ1e

T
1 , · · · ξNseTNs

]T
, with en denoting

an vector with 1 at the nth element and 0 elsewhere, and
n= vec (N). We can rewrite (6) in a real-valued form as
follows:

yr=

[
Re (yv)
Im (yv)

]
=Γr (θ,ϕ) hr+nr, (7)

where Γr (θ,ϕ) =

[
Re (Γ) −Im (Γ)
Im (Γ) Re (Γ)

]
∈ R2KNr×2N2

s ,

hr =

[
Re (h)
Im (h)

]
∈ R2N2

s×1, and nr=

[
Re (n)
Im (n)

]
∈

R2KNr×1. Also, Re(·) and Im(·) represent the operation
of taking the real and imaginary part of a matrix, respectively.

In one-bit massive MIMO systems, the signed measure-
ments of the in-phase and quadrature components of the sig-
nal are from a pair of one-bit ADCs equipped at each receive
antenna. The quantized output can be written as:

z= sign (yr−η) , (8)

where η ∈ R2KNr×1 is the threshold vector and sign (x) is
the element-wise one-bit quantization function, which returns
-1 if x ≤ 0 and 1 else. Let χ =

[
θT ,ϕT , ξTR, ξ

T
I

]T ∈
R4Ns×1 be the unknown channel parameter vector, where
ξR = Re(ξ) and ξI = Im(ξ) with ξ = [ξ1, · · · , ξNs ]T . The
problem of interest here is to estimate χ with the quantized
output z and the known threshold vector η.

3. CRAMÉR-RAO BOUNDS

As the real-valued noise nr has variance σ2

2 , the log-likelihood
function of z is given by:

L (χ) = ln p (z|χ) =

2KNr∑
m=1

ln Φ

(
zm
γrmhr − ηm

σ
/√

2

)
, (9)

where Φ (x) = 1√
2π

∫ x
−∞ e−t

2/2dt is the standard normal cu-
mulative distribution function (cdf) and γrm is themth row of
Γr (θ,ϕ). When the noise variance σ2 is known, the general
expression of the (i, j)th element of the Fisher information
matrix (FIM) is given by:

FIMi,j = −E

[
∂2L (χ)

∂χi∂χj

]
, 1 ≤ i, j ≤ 4Ns, (10)

where E [·] denotes the expectation operator and ∂
∂χi

repre-
sents the partial derivative with respect to the ith element of



χ. When σ2 is unknown, it should also be included into the
unknown parameter vector χ, and thus the FIM becomes a
(4Ns + 1)× (4Ns + 1) matrix. The specific expressions of
FIMi,j are given in [22]. The CRB matrix can be calculated
as CRB = FIM−1. For the parameter χi, the lower bound
of the mean-squared error (MSE) of any unbiased estimator
is given by the (i, i)th element of the CRB matrix, i.e.,

E
[
(χ̂i − χi)2

]
≥ CRBi,i. (11)

Note that for one-bit sampling with zero thresholding
scheme, FIM is singular due to the ambiguity between the
path gain vector hr and the noise variance σ2 when σ2 is un-
known [22]. This ambiguity can be removed by using known
antenna-varying or time-varying thresholds. For both of these
thresholding schemes, the thresholds are selected randomly
from a finite discrete set. For the time-varying thresholding
scheme, the thresholds change at each sampling instant. In
the antenna-varying thresholding case, the thresholds for all
one-bit ADCs at the antenna outputs are chose randomly once
and fixed at all times. Note that η is a space-time threshold
vector. For the time-varying thresholding scheme, the thresh-
olds are vary in both space and time. In antenna-varying case,
the thresholds are fixed in time and are only spatially-varying,
which makes it more attractive due to the simpler and less
expensive system and reduced power consumption.

4. CHANNEL ESTIMATION

4.1. Maximum Likelihood Estimation

The maximum likelihood (ML) method is considered herein
for channel estimation. For ML estimation with known noise
variance σ2, the problem to be solved is to find the parameter
estimates by minimizing the negative log-likelihood function,

χ̂ = arg min
χ

−
2KNr∑
m=1

ln Φ

(
zm
γrmhr − ηm

σ
/√

2

)
. (12)

Recall the formula (6) and note that Γr (θ,ϕ) is character-
ized only by θ and ϕ corresponding to Ns scatterers. For
given θ and ϕ, the problem of finding the optimal ξ̂R, ξ̂I that
minimize the cost function in (12) is an unconstrained convex
optimization problem [23].

When the noise variance σ2 is unknown, we can reparam-
eterize (12) by defining ε= 1

σ , β = ξR
σ , and µ = ξI

σ . Let

χ̄=
[
θT ,ϕT ,βT ,µT , ε

]T
. Thus, the problem with unknown

σ2 can be cast as

ˆ̄χ = arg min
χ̄

−
2KNr∑
m=1

ln Φ
(√

2zm
(
γrmh̄r − εηm

))
, (13)

where h̄r = hr/σ. The problem is again convex for given θ
and ϕ.

We give herein the detailed steps of the ML method when
σ2 is known, which can be easily extended to the σ2 unknown
case. Specifically, we can first establish a discrete set of L
points which forms a grid in

(
−π2 ,

π
2

]
. For the θ and ϕ se-

lected from the discrete set, we can solve the problem (12)
using, e.g., the Newton’s method. Then we obtain the optimal
ξ̂R, ξ̂I for the given θ and ϕ. We can repeat the previous step
over all possible combinations of θ and ϕ, and then select
the ML parameter estimates corresponding to the minimum
negative log-likelihood function value.

The above ML method requires a 2Ns-dimensional
search, with L points to be searched for each dimension.
Therefore the aforementioned convex optimization problem
must be solved O

(
L2Ns

)
times. As the number of scatter-

ers increases, the ML estimator becomes computationally
prohibitive.

4.2. One-Bit RELAX

In [24], a relaxation based cyclic algorithm, referred to as RE-
LAX, is proposed for sinusoidal parameter estimation in the
infinite precision quantization case. RELAX is conceptually
and computationally simple. In this work, we extend it to
massive MIMO channel estimation.

Denote χn = [θn, ϕn, ξRn, ξIn] as the parameter vector
corresponding to the nth scatterer. The received signal can
be decomposed into the sum of the signals scattered from the

Ns scatterers, i.e., Γr (θ,ϕ) hr=
Ns∑
n=1

Γr,nhr,n, where Γr,n ∈

R2KNr×2 and hr,n ∈ R2×1.
When the noise variance σ2 is known, the one-bit RELAX

algorithm begins, in Step 1, by solving (14) below, assuming
that there is only one dominate scattering path between the
BS and MS:

χ̂1 = arg min
χ1

−
2KNr∑
m=1

ln Φ

(
zm
γmr,1hr,1 − ηm

σ
/√

2

)
, (14)

where γmr,1 represents the mth row of the matrix Γr,1. The
aforementioned ML method can be used for parameter esti-
mation for this path. Then in Step 2, assume that there are
two scattering paths. The one-bit RELAX algorithm solves
the problem (15) below to estimate the parameter vector χ2

of the second strongest channel path:

χ̂2 = arg min
χ2

−
2KNr∑
m=1

ln Φ

(
zm
γ̂mr,1ĥr,1+γmr,2hr,2 − ηm

σ
/√

2

)
,

(15)
which uses the χ̂1 obtained from Step 1. With χ̂2, χ̂1 is
refined using the χ̂2 in a similar fashion to solve the problem
(16) below.

χ̂1 = arg min
χ1

−
2KNr∑
m=1

ln Φ

(
zm
γ̂mr,2ĥr,2+γmr,1hr,1 − ηm

σ
/√

2

)
.

(16)



This cyclic procedure continues until practical conver-
gence. In Step 3, one-bit RELAX assumes that Ns = 3. The
algorithm moves on to estimate the parameter vector χ̂3 of
the third strongest channel path using the χ̂1 and χ̂2 obtained
from Step 2. Then the χ̂1, χ̂2, and χ̂3 are cyclically refined.
The algorithm continues in this fashion until the parameter
vectors of all paths are estimated.

We note that the one-bit RELAX can also be implemented
in the unknown noise variance case with a slight modifica-
tion. In contrast to the original ML method, one-bit RELAX
requires only two-dimensional searches over the parameter
space of AoA and AoD for each path, resulting in signifi-
cantly reduced computational complexities.

5. NUMERICAL EXAMPLES

Numerical examples are given below to evaluate the channel
estimation performance. We consider a system model with
Nr = 16, Nt = 4 and Ns = 2. Since the channel matrix
is normalized as ‖H‖2F = NrNt, where ‖·‖2F represents the
Frobenius norm of a matrix. And with ρ = 1, the average
SNR at each receive antenna is 1

σ2 . The angular-domain pa-
rameters corresponding to the 2 scatterers, which are listed
in Table 1, are drawn randomly once and fixed at all trials.
For one-bit sampling with time-varying thresholding (TT)
and antenna-varying thresholding (AT) schemes, we use 8
discrete thresholds uniformly distributed in [−thmax, thmax]
with thmax = 0.5.
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Fig. 1. CRB comparison as a function of SNR with K = 200
when σ2 is known.

Path index AoA (θ) AoD (ϕ) Real(ξ) Imag(ξ)
1 69.50◦ −13.92◦ 0.6139 −0.4554
2 58.33◦ −44.92◦ −0.5638 0.3129

Table 1. Angular-domain channel parameters used in the sim-
ulations.

We compare the CRBs as a function of SNR when the
noise variance σ2 is known in Fig. 1. Except for the afore-
mentioned TT and AT schemes, we also consider the zero
thresholding (ZT) scheme with η = 0 and a clairvoyant
thresholding (CT) scheme with η = yr. As the CRB curves
for estimating the AoAs (θ) and AoDs (ϕ) are similar, which
also holds ture for estimating Re(ξ) and Im(ξ), we only plot
CRBs for the AoA(θ1) and Re(ξ1) corresponding to the first

scattering path here for clarity. It is shown in Fig. 1 that the
CT curve is log-linear with respect to the SNR and it provides
a lower bound for channel estimation using signed measure-
ments. For angular estimation, one-bit sampling with the ZT,
AT, and TT schemes offers similar performances. However,
for the channel gain estimation, the performance of the ZT
scheme degrades significantly in the high SNR regime.
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Fig. 2. MSE of one-bit RELAX as a function of K with SNR
= 0 dB when σ2 is unknown.

Next, we evaluate the mean-squared error (MSE) perfor-
mance of the proposed one-bit RELAX algorithm for channel
estimation as a function of pilot length K when SNR = 0 dB
as shown in Fig. 2. When the noise variance σ2 is unknown,
the FIMs corresponding to the ZT and CT schemes are singu-
lar, which means they fail to work properly in this case and,
hence, they are not included here. The MSEs are obtained
by averaging over 1000 Monte Carlo trials with random real-
izations of the noise in each trial. It is seen from Fig. 2 that
the AT scheme yields almost identical performance compared
with its TT counterpart, but at a much lower cost. Note also
that the MSEs obtained using one-bit RELAX algorithm ap-
proach the corresponding CRBs closely even when the pilot
length K is as small as 10.

6. CONCLUSION

In this paper, we have investigated massive MIMO channel
estimation using signed measurements obtained with one-bit
sampling with antenna-varying thresholds. We have de-
rived the performance bound, the CRB, for unbiased channel
estimators. In contrast to the zero thresholding scheme, time-
varying and antenna-varying thresholding schemes allow for
the noise variance to be unknown. Moreover, they are shown
to outperform their zero thresholding counterpart, especially
at high SNRs. We have also shown that the antenna-varying
thresholding scheme offers a similar performance compared
to its time-varying thresholding counterpart, but allows a
much simpler practical implementation. We also proposed
a computationally efficient algorithm, referred to as one-bit
RELAX, to mitigate the high computational complexities of
the ML approach. Numerical examples have been provided
to show that one-bit RELAX can be used to obtain accurate
channel estimates for massive MIMO systems.
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