
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Mining Point Cloud Local Structures by Kernel Correlation
and Graph Pooling

Shen, Y.; Feng, C.; Yang, Y.; Tian, D.

TR2018-041 June 08, 2018

Abstract
Unlike on images, semantic learning on 3D point clouds using a deep network is challenging
due to the naturally unordered data structure. Among existing works, Point-Net has achieved
promising results by directly learning on point sets. However, it does not take full advantage of
a points local neighborhood that contains fine-grained structural information which turns out
to be helpful towards better semantic learning. In this regard, we present two new operations
to improve PointNet with a more efficient exploitation of local structures. The first one focuses
on local 3D geometric structures. In analogy to a convolution kernel for images, we define a
point-set kernel as a set of learnable 3D points that jointly respond to a set of neighboring
data points according to their geometric affinities measured by kernel correlation, adapted
from a similar technique for point cloud registration. The second one exploits local high-
dimensional feature structures by recursive feature aggregation on a nearest-neighbor-graph
computed from 3D positions. Experiments show that our network can efficiently capture
local information and robustly achieve better performances on major datasets. Our code is
available at http://www.merl.com/research/license#KCNet

IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2018
201 Broadway, Cambridge, Massachusetts 02139

Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling

Yiru Shen∗ †

yirus@g.clemson.edu

Chen Feng∗ ‡

cfeng@merl.com

Yaoqing Yang§

yyaoqing@andrew.cmu.edu

Dong Tian‡

tian@merl.com

†Clemson University ‡Mitsubishi Electric Research Laboratories (MERL) §Carnegie Mellon University

Abstract

Unlike on images, semantic learning on 3D point clouds
using a deep network is challenging due to the naturally
unordered data structure. Among existing works, Point-
Net has achieved promising results by directly learning on
point sets. However, it does not take full advantage of a
point’s local neighborhood that contains fine-grained struc-
tural information which turns out to be helpful towards
better semantic learning. In this regard, we present two
new operations to improve PointNet with a more efficient
exploitation of local structures. The first one focuses on
local 3D geometric structures. In analogy to a convolu-
tion kernel for images, we define a point-set kernel as a
set of learnable 3D points that jointly respond to a set of
neighboring data points according to their geometric affi-
nities measured by kernel correlation, adapted from a simi-
lar technique for point cloud registration. The second one
exploits local high-dimensional feature structures by recur-
sive feature aggregation on a nearest-neighbor-graph com-
puted from 3D positions. Experiments show that our net-
work can efficiently capture local information and robustly
achieve better performances on major datasets. Our code
is available at http://www.merl.com/research/
license#KCNet

1. Introduction
As 3D data become ubiquitous with the rapid develop-

ment of various 3D sensors, semantic understanding and
analysis of such kind of data using deep networks is gaining
attentions [3, 20, 29, 32, 41], due to its wide applications in
robotics, autonomous driving, reverse engineering, and civil
infrastructure monitoring. In particular, as one of the most
primitive 3D data format and often the raw 3D sensor out-
put, 3D point clouds cannot be trivially consumed by deep
networks in the same way as 2D images by convolutional
networks. This is mainly caused by the irregular organiza-
tion of points, a fundamental challenge inherent in this raw

∗The authors contributed equally. This work is supported by MERL.

Figure 1: Visualization of learned kernel correlations.
To represent complex local geometric structures around a
point p, we propose kernel correlation as an affinity me-
asure between two point sets: p’s neighboring points and
kernel points. This figure shows kernel point positions and
width as sphere centers and radius (top row), and the cor-
responding filter responses (other rows) of 5 kernels over 4
objects. Colors indicate affinities normalized in each object
(red: strongest, white: weakest). Note the various structures
(plane, edge, corner, concave and convex surfaces) captured
by different kernels. Best viewed in color.

data format: compared with a row-column indexed image, a
point cloud is a set of point coordinates (possibly with attri-
butes like intensities and surface normals) without obvious
orderings between points, except for point clouds computed
from depth images.

Nevertheless, influenced by the success of convolutio-
nal networks for images, many works have focused on 3D
voxels, i.e., regular 3D grids converted from point clouds
prior to the learning process. Only then do the 3D con-
volutional networks learn to extract features from voxels
[2, 7, 23, 25, 30, 42]. However, to avoid the intractable com-
putation time complexity and memory consumptions, such

http://www.merl.com/research/license#KCNet
http://www.merl.com/research/license#KCNet

N
×

3

N
×

L

N
×

(L
+

3
)

Concatenation

K-NN Graph

N
×

6
4

MLP
(64,64)

N
×

1
9

2

MLP
(64,128)

N
×

6
4

N
×

1
0

2
4

MLP
(1024)

1×1024

Global
Max Pooling

Graph
Max Pooling

Local Geometric Structure

···

Kernel
Correlation

Local Feature Structure

C
o

n
ca

te
n

at
io

n

1×C

MLP
(512,256,C)

(a) Classification network.

N
×

3

N
×

L

N
×

(L
+

3
)

Concatenation

Kernel
Correlation

K-NN Graph

N
×

6
4

MLP
(64)

N
×

6
4

MLP
(64)

N
×

1
2

8

MLP
(128)

N
×

1
2

8

N
×

1
2

8

MLP
(128)

N
×

5
1

2

MLP
(512)

N
×

5
1

2

N
×

1
0

2
4

MLP
(1024)

1×1024

Global
Max Pooling

Graph Max Pooling Graph Max Pooling

N
×

(L
+

3
)

N
×

6
4

N
×

6
4

N
×

1
2

8

N
×

1
2

8

N
×

5
1

2

N
×

1
0

2
4

Shape category

N
×

C

MLP
(512,256,C)

ReplicationConcatenation

(b) Segmentation network.

Figure 2: Our KCNet architectures. Local geometric structures are exploited by the front-end kernel correlation layer
computing L different affinities between each data point’s K nearest neighbor points and L point-set kernels, each kernel
containing M learnable 3D points. The resulting responses are concatenated with original 3D coordinates. Local feature
structures are later exploited by graph pooling layers, sharing a same graph per 3D object instance constructed offline from
each point’s 3D Euclidean neighborhood. ReLU is used in each layer without Batchnorm. Dropout layers are used for the
last MLPs. Other operations and base network architectures are similar to PointNet [29] for both shape classification and part
segmentation. Solid arrows indicate forward operation with backward propagation, while dashed arrows mean no backward
propagation. Green boxes are input data, gray are intermediate variables, and blue are network predictions. We name our
networks as KCNet for short. Best viewed in color.

methods usually work on a small spatial resolution only,
which results in quantization artifacts and difficulties to le-
arn fine details of geometric structures, except for a few re-
cent improvements using Octree [32, 41].

Different from convolutional nets, PointNet [29] provi-
des an effective and simple architecture to directly learn
on point sets by firstly computing individual point featu-
res from per-point Multi-Layer-Perceptron (MLP) and then
aggregating all features as a global presentation of a point
cloud. While achieving state-of-the-art results in different
3D semantic learning tasks, the direct aggregation from per-
point features to a global feature suggests that PointNet does
not take full advantage of a point’s local structure to capture
fine-grained patterns: a per-point MLP output only encodes
roughly the existence of a 3D point in a certain nonlinear
partition of the 3D space. A more discriminative represen-
tation is expected if the MLP can encode not only “whet-
her” a point exists, but also “what type of” (e.g., corner vs.
planar, convex vs. concave, etc.) a point exists in the non-
linear 3D space partition. Such “type” information has to
be learned from the point’s local neighborhood on the 3D
object surface, which is the main motivation of this paper.

Attempting to address the above issue, PointNet++ [31]
propose to segment a point set into smaller clusters, send
each through a small PointNet, and repeat such a process
iteratively for higher-dimensional feature point sets, which
leads to a complicated architecture with reduced speed.
Thus, we try to explore from a different direction: is there
any efficient learnable local operations with clear geome-
tric interpretations to help directly augment and improve the
original PointNet while maintaining its simple architecture?

To address this question, we focus on improving Point-
Net using two new operations to exploit local geometric and

feature structures, as depicted in Figure 2, regarding two
classic supervised representation learning tasks on 3D point
clouds. Our contributions are summarized as follows:
• We propose a kernel correlation layer to exploit local

geometric structures, with a clear geometric interpre-
tation (see Figure 1 and 3).
• We propose a graph-based pooling layer to exploit lo-

cal feature structures to enhance network robustness.
• Our KCNet efficiently improves point cloud semantic

learning performances using these two new operations.

2. Related Works
2.1. Local Geometric Properties

We will first discuss some local geometric properties fre-
quently used in 3D data and how they lead us to modify
kernel correlation as a tool to enable potentially complex
data-driven characterization of local geometric structures.

Surface Normal. As a basic surface property, sur-
face normals are heavily used in many areas including 3D
shape reconstruction, plane extraction, and point set regis-
tration [5, 14, 28, 39, 40]. They usually come directly from
CAD models or can be estimated by Principal Component
Analysis (PCA) on data covariance matrix of neighboring
points as the minimum variance direction [15]. Using per-
point surface normal in PointNet corresponds to modeling
a point’s local neighborhood as a plane, which is shown
in [29, 31] to improve performances comparing with only
3D coordinates. This meets our previous expectation that a
point’s “type” along with its positions should enable better
representation. Yet, this also leads us to a question: since
normals can be estimated from 3D coordinates (not like co-
lors or intensities), then why PointNet with only 3D coor-

dinate input cannot learn to achieve the same performance?
We believe it is due to the following: 1) the per-point MLP
cannot capture neighboring information from just 3D coor-
dinates, and 2) global pooling either cannot or is not effi-
cient enough to achieve that.

Covariance Matrix. A second-order description of a lo-
cal neighborhood is through data covariance matrix, which
has also been widely used in cases such as plane extraction,
curvature estimation [11,14] along with normals. Following
the same line of thought from normals, the information pro-
vided by the local data covariance matrix is actually richer
than normals as it models the local neighborhood as an el-
lipsoid, which includes lines and planes in rank-deficient
cases. We also observe empirically that it is better than nor-
mals for semantic learning.

However, both surface normals and covariance matrices
can be seen as handcrafted and limited descriptions of local
shapes, because point sets of completely different shapes
can share a similar data covariance matrix. Naturally, to
improve performances of both 3D semantic shape classifi-
cation of fine-grained categories and 3D semantic segmen-
tation, more detailed analysis of each point’s local neighbor-
hood is needed. Although PointNet++ [31] is one direct
way to learn more discriminative descriptions, it might not
be the most efficient solution. Instead, we would like to find
a learnable local description that is efficient, simple, and has
a clear geometric interpretation just as the above two hand-
crafted ones, so it can be directly plugged into the original
elegant PointNet architecture.

Kernel Correlation. Another widely used description
is the similarity. For images, convolution (often imple-
mented as cross-correlation) can quantify the similarity be-
tween an input image and a convolution kernel [21]. Yet in
face of the aforementioned challenge of defining convolu-
tion on point clouds, how can we measure the correlation
between two point sets? This question leads us to kernel
correlation [17, 38] as such a tool. It has been shown that
kernel correlation as a function of pairwise point distance
is an efficient way to measure geometric affinity between
2D/3D point sets and has been used in point cloud registra-
tion and feature correspondence problems [17, 33, 38]. For
registration, in particular, a source point cloud is transfor-
med to best match a reference one by iteratively refining
a rigid/non-rigid transformation between the two to maxi-
mize their kernel correlation response. Thus, we propose
the kernel correlation layer to treat local neighboring points
and a learnable point-set kernel as the source and reference
respectively, which is further detailed in Section 3.1.

2.2. Deep Learning on Point Clouds

Recently, deep learning on 3D input data, especially
point clouds, attracts increasing research attention. There
exist four groups of approaches: volumetric-based, patch-

based, graph-based and point-based. Volumetric-based ap-
proach partitions the 3D space into regular voxels and apply
3D convolution on the voxels [2,7,23,25,30,42]. However,
volumetric representation requires a high memory and com-
putational cost to increase spatial resolution. Octree-based
and kd-tree based networks have been introduced recently,
but they could still suffer from the memory efficiency pro-
blem [20, 32, 41]. Patch-based approach parameterizes 3D
surface into local patches and apply convolution over these
patches [3, 24]. The advantage of this approach is the in-
variance to surface deformations. Yet it is non-trivial to
generalize from mesh to point clouds [43]. Graph-based
approach characterizes point clouds by graphs. Naturally,
graph representation is flexible to irregular or even non-
Euclidean data such as point clouds, user data on a social
network, and gene data [1, 9, 18, 19, 26, 27, 27]. There-
fore, a graph e.g. a connectivity graph or a polygon mesh
can be used to represent a 3D point cloud, convert to the
spectral representation and apply convolution in spectral
domain [4, 8, 10, 13, 19, 22]. Another study also investi-
gates convolution over edge attributes in the neighborhood
of a vertex from graphs built on point clouds [34]. Point-
based approach such as PointNet directly operates on point
clouds, with spatial features learned for each point, and
global features obtained by aggregating over point featu-
res through max-pooling [29]. PointNet is simple yet ef-
ficient for the applications of shape classification and seg-
mentation. However, global aggregation without explicitly
considering local structures misses the opportunity to cap-
ture fine-grained patterns and suffers from sensitivity to noi-
ses. To further extend PointNet to local structures, we use
a simple graph-based network: we construct k nearest neig-
hbor graphs (KNNG) to utilize the neighborhood informa-
tion for kernel correlation and to recursively conduct the
max-pooling operations in each nodes neighborhood, with
the insight that local points share similar geometric structu-
res. KNNG is usually used to establish local connectivity
information, in the applications of point cloud on surface
detection, 3D object recognition, 3D object segmentation
and compression [12, 35, 37].

3. Method
We now explain the details of learning local structures

over point neighborhoods by 1) kernel correlation that me-
asures the geometric affinity of point sets, and 2) a KNNG
that propagates local features between neighboring points.
Figure 2 illustrates our full network architectures.

3.1. Learning on Local Geometric Structure

As mentioned earlier, in our network’s front-end, we
take inspiration from kernel correlation based point cloud
registration and treat a point’s local neighborhood as the
source, and a set of learnable points, i.e., a kernel, as the

reference that characterizes certain types of local geometric
structures/shapes. We modify the original kernel correla-
tion computation by allowing the reference to freely adjust
its shape (kernel point positions) through backward propa-
gation. Note the change of perspective here compared with
point set registration: we want to learn template/reference
shapes through a free per-point transformation, instead of
using a fixed template to find an optimal transformation be-
tween source and reference point sets. In this way, a set of
learnable kernel points is analogous to a convolutional ker-
nel, which activates to points only in its joint neighboring
regions and captures local geometric structures within this
receptive field characterized by the kernel function and its
kernel width. Under this setting, the learning process can
be viewed as finding a set of reference/template points en-
coding the most effective and useful local geometric struc-
tures that lead to the best learning performance jointly with
other parameters in the network.

Specifically, we adapt ideas of the Leave-one-out Kernel
Correlation (LOO-KC) and the multiply-linked registration
cost function in [38] to capture local geometric structures
of a point cloud. Let us define our kernel correlation (KC)
between a point-set kernel κ with M learnable points and
the current anchor point xi in a point cloud of N points as:

KC(κ,xi) =
1

|N (i)|

M∑
m=1

∑
n∈N (i)

Kσ(κm,xn − xi), (1)

where κm is the m-th learnable point in the kernel, N (i)
is the neighborhood index set of the anchor point xi, and
xn is one of xi’s neighbor point. Kσ(·, ·) : <D × <D →
< is any valid kernel function (D = 2 or 3 for 2D or 3D
point clouds). To efficiently store the local neighborhood of
points, we pre-compute a KNNG by considering each point
as a vertex, with edges connecting only nearby vertices.

Following [38], without loss of generality, we choose the
Gaussian kernel in this paper:

Kσ(k, δ) = exp

(
−||k− δ||2

2σ2

)
(2)

where || · || is the Euclidean distance between two points
and σ is the kernel width that controls the influence of dis-
tance between points. One nice property of Gaussian kernel
is that it decays exponentially as a function of the distance
between the two points, providing a soft-assignment from
each kernel point to neighboring points of the anchor point,
relaxing from the non-differentiable hard-assignment in or-
dinary ICP. Our KC encodes pairwise distance between ker-
nel points and neighboring data points and increases as two
point sets become similar in shape, hence it can be clearly
interpreted as a geometric similarity measure, and is inva-
riant under translation. Note the importance of choosing
kernel width here, since either a too large or a too small σ

Figure 3: Visualization of handcrafted (linear, planar, and
curved) kernels and responses, similar to Figure 1.

will lead to undesired performances (see Table 6), similar
to the same issue in kernel density estimation. Fortunately,
for 2D or 3D space in our case, this parameter can be empi-
rically chosen as the average neighbor distance in the neig-
hborhood graphs over all training point clouds.

To complete the description of the proposed new learna-
ble layer, given 1) L as the network loss function, 2) its de-
rivative w.r.t. each point xi’s KC response di = ∂L

∂KC(κ,xi)

propagated back from top layers, we provide the back-
propagation equation for each kernel point κm as:

∂L
∂κm

=

N∑
i=1

αidi

[∑
n∈N (i)

vm,i,n exp(−
||vm,i,n||2

2σ2
)
]
,

(3)
where point xi’s normalizing constant αi = −1

|N (i)|σ2 , and
the local difference vector vm,i,n = κm + xi − xn.

Although originates from LOO-KC in [38], our KC ope-
ration is different: 1) unlike LOO-KC as a compactness me-
asure between a point set and one of its element point, our
KC computes the similarity between a data point’s neig-
hborhood and a kernel of learnable points; and 2) unlike
the multiply-linked cost function involving a parameter of a
transformation for a fixed template, our KC allows all points
in the kernel to freely move and adjust (i.e., no weight decay
for κ), thus replacing the template and the transformation
parameters as a point-set kernel.

To better understand how KC captures various local ge-
ometric structures, we visualize several handcrafted kernels
and corresponding KC responses on different objects in Fi-
gure 3. Similarly, we visualize several learned kernels from
our segmentation network in Figure 1. Note that we can
learn L different kernels in KCNet, where L is a hyper-
parameter similar to the number of output channels in con-
volutional nets.

3.2. Learning on Local Feature Structure

Our KCNet performs KC only in the network front-end
to extract local geometric structure, as shown in Figure 2.
For computing KC, to efficiently store the local neighbor-
hood of points, we build a KNNG by considering each point
as a vertex, with edges connecting only nearby points. This
graph is also useful for exploiting local feature structures
in deeper layers. Inspired by the ability of convolutional
nets to locally aggregate features and gradually increase re-
ceptive fields via multiple pooling layers, we use recursive
feature propagation and aggregation along edges of the very
same 3D neighborhood graph for KC, to exploit local fea-
ture structures in the top layers.

Our key insight is that neighbor points tend to have si-
milar geometric structures and hence propagating features
through neighborhood graph helps to learn more robust lo-
cal patterns. Note that we specifically avoid changing this
neighborhood graph structure in top layers, which is also
analogous to convolution on images: each pixel’s spatial
ordering and neighborhoods remain unchanged even when
feature channels of input image expand greatly in top con-
volutional layers.

Specifically, let X ∈ <N×K represent input to the graph
pooling layer, and the KNNG has an adjacency matrix W ∈
<N×N where W(i, j) = 1 if there exists an edge between
vertex i and j, and W(i, j) = 0 otherwise. It is intuitive
that neighboring points forming local surface often share
similar feature patterns. Therefore, we aggregate features
of each point within its neighborhood by a graph pooling
operation:

Y = PX, (4)

which can be implemented as average or max pooling.
Graph average pooling averages a point’s features over

its neighborhood by using P ∈ <N×N in (4) as a normali-
zed adjacency matrix:

P = D−1W, (5)

where D ∈ <N×N is the degree matrix with (i, j)-th entry
di,j defined as:

di,j =

{
deg(i), if i = j

0, otherwise
(6)

where deg(i) is the degree of vertex i counting the number
of vertices connected to vertex i.

Graph max pooling (GM) takes maximum features over
the neighborhood of each vertex, independently operated
over each of the K dimensions. This can be simply com-
puted by replacing the “+” operator in the matrix multipli-
cation in (4) with a “max” operator. Thus the (i, k)-th entry
of output Y is:

Y(i, k) = max
n∈N (i)

X(n, k), (7)

where N (i) indicates the neighbor index set of point Xi

computed from W.
A point’s local signature is then obtained by graph max

or average pooling. This signature can represent the ag-
gregated feature information of the local surface. Note the
connection of this operation with PointNet++: each point
i’s local neighborhood is similar to the clusters/segments in
PointNet++. This graph operation enables local feature ag-
gregation on the original PointNet architecture.

4. Experiments
Now we discuss the proposed architectures for 3D shape

classification (Section 4.1), part segmentation (Section 4.2),
and perform ablation study (Section 4.3).

4.1. Shape Classification

Datasets. We evaluated our network on both 2D and 3D
point clouds. For 2D shape classification, we converted
MNIST dataset [21] to 2D point clouds. MNIST con-
tains images of handwritten digits with 60,000 training and
10,000 testing images. We transformed non-zero pixels
in each image to 2D points, keeping coordinates as in-
put features and normalize them within [-0.5, 0.5]. For
3D shape classification, we evaluated our KCNet on 10-
categories and 40-categories benchmarks ModelNet10 and
ModelNet40 [42], consisting of 4899 and 12311 CAD mo-
dels respectively. ModelNet10 is split into 3991 for training
and 908 for testing. ModelNet40 is split into 9843 for trai-
ning and 2468 for testing. As in PointNet, to obtain 3D
point clouds, we uniformly sampled points from meshes
into 1024 points of each object by Poisson disk sampling
using MeshLab [6] and normalized them into a unit ball.

Network Configuration. As detailed in Figure 2a, our
KCNet has 9 parametric layers in total. The first layer,
kernel correlation, takes point coordinates as inputs and
outputs local geometric features and concatenated with the
point coordinates. Then features are passed into the first 2-
layer MLP for per-point feature learning. The graph pooling
layer then aggregates the output per-point features into more
robust local structure features, which are concatenated with
the outputs from the second 2-layer MLP. Other configurati-
ons are similar to the original PointNet, except that 1) ReLU
is used after each fully connected layer without Batchnorm
(we found it not useful in KCNet and PointNet), and 2) Dro-
pout layers are used for the final fully connected layers with
drop ratio 0.5. We used 16-NN graph for kernel computa-
tion and graph max pooling. L = 32 sets of kernels were
used, in which each kernel had M = 16 points uniformly
initialized within [-0.2, 0.2] and kernel width σ = 0.005.
We trained the network for 400 epochs on a NVIDIA GTX
1080 GPU using our modified Caffe [16] with ADAM opti-

Method Accuracy (%)
LeNet5 [21] 99.2
PointNet (vanilla) [29] 98.7
PointNet [29] 99.2
PointNet++ [31] 99.5
KCNet (ours) 99.3

Table 1: MNIST digit classification.

Method MN10 MN40
MVCNN [36] - 90.1
VRN Ensemble [2] 97.1 95.5
ECC [34] 90.0 83.2
PointNet (vanilla) [29] - 87.2
PointNet [29] - 89.2
PointNet++ [31] - 90.7
Kd-Net(depth 10) [20] 93.3 90.6
Kd-Net(depth 15) [20] 94.0 91.8
KCNet (ours) 94.4 91.0

Table 2: ModelNet shape classification comparisons of
accuracy of proposed network with state-of-the-art. Our
KCNet has competitive performance on both ModelNet10
and ModelNet40. Note that MVCNN [36] and VRN En-
semble [2] take image and volume as inputs, while rest of
the models take point clouds as inputs.

Method #params (M) Fwd. time (ms)
PointNet(vanilla) [31] 0.8 11.6
PointNet [31] 3.5 25.3
PointNet++(MSG) [31] 1.0 163.2
Kd-Net (depth 10) 2.0 -
KCNet (M = 16) 0.9 18.5
KCNet (M = 3) 0.9 12.0

Table 3: Model size and inference time. ”M” stands for mil-
lion. Networks were tested on a PC with a single NVIDIA
GTX 1080 GPU and an Intel i7-8700@3.2 GHz 12 cores
CPU. Other settings are the same as in [31].

mizer, initial learning rate 0.001, batch size 64, momentum
0.9, momentum2 0.999, and weight decay 1e−5. No data
augmentation was performed.

Results. Table 1 and Table 2 compares our results with se-
veral recent works. In MNIST digit classification, KCNet
reaches comparable results obtained with ConvNets. In Mo-
delNet40 shape classification, our method achieves com-
petitive performance with 3.8% and 1.8% higher accuracy
than PointNet-vanilla (meaning without T-nets) and Point-
Net respectively [29], and is slightly better (0.3%) than
PointNet++ [31]. Table 3 summarizes required number of
parameters and forward time of different networks. Note
KCNet achieves better or comparable accuracy and compu-
tes more efficiently than [20, 31] with fewer parameters.

4.2. Part Segmentation

Part segmentation is an important task that requires accu-
rate segmentation of complex shapes with delicate structu-
res. We used the network illustrated in Figure 2b to predict
the part label of each point in a 3D point cloud object.

Datasets. We evaluated KCNet for part segmentation on
ShapeNet part dataset [44]. There are 16,881 shapes of
3D point cloud objects from 16 shape categories, with each
point in an object corresponds to a part label (50 parts in
total, and non-overlapping across shape categories). On
average each object consists of less than 6 parts and the
highly imbalanced data makes the task quite challenging.
We used the same strategy as in Section 4.1 to uniformly
sample 2048 points for each CAD object. We used the offi-
cial train test split following [31].

Network Configuration. Segmentation network has 10 pa-
rametric layers. Features of different layers capturing local
features are concatenated with the replicated global features
and shape information, as in [29]. Details are in Figure 2b.
Again, ReLU is used in each layer without Batchnorm. Dro-
pout layers are used for fully connected layers with drop ra-
tio 0.3. We used 18-NN graph for kernel computation and
graph max pooling. L = 16 sets of kernels are used, in
which each kernel has M = 18 points uniformly initiali-
zed within [−0.2, 0.2] and kernel width σ = 0.005. Other
hyper-parameters are the same as in shape classification. No
data augmentation was performed.

Results. We compared our method with PointNet [29],
PointNet++ [31] and Kd-Net [20]. We use intersection over
union (IoU) of each category as the evaluation metric fol-
lowing [20]: IoU of each shape instance is the average IoU
of each part that occurs in this shape category (the IoUs
of the parts belonging to other shape categories are igno-
red following the protocol of [29]). The mean IoU (mIoU)
of each category is obtained by averaging IoUs of all the
shapes in that category. The overall average instance mIoU
(Ins. mIoU) is calculated by averaging IoUs of all the shape
instances. Besides, we also report overall average category
mIoU (Cat. mIoU) that is directly averaged over 16 catego-
ries. Table 4 lists the results. Compared with PointNet++
that uses surface normals as additional inputs, our KCNet
only takes raw point clouds as input and achieves better per-
formance with more efficiency regarding computation and
parameters in Table 3. Figure 4 displays some examples of
predicted results on ShapeNet part test dataset.

4.3. Ablation Study

In this section, we further conducted several ablation ex-
periments, investigating various design variations and de-
monstrating the advantages of KCNet.

Cat. Ins. aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
mIoU mIoU phone board

shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
Kd-Net 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

KCNet (ours) 82.2 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

Table 4: ShapeNet part segmentation results. Average mIoU over instances (Ins.) and categories (Cat.) are reported.

GT PointNet Ours GT PointNet Ours GT PointNet Ours

42.3% 96.8% 69.6% 83.1% 59.3% 72.1%

68.5% 82.3% 70.8% 83.8% 61.4% 79.0%

76.5% 78.3% 59.5% 66.9% 63.5% 82.8%

48.4% 93.6% 55.8% 90.6% 84.6% 94.9%

88.8% 96.8% 64.0% 67.9% 84.1% 91.5%

48.7% 57.9% 89.9% 92.8% 59.2% 93.4%

58.2% 65.4% 63.2% 68.8% 82.7% 90.4%

68.5% 74.0% 90.8% 93.2% 39.8% 59.1%

77.2% 91.6% 69.4% 94.3% 40.2% 53.9%

Figure 4: Examples of part segmentation results on ShapeNet part test dataset. IoU (%) is listed below each result for
reference. Red arrows: KCNet improvements. Red circles: some errors in ground truth (GT). Better viewed in color.

Effectiveness of Kernel Correlation Accuracy (%)
Normal 88.4
Kernel correlation 90.5
Symmetric Functions Accuracy (%)
Graph average pooling 88.0
Graph max pooling 88.6
Effectiveness of Local Structures Accuracy (%)
Baseline: PointNet (vanilla) 87.2
Kernel correlation (geometric) 90.5
Graph max pooling (feature) 88.6
Both 91.0

Table 5: Ablation study on ModelNet40 test set.

L Acc. (%) M Acc. (%) σ Acc. (%)
16 90.7 3 90.9 1e−3 90.0
32 91.0 8 90.4 5e−3 91.0
48 91.0 16 91.0 1e−2 90.4

Table 6: Choosing hyper-parameters. Each column only
changes the corresponding parameter (base setting in bold).

Effectiveness of Kernel Correlation. Table 5 lists the com-
parison between kernel correlation and normal. In this ex-
periment, we used normals as local geometric features, con-
catenated them with coordinates and passed them into the
proposed architecture in Figure 2a. Normal of each point
was computed by applying PCA to the covariance matrix to
obtain the direction of minimal variance. Results show that
kernel correlation is better than normals.

Symmetric Functions. Symmetric function is able to make
a network invariant to input permutation [29]. In this ex-
periment, we investigated the performance of graph max
pooling and graph average pooling. As shown in Table 5,
graph max pooling has a marginal improvement over graph
average pooling, and is faster to compute, thus was adopted.

Effectiveness of Local Structures. In Table 5 we also
demonstrate the effect of our local geometric and feature
structures learned by kernel correlation and graph max
pooling, respectively. Note that our kernel correlation and
graph max pooling layer already respectively achieve com-
parable or even better performances compared to PointNet.

Choosing Hyper-parameters. KCNet have several unique
hyper-parameters: L,M , and σ, as explained in Section 3.1.
We report their individual influences in Table 6.

Robustness Test. We compared our networks with Point-
Net on robustness against random noise in the input point
cloud. Both networks are trained on the same train and test
data with 1024 points per object. The PointNet was trained

0 1 10 50 100
points replaced with uniform noise

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

PointNet
GM only
KC only
KC+GM

Figure 5: KCNet vs. PointNet on random noise. Different
numbers of points in each object are replaced with uniform
noise between [-1,1]. Metric is overall classification accu-
racy on the ModelNet40 test set. KCNet is more robust
against random noise. GM only: graph max pooling only.
KC only: kernel correlation only. KC+GM: both.

with the same data augmentation in [29] using the authors’
code. Our networks were trained without data augmenta-
tion. During testing, a certain number of randomly selected
input points were replaced with uniformly distributed noise
ranging [-1.0, 1.0]. As shown in Figure 5, our networks
are more robust against random noise. The accuracy of
PointNet drops 58.6% when 10 points were replaced with
random noise (from 89.2% to 30.6%), while ours (KC+GM)
only drops 23.8% (from 91.0% to 67.2%). Besides, it can be
seen that within the groups of experiments, graph max pool-
ing is the most robust under random noise. We speculate
that it is caused by the local max pooling - neighbor points
sharing max features along each dimension so random noise
in the neighborhood could not easily affect the prediction.
This could also explain why KC+GM is more robust than
KC only. This test shows an advantage of local structures
over per-point features - our network learns to exploit local
geometric and feature structures within neighboring regions
and thus is robust against random noise.

5. Conclusion
We proposed kernel correlation and graph pooling to im-

prove PointNet-like methods. Experiments have shown that
our method efficiently captures local patterns and robustly
improves performances of 3D point cloud semantic lear-
ning. We will generalize the kernel correlation to higher
dimensions, with learnable kernel widths in the future.

Acknowledgment
The authors gratefully acknowledge the helpful com-

ments and suggestions from Teng-Yok Lee, Ziming Zhang,
Zhiding Yu, Yuichi Taguchi, and Alan Sullivan.

References
[1] J. Atwood and D. Towsley. Diffusion-convolutional neural

networks. In Advances in Neural Information Processing
Systems, pages 1993–2001, 2016. 3

[2] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Generative
and discriminative voxel modeling with convolutional neural
networks. arXiv preprint arXiv:1608.04236, 2016. 1, 3, 6

[3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: going beyond eucli-
dean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017. 1, 3

[4] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral
networks and locally connected networks on graphs. arXiv
preprint arXiv:1312.6203, 2013. 3

[5] Y. Chen and G. Medioni. Object modeling by registration of
multiple range images. In IEEE International Conference on
Robotics and Automation (ICRA), pages 2724–2729, 1991. 2

[6] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Gano-
velli, and G. Ranzuglia. MeshLab: an Open-Source Mesh
Processing Tool. In V. Scarano, R. D. Chiara, and U. Erra,
editors, Eurographics Italian Chapter Conference. The Eu-
rographics Association, 2008. 5

[7] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser,
and M. Nießner. Scannet: Richly-annotated 3d reconstructi-
ons of indoor scenes. In Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR), volume 1, 2017. 1,
3

[8] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral
filtering. In Advances in Neural Information Processing Sy-
stems, pages 3844–3852, 2016. 3

[9] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bomba-
rell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Convo-
lutional networks on graphs for learning molecular finger-
prints. In Advances in neural information processing sys-
tems, pages 2224–2232, 2015. 3

[10] M. Edwards and X. Xie. Graph based convolutional neural
network. arXiv preprint arXiv:1609.08965, 2016. 3

[11] C. Feng, Y. Taguchi, and V. R. Kamat. Fast plane extraction
in organized point clouds using agglomerative hierarchical
clustering. In IEEE International Conference on Robotics
and Automation (ICRA), pages 6218–6225, 2014. 3

[12] A. Golovinskiy, V. G. Kim, and T. Funkhouser. Shape-based
recognition of 3d point clouds in urban environments. In
IEEE International Conference on Computer Vision (ICCV),
pages 2154–2161, 2009. 3

[13] M. Henaff, J. Bruna, and Y. LeCun. Deep convoluti-
onal networks on graph-structured data. arXiv preprint
arXiv:1506.05163, 2015. 3

[14] D. Holz and S. Behnke. Fast range image segmentation and
smoothing using approximate surface reconstruction and re-
gion growing. Intelligent autonomous systems 12, pages 61–
73, 2013. 2, 3

[15] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized points.
SIGGRAPH Comput. Graph., 26(2):71–78, July 1992. 2

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-
volutional architecture for fast feature embedding. In Pro-
ceedings of the 22nd ACM international conference on Mul-
timedia, pages 675–678, 2014. 5

[17] B. Jian and B. C. Vemuri. Robust point set registration using
gaussian mixture models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(8):1633–1645, 2011.
3

[18] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In Procee-
dings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 137–146.
ACM, 2003. 3

[19] T. N. Kipf and M. Welling. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 3

[20] R. Klokov and V. Lempitsky. Escape from cells: Deep kd-
networks for the recognition of 3d point cloud models. Inter-
national Conference on Computer Vision (ICCV), 2017. 1,
3, 6

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Procee-
dings of the IEEE, 86(11):2278–2324, 1998. 3, 5, 6

[22] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein. Cay-
leynets: Graph convolutional neural networks with complex
rational spectral filters. arXiv preprint arXiv:1705.07664,
2017. 3

[23] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. Fpnn: Field
probing neural networks for 3d data. In Advances in Neural
Information Processing Systems, pages 307–315, 2016. 1, 3

[24] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.
Geodesic convolutional neural networks on riemannian ma-
nifolds. In Proceedings of the IEEE international conference
on computer vision workshops, pages 37–45, 2015. 3

[25] D. Maturana and S. Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. In IEEE
International Conference on Intelligent Robots and Systems
(IROS), pages 922–928. IEEE, 2015. 1, 3

[26] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda,
and M. M. Bronstein. Geometric deep learning on graphs
and manifolds using mixture model cnns. arXiv preprint
arXiv:1611.08402, 2016. 3

[27] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convoluti-
onal neural networks for graphs. In International conference
on machine learning, pages 2014–2023, 2016. 3

[28] D. OuYang and H.-Y. Feng. On the normal vector estimation
for point cloud data from smooth surfaces. Computer-Aided
Design, 37(10):1071–1079, 2005. 2

[29] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2017. 1, 2, 3, 6, 8

[30] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Gui-
bas. Volumetric and multi-view cnns for object classification
on 3d data. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 5648–5656, 2016. 1, 3

[31] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space.
Advances in Neural Information Processing Systems, 2017.
2, 3, 6

[32] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning
deep 3d representations at high resolutions. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
volume 3, 2017. 1, 2, 3

[33] G. L. Scott and H. C. Longuet-Higgins. An algorithm
for associating the features of two images. Proceedings
of the Royal Society of London B: Biological Sciences,
244(1309):21–26, 1991. 3

[34] M. Simonovsky and N. Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2017. 3, 6

[35] J. Strom, A. Richardson, and E. Olson. Graph-based seg-
mentation for colored 3d laser point clouds. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 2131–2136, 2010. 3

[36] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition.
In International Conference on Computer Vision (ICCV), pa-
ges 945–953, 2015. 6

[37] D. Thanou, P. A. Chou, and P. Frossard. Graph-based com-
pression of dynamic 3d point cloud sequences. IEEE Tran-
sactions on Image Processing, 25(4):1765–1778, 2016. 3

[38] Y. Tsin and T. Kanade. A correlation-based approach to ro-
bust point set registration. In European conference on com-
puter vision (ECCV), pages 558–569, 2004. 3, 4

[39] G. Vosselman, S. Dijkman, et al. 3d building model recon-
struction from point clouds and ground plans. International
archives of photogrammetry remote sensing and spatial in-
formation sciences, 34(3/W4):37–44, 2001. 2

[40] G. Vosselman, B. G. Gorte, G. Sithole, and T. Rabbani. Re-
cognising structure in laser scanner point clouds. Internatio-
nal archives of photogrammetry, remote sensing and spatial
information sciences, 46(8):33–38, 2004. 2

[41] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong.
O-cnn: Octree-based convolutional neural networks for 3d
shape analysis. ACM Transactions on Graphics (SIG-
GRAPH), 36(4), 2017. 1, 2, 3

[42] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 1912–1920, 2015. 1, 3, 5

[43] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point
cloud auto-encoder via deep grid deformation. Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2018. 3

[44] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, A. Lu,
Q. Huang, A. Sheffer, L. Guibas, et al. A scalable active fra-
mework for region annotation in 3d shape collections. ACM
Transactions on Graphics (TOG), 35(6):210, 2016. 6

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2018-041.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

