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Abstract
A major challenge of screen-camera visual multiinput multi-output (MIMO) communications
is to increase the achievable throughput by reducing nonlinear channel effects including per-
spective distortion, ambient lights, and color mixing. To mitigate such nonlinear effects, an
existing transmission method uses linear or simple nonlinear equalizations in decoding op-
erations. However, the throughput improvement from the equalization techniques is often
limited because the effects are composed of a combination of various nonlinear distortions. In
addition to the above issue, the existing studies consider specific environments, such as indoor
and static communications, although screen-camera communications can be used for a variety
of applications including outdoor and mobile scenarios. In this study, we propose 1) deep
neural network (DNN)- based decoding for screen-camera communications to increase the
achievable throughput and 2) Unity 3D-based evaluation methodology to synthetically learn
the DNN for being robust against many different screen-camera environments. The DNN
finds the best nonlinear kernels for equalization from numerously captured images, and then
decodes original bits from newly captured images based on the trained nonlinear kernels. In
the Unity-based evaluation tool, we can easily capture numerous photo-realistic images in dif-
ferent screen-camera scenarios to learn the impact of perspective distortion, screen-to-camera
distance, motion blur, and ambient lights on the throughput since Unity-based environment
can freely set programmable screens, cameras, and ambient lights on a 3D space. As an initial
proof of concept, we demonstrate that the proposed DNN-based decoder scheme improves the
achievable throughput by up to 148% compared to existing methods by equalizing nonlinear
effects.
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Abstract—A major challenge of screen-camera visual multi-
input multi-output (MIMO) communications is to increase the
achievable throughput by reducing nonlinear channel effects
including perspective distortion, ambient lights, and color mixing.
To mitigate such nonlinear effects, an existing transmission
method uses linear or simple nonlinear equalizations in decoding
operations. However, the throughput improvement from the
equalization techniques is often limited because the effects are
composed of a combination of various nonlinear distortions.
In addition to the above issue, the existing studies consider
specific environments, such as indoor and static communications,
although screen-camera communications can be used for a
variety of applications including outdoor and mobile scenarios.
In this study, we propose 1) deep neural network (DNN)-
based decoding for screen-camera communications to increase
the achievable throughput and 2) Unity 3D-based evaluation
methodology to synthetically learn the DNN for being robust
against many different screen-camera environments. The DNN
finds the best nonlinear kernels for equalization from numerously
captured images, and then decodes original bits from newly
captured images based on the trained nonlinear kernels. In the
Unity-based evaluation tool, we can easily capture numerous
photo-realistic images in different screen-camera scenarios to
learn the impact of perspective distortion, screen-to-camera
distance, motion blur, and ambient lights on the throughput since
Unity-based environment can freely set programmable screens,
cameras, and ambient lights on a 3D space. As an initial proof of
concept, we demonstrate that the proposed DNN-based decoder
scheme improves the achievable throughput by up to 148%
compared to existing methods by equalizing nonlinear effects.

I. INTRODUCTION

Visible light communications (VLC) [1], [2] have emerged
as promising complementary technologies to conventional
radio-frequency (RF) wireless communications. Screen-
camera communications [3]–[5] are such VLC technologies,
where digital data can be transmitted via image signals from
a screen to a camera. For screen-camera communications,
digital bits are encoded in the screen image on devices, e.g.,
laptop computers and smart phones. A receiver equipped
with camera image sensors captures the screen to decode
the information. Screen-camera communications can be used
for various wireless applications, such as inter/intra vehicle
communications [6], near field communications [7], [8], and
augmented reality (AR) [9]. The use of screen and camera
can form so-called multi-input multi-output (MIMO) systems
in which optical transmissions by an array of light-emitting

devices are received by an array of photo-detector elements.
Although typical frame rates of screen and camera devices are
relatively low in general (e.g., 50 frames per second), high-
definition screen and camera can realize a massive spatial-
multiplexing gain to transfer a large amount of information bits
at once. In addition, visual MIMO communications often do
not need to deploy dedicated equipment since recent devices
including smart phones are already configured with a high-end
display and camera sensor.

A major challenge of the screen-camera communications is
to increase the transmission rate and communication distance
in nonlinear channels in the presence of ambient noise. In
particular, there are three issues in such links as follows.
First, an encoded image on the screen is distorted due to
receiver’s perspective, depending on the angle of captures.
When the receiver captures the encoded image on a rectangular
screen from a certain angle, the captured image will become
trapezoid-shaped. This phenomenon is referred to as perspec-
tive distortion [10]. Second, the luminance of encoded image
is severely impaired by ambient lights such as sunlight. This
impairment causes errors in the encoded information, resulting
in a low transmission rate. Third, the spectrum sensitivity of
red, green, and blue color channels on the camera sensor is
non-orthogonal and highly nonlinear. Specifically, the output
of one color channel may be degraded by the intensity of the
other color channels. This is known as color mixing.

To overcome the above-mentioned issues, some approaches
[11]–[15] have been proposed for screen-camera links to
improve the transmission rates. For example, [16] uses or-
thogonal discrete multi-tone (DMT) and nonbinary coding
for high-speed transmission, along with several reconstruction
algorithms to reduce an effect of perspective distortion and
ambient noise. In addition, an equalization based on nonlinear
Volterra series is experimentally investigated to mitigate color
mixing distortion.

However, there are two remaining issues in existing studies
on screen-camera communications. The first issue is to realize
higher transmission rate by accounting for residual nonlinear
distortion in visual MIMO channels. Since the captured images
are distorted by multiple nonlinear effects, a simple nonlinear
model used in [16] may not lead to a significant improvement
in throughput. To increase the transmission rate by decreasing
such nonlinear effects, a new decoding technique to cope with



Fig. 1. Encoding and decoding operations in screen-camera visual MIMO
communications with the proposed DNN-based decoder.

multiple nonlinear effects is required.
The second issue is a limited amount of available evaluation

data under a specific communication environment. Although
the most of studies on screen-camera communications rely
on experimental measurements, the conducted experimental
settings are often too limited, e.g, indoor communication and
fixed position. On the other hand, screen-camera commu-
nications can be used for outdoor and mobile applications,
including intelligent transportation system (ITS) and AR. To
demonstrate the feasibility of screen-camera communications
in various applications, a new evaluation methodology of
screen-camera communications is needed.

In this paper, we propose a new decoding operation and
analyzing framework to discuss the performance of screen-
camera communications in many scenarios. Firstly, we propose
a deep neural network [17], [18] (DNN)-based decoder for
high-speed visual MIMO communications. The DNN is a
multi-layer perceptron (MLP) with many hidden layers to learn
nonlinear feature underlying the problem. To find the best
weights of the DNN, the decoder first learns the weights from
numerously captured images and the corresponding original
bits as the inputs and target outputs of the DNN. Based on the
learned weights, the decoder reconstructs original bits from
the newly captured images. Although an effect of Volterra-
based nonlinear channel equalization was discussed in [16],
there was no study addressing an impact of the DNN-based
approach on throughput improvement in screen-camera visual
MIMO communications, to the best of authors’ knowledge.

Secondly, we propose a Unity 3D-based evaluation frame-
work of screen-camera communications. In Unity 3D [19], we
can freely set the screen, cameras, and ambient lights on the
3D space. In addition, the parameters of these components,
e.g., position, motion, resolution, and light intensity, can be
dynamically controlled. Consequently, we can easily generate
a massively large number of evaluation data to simulate the
throughput of applications, that are difficult in experimental
evaluations. Moreover, those synthetically captured data can
be used for deep learning to make the DNN be more robust
against different environments. In this paper, to demonstrate

the proposed methodology, transmitted images displayed on
the screen are captured by multiple cameras, which are located
on different positions in the Unity 3D scene, and then the cap-
tured images are used for parameter learning in the proposed
DNN-based decoder to achieve better decoding performance.

Evaluation results show that the transmission rate of the
proposed scheme can be improved by up to 148.4 % compared
to that of existing studies at the same communication distance.
The proposed framework can be more effective when we use a
variety of different conditions for deep learning to resolve the
impact of more serious nonlinear impairments due to motion
blur, color mixing, and ambient light.

II. SCREEN-CAMERA VISUAL MIMO COMMUNICATION

A. System Overview

The purpose of our study is to realize higher transmission
rate in screen-camera communications by mitigating nonlin-
ear effects in the screen-camera channel. Fig. 1 shows the
schematic of our proposed scheme. We use a pair of screen and
camera as the sender and receiver, respectively. Note that there
are three major differences from RF wireless communications.
First, input values for the screen, i.e., pixel luminance values,
should not be complex-valued numbers. Second, the input
values are two dimensional (2D) in spatial domain. Third, the
pixel luminance values typically range over finite non-negative
integers, i.e., 0, 1, . . . , 255 for 8-bit quantization.

Based on the constraints, the sender first encodes original
information with binary coding, followed by 2𝑀 -ary QAM
modulation format and arranges the modulated symbols into
a 2D image matrix. The modulated coefficients are then
transformed to pixel luminance values by taking inverse 2D
fast Fourier transform (FFT) operation, and clipped according
to the luminance range. Finally, several white pixels of padding
is added to the two dimensional values prior to display.

At the receiver side, pixel luminance values are captured
by camera sensors and then the transmitted region is extracted
from the captured values using an edge detection algorithm.
The captured luminance values are filtered, transformed into
frequency domain, and equalized using homography trans-
form, 2D-FFT, and linear equalization, respectively. Each
equalized coefficient is fed into the proposed pixel-wise DNN-
based decoder to resolve residual nonlinear distortion in prior
to decode the coefficient into original bits.

B. Sender Operations

1) Basis Transform: In order to be robust against inter-
pixel interference, we use a basis transform technique based
on 2D-FFT. The stream of QAM-modulated symbols are
transformed to pixel luminance values using inverse 2D-FFT
for each color channel. As mentioned above, the screen does
not accept complex-valued luminance. To ensure transformed
values are purely real, we arrange the 2D matrix to be
Hermitian symmetry. Note that the output from the inverse
FFT will be entirely real when the input values are Hermitian.

More specifically, we suppose the use of screen image
having a resolution of 𝐻 × 𝑊 pixels, for transmitting 𝐻𝑊



real values in total per color channel. In each color channel,
modulated QAM symbols are arranged into a matrix of size
𝐻 × (𝑊/2) and the 1D inverse FFT is carried out for each
column. The FFT coefficients are organized to be Hermitian
symmetry by assigning the complex conjugate of the value
at the (𝑖, 𝑗)th frequency coefficient to the (𝑖,−𝑗)th frequency
coefficient. The coefficients in each row are then fed into the
inverse FFT. The resulting 𝐻𝑊 values are all real and can be
sent as screen image.

2) Clipping: We consider 8 bits for quantization represen-
tation of pixel luminance for screen images. To ensure the
output of FFT being within the range between 0 and 255,
the pixel luminance values are shifted and scaled to have a
mean of 255/2 and a variance of (255/2𝑐tail)

2, where 𝑐tail
is a clipping parameter. All values outside the range between
0 and 255 are clipped to 0 and 255, respectively. When the
FFT size is large enough, the luminance values may follow a
Gaussian distribution according to the central limit theorem.
By adjusting the clipping parameter 𝑐tail, we can control the
probability of clipping events.

3) Padding: Since light emitted from an LCD screen is
diffusive in nature, each photo detector of camera sensors
receives multiple lights from nearby LCD pixels. As a re-
sult, the LCD pixels are blended into one camera pixel in
particular for long distance and mobile devices due to blur.
The FFT-based transmission is insensitive to linear inter-pixel
interference induced by the blur. However, this blending effect
can still cause performance degradation at edges of the screen
images, i.e., background values outside the encoded pixels can
interfere. To reduce the edge effect, pixels with white color
are appended around the encoded values as padding. Finally,
the encoded values with padding are displayed on the screen
with black background. Note that the white padding is also
useful for edge detection at the receiver.

C. Receiver Operations

1) Pixel Extraction and Perspective Correction: Receiver’s
camera first captures an image, which contains the transmit-
ter’s screen, for communications. Prior to decoding, the area
of encoded pixels is extracted from the captured image. This
requires the receiver to detect the four corners of the area. In
our implementation, the encoded values can be extracted by
detecting edges between white padding and black background.

However, the extracted image is typically trapezoid and
its luminance is shifted due to perspective distortion and
ambient light distortion. We correct the perspective distortion
by using homography operation [20]. Specifically, a trapezoid
image can be transformed to a rectangle image based on
four corners of images. After the homography operation, the
luminance values are fed into 2D-FFT to obtain frequency-
domain coefficients.

2) Equalization: In screen-camera communications, trans-
mitted symbols are impaired by color mixing and an effective
noise in frequency domain. Let y𝑖,𝑗 denote a 3× 1 vector of
received symbols at (𝑖, 𝑗)th frequency component. Each row
represents the received symbol from red, green, and blue color
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Fig. 2. Pixel-wise DNN-based decoder with multi-label classification.

channels, respectively. In [16], the received symbols in screen-
camera links are modeled as nonlinear systems:

y𝑖,𝑗 = H𝑖,𝑗𝜙(x𝑖,𝑗) + z𝑖,𝑗 , (1)

where x𝑖,𝑗 is a 3×1 vector of transmitted symbols in frequency
domain, H𝑖,𝑗 is a 3×𝐾 channel gain matrix, z𝑖,𝑗 is a 3× 1
additive white Gaussian noise (AWGN) vector with a noise
variance of 𝜎2

𝑖,𝑗 . Here, 𝜙(⋅) denotes a nonlinear kernel expan-
sion and 𝐾 is an expansion cardinality. For example, the first-
order Volterra series expansion including an offset term [21],
[22] is expressed as 𝜙(x) = [1,xT]T with 𝐾 = 1 + 3 = 4.
Here, [⋅]T is a transpose.

We employ minimum mean-square error (MMSE) equaliza-
tion for the Volterra series expansion of the received symbols,
i.e., 𝜙(y𝑖,𝑗). Specifically, MMSE filter weights of size 3×𝐾
are obtained as follows:

G𝑖,𝑗 = 𝔼
[
x𝑖,𝑗𝜙(y𝑖,𝑗)

†]
𝔼
[
𝜙(y𝑖,𝑗)𝜙(y𝑖,𝑗)

†]−1
, (2)

where 𝔼[⋅] and [⋅]† denote the expectation and Hermitian
transpose, respectively. In practice, the expectation is taken
place by averaging multiple measurements in the past. Note
that the first-order Volterra series expansion for 𝜙(⋅) will
reduce to a linear equalizer. Finally, the received symbols are
equalized using the MMSE filter as follows:

x̂𝑖,𝑗 = G𝑖,𝑗𝜙(y𝑖,𝑗). (3)

3) DNN-based Decoding: Fig. 2 shows the proposed pixel-
wise DNN-based decoder. Each DNN-based decoder is com-
posed of an input layer, multiple hidden layers, and an output
layer to decode original bits from the extracted images. To
reconstruct original bits from the received coefficients, the
proposed decoder solves a multi-label classification problem,
which is a combination of multiple binary classification prob-
lems. More specifically, each unit in the input layer represents
each received frequency coefficient of imaginary and quadratic
components in each color channel, and thus the number of
units in the input layer is 2⋅3 = 6. In each hidden layer, we use
the adaptive-moment stochastic back-propagation algorithm,
5% dropout, and the rectified linear unit (ReLU) activation



Fig. 3. Unity 3D platform for screen-camera communications.

to find nonlinear relationship between the inputs and outputs.
Finally, the output layer with 2 ⋅ 3𝑀 units can classify 𝑀
bits in each color channel from the hidden layer outputs.
Each two-node tuple in the output layer calculates the softmax
probability to represent the likelihood of one bit.

To learn the best weights for multi-label classification
during multiple iterations, the proposed decoder first calculates
the softmax cross-entropy loss for each binary classification,
and then sums up the cross entropy loss over 3𝑀 bits. Based
on the cross entropy across 3𝑀 bits, the proposed decoder
updates the weights of the hidden layers to minimize the
cross entropy for the subsequent iterations. The DNN has
recently shown a great success in the media signal processing
community including natural language, computer visions, etc.
In order to achieve a significant gain, we usually require a
massively huge amount of training data, which are usually
not available in screen-camera communications experiments.
To overcome this issue, we next introduce a new framework,
which may facilitate multi-purpose VLC applications.

III. UNITY 3D-BASED SCREEN-CAMERA EVALUATION

A. Photo-Realistic Data Acquisition Framework

In our study, we create an image acquisition environment
of screen-camera communications on Unity 3D. In Unity 3D,
components of screen-camera communications, e.g., screens,
cameras, and ambient lights, can be freely set on 3D space as
shown in Fig. 3. The parameters of these components such as
position, screen size, camera’s resolution, angle, and ambient
light intensity, can be dynamically controlled, depending on a
use case that wants to evaluate the throughput performance.

Although this paper still focuses on a particular environ-
ment to evaluate the screen-camera communications, we can
simulate the achievable throughput of many use cases in
principle by reproducing the environment on the 3D space
in Unity 3D. Fig. 4 shows examples of the use-cases in
screen-camera communications. In the ITS scenarios, screen-
camera communications can be used for vehicle-to-roadside
and vehicle-to-vehicle communications to receive information
such as safety alerts and digital advertisement around the area.
For these cases, we should demonstrate effects of vehicle’s
speed, the size of each displayed image, the captured hour
and weather on the achievable throughput.

(a) ITS systems (modified image of freedesignfile.com CC BY 2.0)

(b) Broadcasting in crowded environment

Fig. 4. Use-cases in screen-camera communications.

In view of entertainment, we can use the visual MIMO
communications for crowded environments, e.g., sport events,
to broadcast digital information for many people. For example,
a large screen displays visual information about professional
players, and when the people capture the image on their smart
phones, the image tells the player information in more details.
In this case, effects of ambient lights and communication
distance should be evaluated to broadcast much information
to many people.

B. Deep Learning with Large-Scale Synthetic Data

The use of Unity 3D can generate a massively large number
of data sets with photo-realistic images across a variety of
use-case scenarios. Compared to experimental measurements,
this methodology may produce much more data by several
magnitudes of order. Those big data are specifically important
for deep learning to make the proposed DNN decoder more
robust against different nonlinear distortion regardless of any
specific use-case applications. For example, because the per-
formance of visual MIMO communications highly depends
on the ambient light, the DNN shall be trained over different
scenes having different sunlight color, direction, reflection,
shadows, intensity, etc. Those different conditions can be
easily treated by using the Unity 3D tool as shown in Fig. 5.



(a) Side-view angle (b) Slanting (c) Strong intensity

(d) Orange sunlight (e) Shadows (f) Occlusion

Fig. 5. Photo-realistic images in different scenes.

IV. PERFORMANCE EVALUATION

A. Analysis Setting

Image Acquisition Setting: For image acquisition in
screen-camera communications, we create an environment on
Unity 3D. We set one screen on the 3D space and two cameras
at the front of the screen. The distance between the screen and
each camera is 10 m to 30 m, respectively. The resolution of
each camera is 352× 288 pixels. In addition, one directional
light is set on the above of the screen.

Metric: We evaluate the achievable throughput of the
screen-camera communications system in terms of bits per
image. The throughput is defined as follows.

𝑅 = 𝐵 ⋅ ℐ(𝑋;𝑌 ), (4)

where 𝑅 denotes throughput (bits/image), 𝐵 is the total
number of transmitted bits in one encoded image, and ℐ(𝑋;𝑌 )
is mutual information between a transmitted image 𝑋 and
received image 𝑌 . Here, the mutual information for binary
coding is calculated directly from the DNN outputs as follows:

ℐ(𝑋;𝑌 ) = 1− 𝔼

[
log2 (1 + exp(−𝐿))

∣∣∣𝑏 = 0
]
, (5)

where 𝐿 is the log-likelihood ratio (LLR) which is the differ-
ence of two DNN output binary nodes in softmax classifiers.

In our evaluation, 8000 images at a resolution of 100×100
pixels with 16QAM format are captured. Here, 7910 images
are used for training and 90 images for test data.

DNN Parameters: We implemented the proposed pixel-
wise DNN-based decoder using Chainer [23]. We consider two
hidden layers, each of which is composed of 600 units. Detail
analysis of the optimal number of units will be left as future
work. To find the best weights of the hidden layers, we update
the weights based on the total cross-entropy loss across 2 ⋅3𝑀
units over 20-epoch iterations.

Reference Schemes: We consider four reference schemes
under different decoding operations for comparison: without
equalization, linear equalization, nonlinear equalization with
the 2nd order Volterra series, and proposed DNN-based de-
coding.
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(b) Communication distance of 20 m
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(c) Communication distance of 30 m

Fig. 6. Achievable throughput at different communication distances.

B. Effect of Communications Distance

In this section, we evaluate an effect of communication
distances between the screen and camera on throughput.
Figs. 6(a), (b), and (c) show achievable throughput in screen-
camera links at a communication distance of 10, 20, and



30 m, respectively. From the results, the proposed DNN-based
decoding can enhance the achievable throughput compared
to the conventional linear and nonlinear equalizations, in
particular at longer distances. For example, the improvement
by the proposed DNN-based decoder from the linear and
nonlinear equalizations is approximately 15.9 % and 12.1 %,
respectively, at a distance of 20 m. On the other hand, the
achievable throughput will be nearly zero if we do not employ
any equalization technique. It suggests that the equalization
techniques play an important role in increasing throughput.

At a short-range communication, the improvement of the
throughput in the proposed DNN-based decoder is marginal.
This may be simply because there are less-dominant nonlinear
distortion at such short-distance communications, and the
achieved throughput by linear equalization is already high
enough. At a long distance range of 30 m communications,
we found that the improvement of throughput by the pro-
posed DNN-based decoder is much more significant than
20 m screen-camera communications. Specifically, the pro-
posed DNN-based decoder improves the throughput by 148.4
% compared to the linear equalization and 127.1 % compared
to the nonlinear equalization. Considering these results, the
proposed DNN-based decoder may be more advantageous in
even more highly distorted environments.

V. CONCLUSION

This paper proposed a DNN-based decoder for nonlinear
visual MIMO channels to improve achievable throughput.
The DNN can find nonlinear relationship underlying the
captured images to recover the original bits. To improve the
decoding performance of the proposed DNN-based decoder
by using many captured images, we created an image ac-
quisition framework on Unity 3D and obtained thousands of
the captured images for evaluations. From the evaluations, we
demonstrated that the proposed DNN-based decoder achieves
2-times higher throughput than conventional schemes at long-
range communications. The proposed framework will facilitate
multi-purpose visual MIMO communications by synthetically
creating million data sets for even deeper learning to realize
environment-insensitive decoder.
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